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Foreword

The volume contains a selection of seventeen survey and research articles
from the July 1996 Warwick European algebraic geometry conference. These
papers give a lively picture of current research trends in algebraic geometry,
and between them cover many of the outstanding hot topics in the modern
subject. Several of the papers are expository accounts of substantial new
areas of advance in mathematics, carefully written to be accessible to the
general reader. The book will be of interest to a wide range of students and
nonexperts in different areas of mathematics, geometry and physics, and is
required reading for all specialists in algebraic geometry.

The European algebraic geometry conference was one of the climactic
events of the 1995-96 EPSRC Warwick algebraic geometry symposium, and
turned out to be one of the major algebraic geometry events of the 1990s.
The scientific committee consisted of A. Beauville (Paris), F. Catanese (Pisa),
K. Hulek (Hannover) and C. Peters (Grenoble) representing AGE (Algebraic
Geometry in Europe, an EU HCM-TMR, network) and N.J. Hitchin (Ox-
ford), J.D.S. Jones and M. Reid (Warwick) representing Warwick and British
mathematics. The conference attracted 178 participants from 22 countries
and featured 33 lectures from a star-studded cast of speakers, including most
of the authors represented in this volume.

The expository papers Five of the articles are expository in intention:
among these a beautiful short exposition by Paranjape of the new and very
simple approach to the resolution of singularities; a detailed essay by Ito
and Nakamura on the ubiquitous ADE classification, centred around simple
surface singularities; a discussion by Morrison of the new special Lagrangian
approach giving geometric foundations to mirror symmetry; and two deep
and informative survey articles by Behrend and Siebert on Gromov-Witten
invariants, treated from the contrasting viewpoints of algebraic and symplec-
tic geometry.

Some main overall topics Many of the papers in this volume group
around a small number of main research topics. Gromov-Witten invariants

vii



viii  Foreword

was one of the main new breakthroughs in geometry in the 1990s; they can
be developed from several different starting points in symplectic or algebraic
geometry. The survey of Siebert covers the analytic background to the sym-
plectic point of view, and outlines the proof that the two approaches define
the same invariants. Behrend’s paper explains the approach in algebraic geo-
metry to the invariants via moduli stacks and the virtual fundamental class,
which essentially amounts to a very sophisticated way of doing intersection
theory calculations. The papers by Paoletti and Wilson give parallel applica-
tions of Gromov—Witten invariants to higher dimensional varieties: Wilson’s
paper determines the Gromov-Witten invariants that arise from extremal
rays of the Mori cone of Calabi-Yau 3-folds, whereas Paoletti proves that
Mori extremal rays have nonzero associated Gromov-Witten invariants in
many higher dimensional cases. The upshot is that extremal rays arising in
algebraic geometry are in fact in many cases invariant in the wider symplectic
and topological setting.

Another area of recent spectacular progress in geometry and theoretical
physics is Calabi—Yau 3-folds and mirror symmetry. This was another major
theme of the EuroConference that is well represented in this volume. The pa-
per by Voisin, which is an extraordinary computational tour-de-force, proves
the generic Torelli theorem for the most classical of all Calabi-Yau 3-folds,
the quintic hypersurface in P*. The survey by Morrison explains, among
other things, the Strominger—Yau-Zaslow special Lagrangian interpretation
of mirror symmetry. Beauville’s paper gives the first known construction of a
Calabi—Yau 3-fold having the quaternion group of order 8 as its fundamental
group. The paper by Batyrev proves that the Betti numbers of a Calabi—Yau
3-fold are birationally invariant, using the methods of p-adic integration and
the Weil conjectures; the idea of the paper is quite startling at first sight (and
not much less so at second sight), but it is an early precursor of Kontsevich’s
idea of motivic integration, as worked out in papers of Denef and Loeser. Sev-
eral other papers in this volume (those of Ito and Nakamura, Mukai, Shioda
and Wilson) are implicitly or explicitly related to Calabi-Yau 3-folds in one
way or another.

Other topics The remaining papers, while not necessarily strictly related
in subject matter, include some remarkable achievements that illustrate the
breadth and depth of current research in algebraic geometry. Shioda ex-
tends his well-known results on the Mordell-Weil lattices of elliptic surfaces
to higher genus fibrations, in a paper that will undoubtedly have substantial
repercussions in areas as diverse as number theory, classification of surfaces,
lattice theory and singularity theory. Faber continues his study of tauto-
logical classes on the moduli space of curves and Abelian varieties, and gives
an algorithmic treatment of their intersection numbers, that parallels in many
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respects the Schubert calculus; he obtains the best currently known partial
results determining the class of the Schottky locus. Gizatullin initiates a
fascinating study of representations of the Cremona group of the plane by bi-
rational transformations of spaces of plane curves. Eyssidieux gives a study,
in terms of Gromov’s Kahler hyperbolicity, of universal inequalities holding
between the Chern classes of vector bundles over Hermitian symmetric spaces
of noncompact type admitting a variation of Hodge structures. Kiichle and
Steffens’ paper contains new twists on the idea of Seshadri constants, a notion
of local ampleness arising in recent attempts on the Fujita conjecture; they
use in particular an ingenious scaling trick to provide improved criteria for
the very ampleness of adjoint line bundles.

Manetti’s paper continues his long-term study of surfaces of general type
constructed as iterated double covers of P2, He.obtains many constructions
of families of surfaces, and proves that these give complete connected compo-
nents of their moduli spaces, provided that certain naturally occuring degen-
erations of the double covers are included. This idea is used here to establish
a bigger-than-polynomial lower bound on the growth of the number of con-
nected components of moduli spaces. In more recent work, he has extended
these ideas in a spectacular way to exhibit the first examples of algebraic
surfaces that are proved to be diffeomorphic but not deformation equivalent.

The Fourier-Mukai transform is now firmly established as one of the most
important new devices in algebraic geometry. The idea, roughly speaking, is
that a sufficiently good moduli family of vector bundles (say) on a variety X
induces a correspondence between X and the moduli space X. In favourable
cases, this correspondence gives an equivalence of categories between coherent
sheaves on X and on X (more precisely, between their derived categories).
The model for this theory is provided by the case originally treated by Mukai,
when X is an Abelian variety and X its dual; Mukai named the transform by
analogy with the classical Fourier transform, which takes functions on a real
vector space to functions on its dual. It is believed that, in addition to its
many fruitful applications in algebraic geometry proper, this correspondence
and its generalisations to other categories of geometry will eventually pro-
vide the language for mathematical interpretations of the various “dualities”
invented by the physicists, for example, between special Lagrangian geom-
etry on a Calabi-Yau 3-fold and coherent algebraic geometry on its mirror
partner (which, as described in Morrison’s article, is conjecturally a fine mod-
uli space for special Lagrangian tori). Mukai’s magic paper in this volume
presents a Fourier—-Mukai transform for K3 surfaces, in terms of moduli of
semi-rigid sheaves; under some minor numerical assumptions, he establishes
the existence of a dual K3 surface, the fact that the Fourier-Mukai transform
is an equivalence of derived categories, and the biduality result in appropriate
cases.
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The paper of Ito and Nakamura is the longest in the volume; it combines a
detailed and wide-ranging expository essay on the ADE classification with an
algebraic treatment of the McKay correspondence for the Kleinian quotient
singularities C?/G in terms of the G-orbit Hilbert scheme. The contents of
their expository section will probably come as a surprise to algebraic geo-
meters, since alongside traditional aspects of simple singularities and their
ADE homologues in algebraic groups and representation of quivers, they lay
particular emphasis on partition functions in conformal field theory with mod-
ular invariance under SL(2,Z) and on II; factors in von Neumann algebras.
Their study of the G-Hilbert scheme makes explicit for the first time many
aspects of the McKay correspondence relating the exceptional locus of the
Kleinian quotient singularities C2/G with the irreducible representations of
G; for example, the way in which the points of the minimal resolution can be
viewed as defined by polynomial equations in the character spaces of the cor-
responding irreducible representations, or the significance in algebraic terms
of tensoring with the given representation of G. Ito and Nakamura and their
coworkers are currently involved in generalising many aspects of the G-orbit
Hilbert scheme approach to the resolution of Gorenstein quotient singulari-
ties and the McKay correspondence to finite subgroups of SL(3,C), and this
paper serves as a model for what one hopes to achieve.

Thanks to all our sponsors The principal financial support for the Euro-
Conference was a grant of ECU40,000 from EU TMR (Transfer and Mobility
of Researchers), contract number ERBFMMACT 950029; we are very grate-
ful for this support, without which the conference could not have taken place.
The main funding for the 1995-96 Warwick algebraic geometry symposium
was provided by British EPSRC (Engineering and physical sciences research
council). Naturally enough, the symposium was one of the principal activi-
ties of the Warwick group of AGE (European Union HCM project Algebraic
Geometry in Europe, Contract number ERBCHRXCT 940557), and finan-
cial support from Warwick AGE and the other groups of AGE was a crucial
element in the success of the symposium and the EuroConference. We also
benefitted from two visiting fellowships for Nakamura and Klyachko from the
Royal Society (the UK Academy of Science). Many other participants were
covered by their own research grants.

The University of Warwick, and the Warwick Mathematics Institute also
provided substantial financial backing. All aspects of the conference were
enhanced by the expert logistic and organisational help provided by the
Warwick Math Research Centre’s incomparable staff, Elaine Greaves Coelho,
Peta McAllister and Hazel Graley.

Klaus Hulek and Miles Reid, November 1998



Birational Calabi—Yau n-folds
have equal Betti numbers

Victor V. Batyrev

Abstract

Let X and Y be two smooth projective n-dimensional algebraic
varieties X and Y over C with trivial canonical line bundles. We use
methods of p-adic analysis on algebraic varieties over local number
fields to prove that if X and Y are birational, they have the same
Betti numbers.

1 Introduction

The purpose of this note is to show how to use the elementary theory of
p-adic integrals on algebraic varieties to prove cohomological properties of
birational algebraic varieties over C. We prove the following theorem, which
was used by Beauville in his recent explanation of a Yau—Zaslow formula for
the number of rational curves on a K3 surface 1] (see also [3, 12]):

Theorem 1.1 Let X and Y be smooth n-dimensional irreducible projective
algebraic varieties over C. Assume that the canonical line bundles % and

Y are trivial and that X and Y are birational. Then X and Y have the
same Betti numbers, that is,

HY(X,C) = H(Y,C) foralli>0.

Note that Theorem 1.1 is obvious for n = 1, and for n = 2, it follows from
the uniqueness of minimal models of surfaces with x > 0, that is, from the
property that any birational map between two such minimal models extends
to an isomorphism [5]. Although n-folds with x > 0 no longer have a unique
minimal model for n > 3, Theorem 1.1 can be proved for n = 3 using a result
of Kawamata ([6], §6): he showed that any two birational minimal models
of 3-folds can be connected by a sequence of flops (see also [7]), and simple
topological arguments show that if two projective 3-folds with at worst Q-
factorial terminal singularities are birational via a flop, then their singular
Betti numbers are equal. Since one still knows very little about flops in

1



2 Birational Calabi-Yau n-folds have equal Betti numbers

dimension n > 4, it seems unlikely that a consideration of flops could help
to prove Theorem 1.1 in dimension n > 4. Moreover, Theorem 1.1 is false in
general for projective algebraic varieties with at worst Q-factorial Gorenstein
terminal singularities of dimension n > 4. For this reason, the condition in
Theorem 1.1 that X and Y are smooth becomes very important in the case
n > 4. We remark that in the case of holomorphic symplectic manifolds some
stronger result is obtained in [4].

I would like to thank Professors A. Beauville, B. Fantechi, L. Géttsche,
K. Hulek, Y. Kawamata, M. Kontsevich, S. Mori, M. Reid and D. van Straten
for their interest, fruitful discussions and stimulating e-mails.

2 Gauge forms and p-adic measures

Let F be a local number field, that is, a finite extension of the p-adic field Q,
for some prime p € Z. Let R C F be the maximal compact subring, q C R
the maximal ideal, F; = R/q the residue field with |Fy| = ¢ = p". We write

Nrjq,: F = Qp
for the standard norm, and || - ||: F — Ry for the multiplicative p-adic norm

o - o] = p Oy @),
Here Ord is the p-adic valuation.

Definition 2.1 Let X be an arbitrary flat reduced algebraic S-scheme, where
S = Spec R. We denote by X'(R) the set of S-morphisms S — X (or sections
of X — S). We call X(R) the set of R-integral points in X. The set of
sections of the morphism X xg Spec F — Spec F' is denoted by X(F) and
called the set of F-rational pointsin X.

Remark 2.2 (i) If X is an affine S-scheme, then one can identify X' (R)
with the subset

{z € X(F)| f(z) € Rfor all f € T(X,0x)} C X(F).

(ii) If X is a projective (or proper) S-scheme, then X (R) = X (F).

Now let X be a smooth n-dimensional algebraic variety over F. We assume
that X admits an extension X to a regular S-scheme. Denote by Q% the
canonical line bundle of X and by Q% /s the relative dualizing sheaf on X.

Recall the following definition introduced by Weil [11]:
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Definition 2.3 A global section w € I'(X, 2% ) is called a gauge form if
it has no zeros in X. By definition, a gauge form w defines an isomorphism
Ox =05 /s> sending 1 to w. Clearly, a gauge form exists if and only if the
line bundle Q% /¢ is trivial.

Weil observed that a gauge form w determines a canonical p-adic measure
dp,, on the locally compact p-adic topological space X (F) of F-rational points
in X. The p-adic measure dpu,, is defined as follows:

Let z € X(F) be an F-point, #),...,t, local p-adic analytic parameters
at z. Then t;,...,t, define a p-adic homeomorphism 6: U — A™(F) of an
open subset Y C X(F') containing x with an open subset 8(U) C A™(F). We
stress that the subsets U C X(F) and (L) C A™(F) are considered to be
open in the p-adic topology, not in the Zariski topology. We write

w=0"(gdt; A--- Adty),

where g = ¢(t) is a p-adic analytic function on 6(U) having no zeros. Then
the p-adic measure dyu,, on U is defined to be the pullback with respect to 6
of the p-adic measure ||g(t)||dt on (i), where dt is the standard p-adic Haar
measure on A”(F) normalized by the condition

[ a=1
A™(R)

It is a standard exercise using the Jacobian to check that two p-adic mea-
sures dy/,, du” constructed as above on any two open subsets U',U” C X(F)
coincide on the intersection U’ N U”.

Definition 2.4 The measure du, on X(F) constructed above is called the
Weil p-adic measure associated with the gauge form w.

Theorem 2.5 ([11], Theorem 2.2.5) Let X be a regular S-scheme, w a
gauge form on X, and du,, the corresponding Weil p-adic measure on X(F).
Then

X
[ an = RE
X(R) q

where X (F,) is the set of closed points of X over the finite residue field Fy.

Proof Let
¢: X(R) - X(F,) givenby z—T¢€ X(F,)

be the natural surjective mapping. The proof is based on the idea that if
T € X(F,) is a closed Fy-point of X and ¢i,...,gn are generators of the
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maximal ideal of T in Oy z modulo the ideal g, then the elements g1,...,gn
define a p-adic analytic homeomorphism

v: oY (T) - A™(q),

where ©~1(%) is the fiber of ¢ over T and A"(q) is the set of all R-integral
points of A” whose coordinates belong to the ideal ¢ C R. Moreover, the
p-adic norm of the Jacobian of v is identically equal to 1 on the whole fiber
©~Y(T). In order to see the latter we remark that the elements define an étale
morphism g: V — A" of some Zariski open neighbourhood V of T € X. Since
¢~ YZ) C V(R) and g*(dt1, A--- A dt,) = hw, where h is invertible in V', we
obtain that h has p-adic norm 1 on ¢~!(Z). So, using the p-adic analytic
homeomorphism v, we obtain

/ duy, = / dt = in
¢=1(z) An(q) q

for each T € X(F;). O

Now we consider a slightly more general situation. We assume only that
X is a regular scheme over S, but do not assume the existence of a gauge
form on X (that is, of an isomorphism Oy = Q3% /s)- Nevertheless under
these weaker assumptions we can define a unique natural p-adic measure dy
at least on the compact X'(R) C X(F') - although possibly not on the whole
p-adic topological space X (F')!

Let U4y, ..., Uy be a finite covering of X' by Zariski open S-subschemes such
that the restriction of Q% /s on each U; is isomorphic to Oy,. Then each U,
admits a gauge form w; and we define a p-adic measure dy; on each compact
U;(R) as the restriction of the Weil p-adic measure dp,, associated with w; on
U;(F). We note that the gauge forms w; are defined uniquely up to elements
s; € T(U;, O%). On the other hand, the p-adic norm ||s;(z)|| equals 1 for any
element s; € T'(U;, O%) and any R-rational point z € U;(R). Therefore, the
p-adic measure on U;(R) that we constructed does not depend on the choice
of a gauge form w;. Moreover, the p-adic measures dy; on U;(R) glue together
to a p-adic measure dy on the whole compact X (R), since one has

UR)NU(R)=UNU;)R) fori,j=1,...,k
and
U(R)U---UU(R) = Lh V- U U)(R) = X(R).

Definition 2.6 The p-adic measure constructed above defined on the set
X(R) of R-integral points of an S-scheme X is called the canonical p-adic
Measure.
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For the canonical p-adic measure du, we obtain the same property as for
the Weil p-adic measure dy,,:

/ dp = XE
X(R) qr

Theorem 2.7

Proof Using a covering of X by some Zariski open subsets Uy, ..., Uy, we
obtain
Jw=% [au- [ aror 2 [ o
X(R) By Ry U Uy Uy (R) (- (R)
and

|X(Fq)| = Z|ui1(Fq)| - Zl(un n uiz)(Fq)|

4ot (—1)’°_1|(Ul n---N uk)(Fq)|'

It remains to apply Theorem 2.5 to every intersection U, N---NU;,. O

Theorem 2.8 Let X be a regular integral S-scheme and Z2 C X a closed
reduced subscheme of codimension > 1. Then the subset Z(R) C X(R) has
zero measure with respect to the canonical p-adic measure du on X(R).

Proof Using a covering of X by Zariski open affine subsets U, ..., Uk, we
can always reduce to the case when X is an affine regular integral S-scheme
and Z C X an irreducible principal divisor defined by an equation f = 0,
where f is a prime element of A = I'(X, Oy).

Consider the special case X = A% = Spec R[X),...,X,] and Z = A% ! =
Spec R[Xs, ..., Xy,)], that is, f = X,. For every positive integer m, we denote
by Z.(R) the subset in A"(R) consisting of all points z = (1, ...,Z,) € R*
such that z; € q™. One computes the p-adic integral in the straightforward

way:
/dx— /dx ﬁ(/ dm)—i
1 s N )@

Zm(R) Al(g™)

On the other hand, we have

o0

Z(R) =[] Z=(R).

m=1
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Hence

/ dx = lim dx =0,
Z(R) m=% Jz.(R)

and in this case the statement is proved. Using the Noether normalization
theorem reduces the more general case to the above special one. [J

3 The Betti numbers

Proposition 3.1 Let X andY be birational smooth projective n-dimensional
algebraic varieties over C having trivial canonical line bundles. Then there
ezist Zariski open dense subsets U C X andV C Y such that U is isomorphic
to V and codimx (X \ U), codimy (Y \ V) > 2.

Proof Consider a birational rational map ¢: X --+ Y. Since X is smooth
and Y is projective, ¢ is regular at the general point of any prime divisor
of X, so that there exists a maximal Zariski open dense subset U C X with
codimx (X \ U) > 2 such that ¢ extends to a regular morphism ¢o: U — Y.
Since ¢*wy is proportional to wy, the morphism ¢ is étale, that is, ¢ is
an open embedding of U into the maximal open subset V C Y where ¢!
is defined. Similarly ¢! induces an open embedding of V into U, so we
conclude that (g is an isomorphism of U onto V. O

Proof of Theorem 1.1 Let X and Y be smooth projective birational
varieties of dimension n over C with trivial canonical bundles. By Propo-
sition 3.1, there exist Zariski open dense subsets U C X and V C Y with
codimy (X \U) > 2 and codimy (Y \ V) > 2 and an isomorphism ¢: U — V.

By standard arguments, one can choose a finitely generated Z-subalgebra
R C C such that the projective varieties X and Y and the Zariski open
subsets U C X and V C Y are obtained by base change * xs SpecC from
regular projective schemes X and ) over S := Spec R together with Zariski
open subschemes U C X and V C Y over §. Moreover, one can choose R
in such a way that both relative canonical line bundles Q2% s and Q3,5 are
trivial, both codimensions codimy (X' \ U) and codimy(Y \ V) are > 2, and
the isomorphism ¢: U — V is obtained by base change from an isomorphism
d: U -V over S.

For almost all prime numbers p € N, there exists a regular R-integral
point m € S Xsgpecz SpecZp, where R is the maximal compact subring in a
local p-adic field F; let q be the maximal ideal of R. By an appropriate
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choice of T € S Xgpecz Spec Z,, we can ensure that both X and Y have good
reduction modulo q. Moreover, we can assume that the maximal ideal I(7)
of the unique closed point in

S := Spec R < S Xspecz SpecZ,

is obtained by base change from some maximal ideal J(%) C R lying over the
prime ideal (p) C Z.

Let wy and wy be gauge forms on X and Y respectively and wy and wy
their restriction to U (respectively V). Since ®* is an isomorphism over S,
®*wy is another gauge form on U. Hence there exists a nowhere vanishing
regular function h € I'(U, O%) such that

®*wy = hwy.

The property codimyx (X \U) > 2 implies that A is an element of I'(X, 0%) =
R*. Hence, one has ||h(z)|| = 1 for all £ € X(F), that is, the Weil p-adic
measures on U(F) associated with ®*wy and wy are the same. The latter
implies the following equality of the p-adic integrals

/ dpx =/ dpy.
U(F) V(F)

By Theorem 2.8 and Remark 2.2, (ii), we obtain

/ dpx = / dux = / dpx
u(r) X(F) X(R)
/ dpy = / dpy = / dpy.
V(F) (F) V(R)

Now, applying the formula in Theorem 2.7, we arrive at the equality

X (E _ VED

This shows that the numbers of Fy-rational points in X and )} modulo the
ideal J(T) C R are the same. We now repeat the same argument, replacing
R by its cyclotomic extension R C C obtained by adjoining all complex
(¢" — 1)th roots of unity; we deduce that the projective schemes X and Y
have the same number of rational points over Fq(r), where Fq(r) is the extension
of the finite field Fy of degree r. We deduce in particular that the Weil zeta
functions

and

r=1

2(%,p,1) = exp (2 IX(Fé”)lg)
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and
Z(Y,p,t) = exp (Z Iy(Fé”)If;)
r=1

are the same. Using the Weil conjectures proved by Deligne [9] and the
comparison theorem between the étale and singular cohomology, we obtain

_ PUO)P(t) -+ Pona(?)
2P = R P P @

and

_ Q1(1)Qs(t) - - - Q2n—1 (1)
Qo(t)Q2(t) -+ - Q2a(t)

where P;(t) and @;(t) are polynomials with integer coefficients having the
properties

Z(Y,p,t)

deg Bi(t) = dim H*(X,C), degQi(t) = dim H*(Y,C) foralli>0. (2)

Since the standard Archimedean absolute value of each root of polynomials
P,(t) and Q;(t) must be ¢~/ and P,(0) = Q;(0) = 1 for all i > 0, the equality
Z(X,p,t) = Z(Y,p,t) implies Pi(t) = Q;(t) for all ¢ > 0. Therefore, we have
dim H(X,C) = dim H*(Y,C) for all s > 0. O

4 Further results

Definition 4.1 Let ¢: X --+ Y be a birational map between smooth alge-
braic varieties X and Y. We say that ¢ does not change the canonical class,
if for some Hironaka resolution a: Z — X of the indeterminacies of ¢ the
composite a o ¢ extends to a morphism 5: Z — Y such that 5*Q} = a*0%.

The statement of Theorem 1.1 can be generalized to the case of birational
smooth projective algebraic varieties which do not necessarily have trivial
canonical classes as follows:

Theorem 4.2 Let X and Y be irreducible birational smooth n-dimensional
projective algebraic varieties over C. Assume that the exists a birational ra-
tional map ¢: X --+Y which does not change the canonical class. Then X
and 'Y have the same Betti numbers.
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Proof We repeat the same arguments as in the proof of Theorem 1.1 with
the only difference that instead of the Weil p-adic measures associated with
gauge forms we consider the canonical p-adic measures (see Definition 2.6).
Using the birational morphisms a: £ — &’ and $: £ — Y having the prop-
erty

By & o™y s,

we conclude that for some prime p € N, the integrals of the canonical p-adic
measures py and py over X'(R) and Y(R) are equal, since there exists a dense
Zariski open subset { C Z on which we have a*py = 3*py. By Theorem 2.7,
the zeta functions of X and Y must be the same. O

Another immediate application of our method is related to the McKay
correspondence [10].

Theorem 4.3 Let G C SL(n,C) be a finite subgroup. Assume that there
exist two different resolutions of singularities on W := C"/G:

[ X->W ¢gY->W

such that both canonical line bundles Q% and Q% are trivial. Then the Euler
numbers of X andY are the same.

Proof We extend the varieties X and Y to regular schemes over a scheme
S of finite type over SpecZ. Moreover, one can choose § in such a way that
the birational morphisms f and g extend to birational S-morphisms

F:XxX-W, G:Y—-W,

where W is a scheme over & extending W. Using the same arguments as
in the proof of Theorem 1.1, one obtains that there exists a prime p € N
such that Z(X,p,t) = Z(Y,p,t). On the other hand, in view of (2), the
Euler number is determined by the Weil zeta function (1) as the degree of the
numerator minus the degree of the denominator. Hence e(X) = e(Y). O

With a little bit more work one can prove an even more precise statement:

Theorem 4.4 Let G C SL(n,C) be a finite subgroup and W := C*/G. As-
sume that there exists a resolution

fiX->W

with trwvial canonical line bundle Q5. Then the Euler number of X equals
the number of conjugacy classes in G.
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Remark 4.5 As we saw in the proof of Theorem 3.1, the Weil zeta functions
of Z(X,p,t) and Z(Y,p,t) are equal for almost all primes p € Spec Z. This
fact being expressed in terms of the associated L-functions indicates that the
isomorphism H*(X,C) & H(Y,C) for all i > 0 which we have established
must have some deeper motivic nature. Recently Kontsevich suggested an
idea of a motivic integration [8], developed by Denef and Loeser [2]. In
particular, this technique allows to prove that not only the Betti numbers,
but also the Hodge numbers of X and Y in 1.1 must be the same.
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A Calabi—Yau threefold with
non-Abelian fundamental group

Arnaud Beauville*

Abstract

This note, written in 1994, answers a question of Dolgachev by
constructing a Calabi-Yau threefold whose fundamental group is the
quaternion group Hg. The construction is reminiscent of Reid’s un-
published construction of a surface with py = 0, K 2 =2 and 7 = Hg;
I explain below the link between the two problems.

1 The example

Let Hy = {£1,+i,+j,+k} be the quaternion group of order 8, and V its
regular representation. We denote by ﬁg the group of characters x: Hy — C*,
which is isomorphic to Z; X Z,. The group Hg acts on P(V) and! on S?V; for
each x € ﬁg, we denote by (S? V) the eigensubspace of S?V with respect to
X, that is, the space of quadratic forms Q on P(V') such that k- Q = x(h)@
for all h € Hg.

Theorem 1.1 For each x € ﬁg, let Q,, be a general element of (S? V)x- The
subvariety X of P(V') defined by the 4 equations

Q5 =0 forallx € Hg

is a smooth threefold, on which the group Hg acts freely. The quotient X :=
X /Hg is a Calabi-Yau threefold with my(X) = Hs.

Let me observe first that the last assertion is an immediate consequence
of the others. Indeed, since X is a Calabi-Yau threefold, we have h0(X) =

h20(X) = x(Og) = 0, hence A9(X) = h29(X) = x(Ox) = 0. This implies

*Partially supported by the European HCM project “Algebraic Geometry in Europe”
(AGE).
1T use Grothendieck’s notation, that is, P(V) is the space of hyperplanes in V.

13



14 A Calabi-Yau threefold with non-Abelian fundamental group

h*9(X) = 1, so there exists a nonzero holomorphic 3-form w on X; since its
pullback to X is everywhere nonzero, w has the same property, hence X is
a Calabi-Yau threefold. Finally X is a complete intersection in P(V'), hence
simply connected by the Lefschetz theorem, so the fundamental group of X
is isomorphic to Hg. _

So the problem is to prove that Hy acts freely and X is smooth. To do this,
we will need to write down explicit elements of (S?V),. As an Hg-module,
V is the direct sum of the 4 one-dimensional representations of Hg and twice
the irreducible two-dimensional representation p. Thus there exists a system
of homogeneous coordinates (X1, Xq, X, X,; Y, Z;Y’, Z') such that

9 (X1, X0, X3, XY, 2;Y',2') =
(X1, a(9)Xa, B(9) X5, 7(9) Xy; p(9)Y, Z); p(9) (Y, Z)).

To be more precise, I denote by « (respectively 3, ) the nontrivial char-
acter which is +1 on ¢ (respectively j, k), and I take for p the usual represen-
tation via Pauli matrices:

p() (Y, Z) = (V=1Y,—V=12), p(j)(¥,2)=(-Z2,Y),
p(k)Y, 2) = (-V-1Z,—V/-1Y).

Then the general element @, of (S*V), can be written

Q =1XI+ X2+ 80X+ X2+t (YZ' -Y'2),

Qo =11 X1Xo + 15 Xp X, + Y Z + 83Y'Z' +12(YZ' + ZY'),

Qs =t X1 Xp + 0 XX, + 5(Y2 4+ Z) +t3(Y2 + 2 + (YY" + 22"),
Q,=t1X1 X, +t]XoXs+1](Y2 = Z2) +t](Y? - Z?*) + 1 (YY' - 22").

For fixed t := (tX), let X, be the subvariety of P(V') defined by the equa-
tions @, = 0. Let us check first that the action of Hg on A, has no fixed
points for t general enough. Since a point fixed by an element h of Hj is also
fixed by h?, it is sufficient to check that the element —1 € Hy acts without
fixed point, that is, that X; does not meet the linear subspaces L, and L_
defined by Y =Z =Y'=Z' =0 and X; = X, = Xg = X, = 0 respectively.

Let z = (0,0,0,0;Y, Z; Y, Z') € X, N L_. One of the coordinates, say Z,
is nonzero; since Q;(z) = 0, there exists k¥ € C such that Y’ = kY, Z' = kZ.
Substituting in the equations Q(x) = Qs(z) = Q,(z) = 0 gives

(2 + 2k +13k2)YZ = (12 + k + KV + 2%) =
(t3 + 12k + 3k (Y2 -~ Z%) =0

which has no nonzero solutions for a generic choice of t.
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Now let z = (X1, X4, X, X,;0,0;0,0) € Xy N L. As soon as the t} are
nonzero, two of the X-coordinates cannot vanish, otherwise all the coordi-
nates would be zero. Expressing that Q3 = @), = 0 has a nontrivial solution
in (Xp, X,) gives X2 as a multiple of X7, and similarly for X7 and X2. But
then @ (z) = 0 is impossible for a general choice of t.

Now we want to prove that X is smooth for t general enough. Let @ =
@Xeﬁs(s2 V)y; then t := (tY) is a system of coordinates on Q. The equations
Qy = 0 define a subvariety X in Q@ x P(V'), whose fibre above a point t € Q
is X;. Consider the second projection p: X — P(V). For z € P(V), the fibre
p~!(z) is the linear subspace of Q defined by the vanishing of the Q,, viewed
as linear forms in t. These forms are clearly linearly independent as soon
as they do not vanish. In other words, if we denote by B, the base locus
of the quadrics in (S?V), and put B = |JB,, the map p: X — P(V) is a
vector bundle fibration above P(V')\ B; in particular X is nonsingular outside
p~1(B). Therefore it is enough to prove that A; is smooth at the points of
Bn A,.

Observe that an element z in B has two of its X-coordinates zero. Since
the equations are symmetric in the X-coordinates we may assume X3 = X, =
0. Then the Jacobian matrix

21X, 21X, O 0
t2X, t2X; 0 0
0 0 ¥x, ¥x,
0 0 t1Xa X,

0Qy
( 3x, (x)) takes the form

For generic t, this matrix is of rank 4 except when all the X-coordinates of =
vanish; but we have seen that this is impossible when t is general enough. O

2 Some comments

As mentioned in the introduction, the construction is inspired by Reid’s ex-
ample [R] of a surface of general type with p, = 0, K? = 2, m; = Hs. This is
more than a coincidence. In fact, let S be the hyperplane section X; = 0 of
X. Tt is stable under the action of Hg (so that Hs acts freely on S), and we
can prove as above that it is smooth for a generic choice of the parameters.
The surface S := S/Hj is a Reid surface, embedded in X as an ample divisor,
with h%(X, Ox(S)) = 1. In general, let us consider a Calabi-Yau threefold X
which contains a rigid ample surface, that is, a smooth ample divisor S such
that h%(Ox(S)) = 1. Put L := Ox(S). Then S is a minimal surface of gen-
eral type (because Kg = L|s is ample); by the Lefschetz theorem, the natural
map m(S) —= m(X) is an isomorphism. Because of the exact sequence

0-0x —L—Kg—0,
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the geometric genus p,(S) := h°(K3s) is zero.
We have K2 = L3; the Riemann—Roch theorem on X yields
L3 L. C2

=19 = —
1=h"(L) = T

Since L - c; > 0 as a consequence of Yau’s theorem (see for instance [B],
Cor. 2), we obtain K% < 5.

For surfaces with p, = 0 and K2 = 1 or 2, we have a great deal of informa-
tion about the algebraic fundamental group, that is the profinite completion
of the fundamental group (see [B-P-V] for an overview). In the case K% =1,
the algebraic fundamental group is cyclic of order < 5; if K% = 2, it is of
order < 9; moreover the dihedral group Ds cannot occur. D. Naije [N] has
recently proved that the symmetric group &3 can also not occur; therefore
the quaternion group Hg is the only non-Abelian group which occurs in this
range.

On the other hand, little is known about surfaces with p, = 0 and K 2 =
3,4 or 5. Inoue has constructed examples with m; = Hg x (Z3)", with n =
K?—2 (loc. cit.); I do not know if they can appear as rigid ample surfaces in
a Calabi-Yau threefold.

Let us denote by X the universal cover of X, by L the pullback of L to X
and by p the representation of G on H*(X, L). We have Trp(g) = Ofor g # 1
by the holomorphic Lefschetz formula, and Tr p(1) = x(L) = |G| x(L) = |G].
Therefore p is isomorphic to the regular representation. Looking at the list
in loc. cit. we get a few examples of this situation, for instance:

o G =17s, X=a quintic hypersurface in P*;
o G = (Z,)3 or Zy x Zy, X = an intersection of 4 quadrics in P as above;
e G =173 x Zs3, X = a hypersurface of bidegree (3,3) in P x P2,

Of course, when looking for Calabi—Yau threefolds with interesting m;,
there is no reason to assume that it contains an ample rigid surface. Observe
however that if we want to use the preceding method, in other words, to find
a projective space P(V') with an action of G and a smooth invariant linearly
normal Calabi-Yau threefold X C P(V), then the line bundle O%(1) will be
the pullback of an ample line bundle L on X, and by the above argument the
representation of G on V will be h®(L) times the regular representation. This
leaves little hope to find an invariant Calabi-Yau threefold when the product
h%(L)|G| becomes large.
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Algebraic Gromov—Witten invariants

K. Behrend

Abstract

We present an introduction to the algebraic theory of Gromov-
Witten invariants, as developed in collaboration with Yu. Manin and
B. Fantechi in [4], [3] and [2]. We try to make these three articles
more accessible. Proofs are generally omitted and there is little new

material.
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20 Algebraic Gromov—-Witten invariants

1 Introduction

Gromov—-Witten invariants are the basic enumerative geometry invariants of
a (nonsingular projective) algebraic variety W. Given a family T'y,..., T, of
algebraic cycles on W, one asks how many curves of fixed genus and degree
(or homology class) pass through I'y,...,I',. The answer is given by the
associated Gromov-Witten invariant. (If there is an infinite number of such
curves, the Gromov—Witten invariant is a cycle in the moduli space of marked
curves, rather than a number.) Isolating the properties satisfied by these
invariants (formulated here as Axioms I-VIII) has had tremendous impact on
enumerative geometry in recent years. Moreover, Gromov-Witten invariants
tell us the correct way of counting curves. In simple cases (for example,
W = P™) the Gromov-Witten invariant simply gives the actual number of
curves through I'y,..., T, if I'y,..., T, are moved into general position. But
such a naive interpretation of Gromov—Witten invariants is impossible in
general, and so one should think of Gromov-Witten invariants as the ideal
number of curves through I'y,...,[,.

Gromov—Witten invariants are defined as certain integrals over moduli
spaces of maps from curves to W. Integrating over the usual fundamental
class of the moduli space is problematic and can give the wrong result, be-
cause the moduli space might be of higher dimension than expected. This
necessitates the construction of a so-called virtual fundamental class. This
is the key step in the definition of Gromov-Witten invariants. Before the
virtual fundamental classes were understood, Gromov-~Witten invariants had
only been constructed in special cases.

It turns out that the Gromov-Witten invariants of W (over C) only de-
pend on the underlying symplectic structure of W. (The only aspect one does
not see from the symplectic point of view is the motivic nature of Gromov-
Witten invariants.) The history of Gromov~Witten invariants in symplectic
geometry is actually much older than in algebraic geometry. Classically, one
perturbed the almost complex structure on W, instead of constructing a vir-
tual fundamental class. For an exposition of this theory and its development,
see the article by Siebert in this volume, which also explains the fact that the
invariants constructed in symplectic geometry equal the algebraic ones.

The necessity of virtual fundamental classes for the definition of Gromov—
Witten invariants in algebraic geometry was felt from the very beginning (see
the seminal papers [10] and [11]). Before the general construction, several
special cases had been studied in detail, usually in genus zero, or for W a
homogeneous space. For more information on the results obtained and the
history of this part of the subject, see the survey [7].

The theory of virtual fundamental classes explained in this article is due
to B. Fantechi and the author (see [3]). Our work was inspired by a talk
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of J. Li at the Santa Cruz conference on algebraic geometry in the summer
of 1995. In his talk, Li reported on work in progress with G. Tian on the
subject of virtual fundamental classes. At the time, that approach relied on
analytic methods, for example, the existence of the Kuranishi map. Our work
[3] grew out of an attempt to understand Li and Tian’s work, to construct
virtual fundamental classes in an algebraic context, and, most of all, to give
the construction as intrinsically as possible. But, of course, our construction
owes its existence to theirs. See [12] for the approach of Li and Tian.

Full details of the theory explained here can be found in the series of
papers [4], [3] and [2]. In this article, we stress the geometric meaning of
Gromov—Witten invariants and skip most proofs.

Our approach uses graphs to keep track of the moduli spaces involved.
The graph theory we use here is much simpler than that of [4], for two rea-
sons. Firstly, we restrict to ‘absolutely stable’ graphs (in the terminology of
[4]). We lose a lot of invariants this way, but we gain a high degree of simpli-
fication of the formalism. However, even this simplified formalism contains
all invariants 1, (8) envisioned in [11]. The other aspect we do not go into
here is that graphs form a category. Using the full power of the categorical
(or ‘operad’) approach, the number of axioms for Gromov-Witten invariants
can be distilled down to two (from the eight we need here), but only at the
cost of a lot of formalities.

Introducing graphs here has two purposes. Firstly, we believe that graphs
(as presented here) actually simplify the theory of Gromov-Witten invariants,
and make their properties more transparent. For example, the use of graphs
splits the famous ‘splitting axiom’ into three much simpler axioms. We also
hope that presenting a simplified graph theoretical approach here will make
[4] and 2] more accessible.

Our approach also relies heavily on the use of stacks. Again, stacks are
introduced to simplify the theory; still, a few remarks seem in order. There
are two ways in which stacks appear here, and two different kinds of stacks
that play a role.

First of all, the moduli stacks involved are Deligne-Mumford stacks, which
are algebraic geometry analogues of orbifolds. Thus, if one works over C
and uses the analytic topology, such stacks are locally given as the quotient
of an analytic space by the action of a finite group (except that the stack
‘remembers’ these group actions in a certain sense). A good way to think
of a Deligne-Mumford stack is as a space (of points) together with a finite
group attached to each point. (So if the stack is the quotient of a space by
a finite group, the points of the stack are the orbits, and the group attached
to an orbit is the isotropy group of any element of the orbit.) If the stack is
a moduli stack, its points correspond to isomorphism classes of the objects
the stack classifies, and the group attached to such an isomorphism class is
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the automorphism group of any object in the isomorphism class. The space
of isomorphism classes is called the underlying coarse moduli space.

Deligne-Mumford stacks behave in many respects just like schemes. For
example, their cohomological and intersection theoretic properties are iden-
tical to those of schemes, at least if one uses rational coefficients. Care is
needed a just one place, when integrating a cohomology class over a Deligne-
Mumford stack (which is not a scheme). Then fractions may appear (even
if one integrates integral cohomology classes). More generally, one has to
use fractions when doing proper pushforwards of homology or Chow cycles, if
the morphism one pushes forwards along is not representable (i.e., has fibers
which are stacks, not schemes).

For example, if our Deligne-Mumford stack X has one point, with finite
group G attached to it (notation X = BG; we can view it as the quotient
of a point by the action of G), then the Euler characteristic of X (i.e., the
integral of the top Chern class of the tangent bundle, in this case the integral
of 1 € H*(X)) is x(X) = fx 1=1/#G.

To calculate such an integral | x w over a Deligne-Mumford stack X, one
has to find a proper scheme X’ together with a generically finite morphism
f: X’ — X, and then one has fxw = (1/deg f) fX, f*w. In the above
example X = BG, we may take X' to the one-point variety and then X’ — X
has degree # G and so [pc1=(1/#G) [, 1=1/#G.

When explaining the general theory, it is not necessary to calculate a
nonrepresentable proper pushforward explicitly, and so for this purpose we
may as well pretend that all moduli stacks are spaces (i.e., schemes). We
do this often, so that even if it says moduli space somewhere, it is implicitly
understood that moduli stack is meant.

One reason that we must work with moduli stacks to do things properly,
is that the corresponding coarse moduli spaces do not have universal fami-
lies over them, whereas the construction of Gromov-Witten invariants uses
universal families in an essential way.

The second way in which stacks appear is in the construction of virtual
fundamental classes. Of course, one could construct the virtual fundamental
class without using stacks, but we believe that stacks is the natural language
for formulating the construction. The stacks used in this theory are so-called
cone stacks, which are Artin stacks of a particular type. Artin stacks are
more general than Deligne-Mumford stacks in that the groups attached to
the points of the stack can be arbitrary algebraic groups, not just finite groups.
These groups are too big to sweep under the carpet so easily, so that it is
better not to pretend that Artin stacks are spaces, and we therefore include
a ‘heuristic’ definition of cone stacks. (Cone stacks are special, since their
groups are always vector groups.) The most important cone stack is the
‘intrinsic normal cone’. It is an invariant of any Deligne-Mumford stack, and
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even for schemes it is an interesting object, which is nontrivial as a stack.

2 What are Gromov—Witten invariants?

Let k be a field! and W a smooth projective variety over k. We shall define the
Gromov-Witten invariants of W, taking values in the cohomology of moduli
spaces of curves.

2.1 Cohomology theories

So before we can begin, we have to choose a cohomology theory,

H”: (smooth proper DM stacks/k) —— (vector spaces over A)
X +— H*(X)

This needs to be a ‘graded generalized cohomology theory with coefficients
in a field A of characteristic zero, with cycle map, such that P! satisfies epu’.
It should be defined on the category of smooth and proper Deligne-Mumford
stacks over k. The precise definition can be found in [8].

Remark (for pedants) In (8], the cohomology theory is of course defined
on the category of smooth and proper varieties, but the generalization of the
definitions in [8] to Deligne-Mumford stacks is not difficult. The only point
is that, strictly speaking, the category of (smooth, proper) Deligne-Mumford
stacks is a 2-category, and so the cohomology theory is a functor from a 2- to
a l-category (i.e., a usual category). This means that it factors through the
associated 1-category of the 2-category of Deligne-Mumford stacks, i.e., the
category in which one passes to isomorphism classes of morphisms. In other
words, one pretends that the category of Deligne-Mumford stacks is a usual
category.

Rather than recalling the precise definition of a generalized cohomology
theory with the required properties, we give a few examples.

1. If the ground field & is C and the coefficient field A is Q, then let
H*(X) = Hi(X) = Betti cohomology of X.

This can be defined in several ways.

1Because the theory is somewhat limited in positive characteristic (see footnote 4) the
most important case is chark = 0.



24 Algebraic Gromov—-Witten invariants

The easiest case is when X has a moduli space X. Then we can simply
set

H(X) = H}, (X(C),Q),

the usual (singular) cohomology of the underlying topological space with the
analytic topology. All the X that we consider have moduli spaces.?

More generally, one can consider [X(C)], the set of isomorphism classes
of the groupoid X(C), in other words, the set of isomorphism classes of the
objects the stack classifies. It comes with a natural topology, because the
quotient of any groupoid exists in the category of topological spaces. The
space [X(C)] is thus the quotient of the topological groupoid associated to
any presentation of X (with the analytic topology). Then we have

Hy(X) = H5,,([X(C)), Q).

The canonical definition is the following. To the algebraic C-stack X
we associate a topological stack X*°P (a stack on the category of topological
spaces with the usual Grothendieck topology). This has an associated site (or
topos) of sheaves X.P. (By abuse of notation we denote the usual topology
by the subscript ét.}) The Betti cohomology of X is then the cohomology of
this topos

Hy(X) = H' (X", Q).

This can also be defined in terms of geometric realizations.

2. Let £ be a prime not equal to the characteristic of k& and consider the
coefficient field A = Q,. Then we may take the £-adic cohomology of X:

H*(X) = H}(X) = H*(Xet, Qo) = lim H* (X, Z/07).
Here X = X X k and X denotes the étale site of X.

3. In the case chark = 0, we may take A = k and consider algebraic de
Rham cohomology

H*(X) = Hpp(X) = H'(Xer, U)-

2Note, however, that the existence of the moduli spaces is a nontrivial, additional fact,
that we never need.
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4. We may also take Chow cohomology
HY(X) = A°(X),

where the coefficient field is A = Q. The Chow rings one needs for this
definition were constructed by Vistoli {13].

2.2 Moduli stacks of curves

Gromov-Witten invariants take values in the cohomology of moduli stacks of
curves. To list the axioms of Gromov-Witten invariants efficiently, we need
slightly more general moduli spaces than the well-known M,,. These are
indexed by modular graphs.

Definition 2.1 A graph 7 is a quadruple (F;, V,, j,,8;) where F; is a finite
set, the set of flags, V; is another finite set, the set of vertices, 0: Fr — V, is
a map and j,: Fr — F; an involution. We use the notation:

S;={fe€F.|jf=f} thesetof tails of 7.
ET={{f1’f2}CFTIf2=jflvfl7éf2}v the set of edges'

For every vertex v € V, the set F,(v) = 871(v) is the set of flags of v and
# F.(v) the valency of v.

We draw graphs by representing a vertex as a dot, and edge as a curve
connecting vertices, and a tail as a half open curve, connected only to a
vertex at its closed end. (The map 9 specifies which vertex a flag is connected
to.) Drawing graphs in this manner suggests an obvious notion of geometric
realization of a graph. This is the topological space obtained in the way just
indicated. The geometric realization of a graph 7 is denoted by |r|.

Definition 2.2 A modular graph is a pair (7,g), where 7 is a graph and
g: V: = Z>o a map. We use the terminology:

g(v) is the genus of the vertex v.

x(1) = x(|7]) — Z g(v) is the Euler characteristic of the graph 7.

veEV,
If the geometric realization |7| of T is nonempty and connected then
9(r) =Y g(v) +dim H'(j7],Q) = 1 - x(r)
veV,

is the genus of 7. A graph of genus zero is a tree, and a possibly discon-
nected graph all of whose connected components are trees is called a forest.
A nonempty connected graph without edges is called a star. Note that a star
has exactly one vertex.
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The Deligne-Mumford moduli stacks we are interested in are indexed by
modular graphs. But we do not associate a moduli stack to every modular
graph, only to the stable modular graphs.

Definition 2.3 The modular graph 7 is stable if each vertex is stable, i.e., if
29(v)+# F,(v) >3 foralvelV,.

We are now ready to define the moduli stacks of curves. First, for a
nonnegative integer g and a finite set S such that 2g+# S > 3, we define the
stack Mg,s to be the moduli stack of stable curves of genus g with marked
points indexed by S.

Thus each point of —Mg,s corresponds to a pair (C, z), where C is a nodal
curve of arithmetic genus g (i.e., a connected but possibly reducible curve
with at worst nodes as singularities) and z is an injective map z: § — C,
which avoids all nodes. The pair (C,z) is moreover required to be stable,
meaning that for every irreducible component C’ of C we have

29(C") + #{special points of C'} > 3.

Here g(C") is the geometric genus of C’, and a point is special if it is in the
image of x or is a node of C. If both branches of a node belong to C’, then
this node counts as two special points.

If we choose an identification S = {1,...,n}, then we get an induced
identification

Mys= Mgn,

where the M, ,, are the moduli stacks of stable marked curves introduced by
Mumford and Knudsen [9], and for n = 0 the stacks of stable curves defined
by Deligne and Mumford [5].

Definition 2.4 The moduli stack associated to a stable modular graph 7 is
now simply defined to be

M, = [] Moo .0

veVr

It may seem surprising that the involution j, does not enter here. The
usefulness of this definition will become clear later.

Let (C,x) be a stable marked curve. We obtain its associated modular
graph by associating

e to each irreducible component C’ of C a vertex of genus g(C") (geometric
genus, that is, the genus of its normalization),
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e to each node of C an edge connecting the vertices corresponding to the
two branches of the node,

e to each marked point of C a tail attached to the vertex corresponding
to the component containing the marked point.

If 7 is the modular graph associated to (C,z), we say that (C,z) is of de-
generation type 7. Note that 7 is connected and g(7) = ¢(C) (arithmetic
genus).

If 7 is a stable modular graph which is nonempty and connected, there
exists a morphism

-M_T — _M—g(T),S-r)

defined by associating to a V,-tuple of stable marked curves (Cy, (Z;)icF, Jvev,
the single curve (C, (z:):es,) obtained by identifying any two marks z; that
correspond to an edge of 7. This morphism is finite and its image is the stack
of curves of degeneration type T or worse. It is of generic degree # Aut’(7)
onto the image; here Aut’(7) is the group of automorphisms of 7 fixing the
tails.

If one fixes ¢ and n and considers all connected stable modular graphs
7 such that ¢g(7) = g and S; = {1,...,n}, then one gets in this way the
stratification of Mg,n by degeneration type.

2.3 Systems of Gromov—Witten invariants
Fix a smooth projective variety W over k. We use the notation

Hy(W)* = {(p & Hom(Pic W, Z) ©(L) > 0 for all ample }

invertible sheaves L on W

Of course, if £ = C, then Hy(W)™ contains the semigroup of effective cycle
classes in Hy(W,Z) (or, in general, the semigroup of effective cycle classes in
A (W) and we would not lose anything by restricting to this subsemigroup.

Definition 2.5 A system of Gromov-Witten invariants for W is a collection
of (multi-)linear maps?

L(B): H*(W)®" — H*(M,), (1)

3To take Tate twists into account, one has to twist in a certain way, explained below,
in the context of the grading axiom. So what we say here is only true up to Tate twists.
Of course in the most important case, the Betti case, this is of no concern.
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for every stable modular graph 7 and every* Ho(W)* marking 3: V, —
Hy(W)* of 7, satisfying the list of eight axioms below.

Before listing the axioms, we say a few words about the geometric inter-
pretation of Gromov—Witten invariants. For this, assume that we are over C
and use singular cohomology. For purposes of intuition, it is better to dualize.
So using Poincaré duality we identify H* with H, and get

L(g): H(W)® — H.(M,)
mn &®--- ®'7n — Iq\-/(ﬁ)(fyh . afyn)'

Note that, as the notation suggests, we are thinking of the I'Y () as multilinear

maps (and we have chosen an identification S, = {1,...,n}).
To explain what IY(8)(m,...,¥.) should be, choose cycles I'y,..., T, C
W in sufficiently general position representing the homology classes v, . .., ¥,.

Consider all triples (C, z, f), where
o C = (C,)yev, is a family of connected curves.

o T = (2;)icF, is a family of ‘marks’, i.e., for each ¢ € F, the mark z; is
a point on the curve Cy;y. We also demand that (C,z) be a family of
stable marked curves.

o f = (fu)vev, is a family of maps f,: C, — W such that

1. for each edge {1,492} of 7 we have faw,)(2i,) = fauy) (i),
2. for all v € V, we have f£.[C,] = B(v),
3. for all i € S; we have that fau(z;) € I

Let T be the ‘space’ of all such triples up to isomorphism. (An isomorphism
from a triple (C,z, f) to a triple (D,y,g) is a Vi-tuple ¢ = (py)vey, of
isomorphisms of curves ¢,: C, — D, such that psq)(z;) = y; for all i € F;
and gyop, = fy for allv € ;)

We have a morphism ¢: T — M, which simply maps a triple (C, z, f) to
the first two components (C,z). The ‘naive’ definition of I,(8) is then

LB, m) = edT)

Remark For simplicity, assume that 7 is connected. To a triple (C,z, f)
we may associate, as above, a single marked curve (C, %) by identifying the

4 If chark > 0, then choose a very ample invertible sheaf L on W and consider only
B € Ha(W)™* such that B(L) < chark. This ensures that all maps considered are separable,
which is needed for all the arguments (as stated here) to go through. However, one does
not get ‘as many’ Gromov-Witten invariants as in characteristic zero.
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two marks corresponding to each edge of 7, obtaining a stable marked curve
of degeneration type 7 or worse. The V. -tuple of maps f induces a map
f:C-W.

Let T be the space of triples (D, y, g), where (D, y) is a stable marked curve
of degeneration type 7 and g: D — W a morphism such that g(y;) € I; for all
i=1,...,n,and g.[D,] = B(v) forallv € V;. (Here D, is the component of D
corresponding to v.) Then we have a rational map T' — T of degree # Aut/(7).
(It is not defined everywhere, as we do not allow worse degeneration types
than 7 in T.)3

So a slightly more naive but less abstract definition of I.(3) would be

L(B) (1 - 7m) = # Aut'(7)pu[T].

Note that in the most important case, where 7 is a star, the factor # Aut'(7)
is equal to 1.

For example, assume that T is finite (usually the case of interest). Then

is the ‘ideal’ number of solutions to an enumerative geometry problem

More precisely, passing to (C, %, f ) as before and then to f ( ) we get a
curve in W passing through I'y,..., ', If I'y,..., T, are sufficiently generic,
then one would hope that this process sets up a bijection between points of T’
and the curves of degeneration type 7 (or worse) through I'y, ..., T',. Thus (if

the hope is justified) IY(B)(m, - -,7n) is the number of such curves

1
# Aut’(1)
intersecting I'y, ..., [,
For example, let W = P2 be the projective plane. Then Ho(W)* = Zxy,
and one writes d = 8. Assume d > 2 and let n = 3d — 1. Let 7 be the star
of genus zero with n tails: S, = F, = {1,...,n}. So we have

IY(B) = Iy, (d): H*(P*)®* — H*(Mo,).

If we consider the homology class of a point in P?, call it 7, and consider
I5 . (d)(v*™), where ¥*™ stands for the n-tuple (v, .. .,7), then the correspond-
ing ‘space’ T is a discrete set of points (if the n points I'y, ..., T, representing
~ are in sufficiently general position).

5Allowing more degenerate curves in T would not make sense, because D, would no
longer be well defined.

6The word ‘ideal’ is essential here. In many cases, the Gromov—-Witten invariant differs
from the actual curve count.
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One sees easily, that T' corresponds one-to-one to the rational curves of
degree d through I'y,...,T,. Thus

Iond)(v") = Ign(d)(v*")

— rational curves of degree d through
- n points in general position '

For example, the number of conics through 5 points is Ios(2)(7*%) = 1,
and the number of rational cubics through 8 points is Iy s(3)(y*®) = 12.

In view of this ‘intuitive definition’ the following eight axioms that we
require of Gromov-Witten invariants are all very natural. Note, however,
that there are two problems with this definition. First of all, T must be
compactified in order for ¢, in homology to make sense. This can be dealt
with using stable maps (see below). A more serious problem is that in general
it is not possible to put the I'; into sufficiently general position to assure that
T is smooth and of the ‘correct’ dimension. This necessitates the construction
of a ‘virtual fundamental class’ in T, which is a homology class in the correct
degree, whose image in M, is taken to be the Gromov-Witten invariant.

The reasons for using this axiomatic approach are largely historical. Kont-
sevich and Manin [11] introduced these axioms before Gromov-Witten invari-
ants were rigorously defined. Today there are several natural constructions
of invariants satisfying the axioms. We present one of these later.

One should note that the axioms do not determine the invariants uniquely.
For example, one can set all the I equal to zero (except for those forced to
be nonzero by the axiom concerning mapping to a point). Certain re-scalings
are also possible.

The axioms do comprise all properties used to construct quantum coho-
mology out of the Gromov—Witten invariants, and certainly imply all char-
acteristic properties of Gromov—-Witten invariants that do not involve change
of the variety W.

2.4 Axioms for Gromov—Witten invariants
1. The grading axiom
This says that
L(B): H*(V)®5 2x(1)dim W] — H*(M,)[28(1)(ww)]

respects the natural grading on both vector spaces.” Here [-] denotes shifts
of grading: if H* = €D H* is a graded vector space then H*[m] is the graded

7If one is concerned about Tate twists, one needs to also twist by (x(7) dim W) on the
left and (B(7)(ww)) on the right.
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vector space such that (H*[m])¥ = H*+™. In other words, I,(3) raises degrees
by 2(8(7)(ww) — x(7) dim W). We use the notation

B(r) = B(v)

veEV,

and ww is the canonical line bundle on W.

The idea behind this axiom is that the moduli ‘space’ T' of triples, al-
luded to in the section on geometric intuition, has an expected dimension. It
is computed using deformation theory (assuming that there are no obstruc-
tions). Even if there are obstructions, one still requires that I,.(3) changes the
grading by this expected dimension (minus ) _,deg~;), which is then called
‘virtual dimension’.

The reasoning behind this is that one wants Gromov—Witten invariants
to be invariant under continuous (or better, algebraic) deformations of the
whole situation, like all good enumerative geometry numbers are. So one
supposes that one could deform the situation into sufficiently general position
for the obstructions to vanish and the space T to actually attain the expected
dimension.

Note however, that in general it is not possible to deform the variety W
algebraically to make it sufficiently generic in this sense.

For the computation of the expected dimension see Section 4.7. See also
Remark 3.3

II. Isomorphisms

Let ¢: ¢ — 7 be an isomorphism of Ha(W)*-marked stable modular graphs.
Then we get induced isomorphisms VS — V5 and M, — M, and the
isomorphism axiom requires the diagram

H(v)es =8 B (M)
!
H'(V)*S =8 H(M,)

—

to commute.

This axiom leads to a covariant behavior of the I, ,(5) with respect to the
action of the symmetric group on n letters. It is motivated by the expectation
that the ideal number of curves through the cycles I'y,...,I', should not
depend on the labelling of the cycles.

ITI. Contractions

Let ¢: 0 — 7 be a contraction of stable modular graphs. This means that
there exists an edge {f, f} of o which, at the level of geometric realizations,
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is literally contracted to a vertex by ¢. It also implies a certain compati-
bility between the genera of the vertices involved. There are two cases to
distinguish.

Case (a) The edge {f,f} is a loop with vertex v. Then if v is the
corresponding vertex of 7 to which our edge is contracted, we have g(v') =
g(v) + 1.

Case (b) The edge {f, f} has two different vertices v; and vy. In this
case we let v be the vertex of 7 obtained by merging the vertices v; and v,
via the contraction ¢. The requirement is that g{v) = g(v1) + g(vs).

All other vertices of 7 have the genus of the corresponding vertex of o.

In either case we get an induced morphism &: M, — M,, defined as
follows.

Case (a)

(C,) — (C/.’Ef=$7,)

Here C stands for the component of the V,-tuple of stable marked curves
corresponding to the vertex v. This curve has two marked points, indexed
by f and f. The morphism & identifies them with each other, creating a
node in the curve C and losing two marked points in the process. This curve
obtained from C by creating an additional node we call ¢’ and then C’ is
the component of the V,-tuple of stable marked curves corresponding to the
index v'.

Case (b)

o: M, — M,
(01,02,...) [ (01H02/.'Ef=.'137,...)

Here C) and Cy are the components of the V,-tuple of stable marked curves
corresponding to the vertices v; and v, respectively. On C; there is a marked
point indexed by f, and on Cj there is a marked point indexed by f, and
C\OCy/zy = 7 refers to the curve obtained by identifying these two points
in the disjoint union of these two curves. In the process one loses two marked
points, which is OK, because the graph also lost two flags.

In either case, the image of ® is a ‘boundary’ divisor in M,. Usually, ® is
a closed immersion. Only if exchanging the two flags f and f can be extended
to an automorphism of ¢ inducing the identity on 7 (i.e., always in Case (a),
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almost never in Case (b)) is ® a degree two cover followed by an immersion.
In Case (a) the image of ® can also intersect itself.

The axiom now demands that for each Hy(W)* marking 8 on 7, the
diagram

HW)es =8 (M)
! Lo

’ Icr Bl) —
H*(w)@Sa ZB_S H*(MU)
commutes. Here the vertical map on the left is the canonical isomorphism
coming from the fact that the contraction ¢ does not affect the tails of the
graphs involved.
The sum in the lower horizontal map is taken over all maps

BV, — Hy(W)*
that are compatible with 8. This means

e in Case (a), that §'(w) = B(w) for all w € V,. In particular that
B'(v) = B"),

e in Case (b), that 8'(w) = B(w) for all w # vy, vy, and F'(v;) + B'(ve) =
B).

Note that in Case (a) there is only one summand and in Case (b) there is
a finite number of summands.

The meaning of this axiom is very simple. For example, in Case (b) it
says that the number of curves in class 8 that have two components is the
sum over all pairs (8;, 52) such that 8; + B2 = B of the number of curves
that have two components whose first component is of class #; and whose
second component is of class f5. (The invariant IY(5) might be a 1-cycle in
‘M, and ®* would intersect it with the boundary divisor ‘M, and so count
the number of curves in the family IY(8) that have two components, where
the generic member has one.) In case ® is generically two to one, ®* involves
a multiplication by a factor of two, which reflects the ambiguity in marking
the two points lying over the node.

IV. Glueing tails

Let 7 be a stable modular graph and {f, f} an edge of 7. Let o be the
modular graph obtained from 7 by ‘cutting the edge’ {f, f}. This means
that all the data describing ¢ is the same as the data describing 7, except for
the involution j. In the case of 7, the set {f, f} is an orbit of j, and in the
case of o it is the union of two orbits of j,.
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In this situation we have a ‘morphism of stable modular graphs of type
cutting edges’ 7 — ¢ and an ‘extended isogeny of type glueing tails’ o — 7.
For the definitions of these terms see [4]. The direction of the arrow join-
ing 0 and 7 depends on the context. Part I of [4] takes the ‘morphism of
stable modular graphs’ approach to describe the morphisms between mod-
uli spaces. In Part II, where Gromov-Witten invariants are given a graph
theoretic treatment, the ‘extended isogeny’ viewpoint is needed.

Anyway, to state our axiom, the direction of the arrow joining ¢ and 7 is
not relevant. What is important to note is that ¢ has two tails more than 7,
and therefore we have

H*(W)®S = H*(W)®" @ H*(W x W).

The axiom now requires the diagram

H W)@ H*W)®S 2 mw)es “8@ 71,
Al l=
HW x W)@ H*'(W)eS: = HwW)es: =8 p(,)

to commute. Here p: W x WS — W5 is the projection onto the second
factor, and A: W — W x W is the diagonal. This diagram is required to
commute for any Ho(W)* marking 3 one can put on V, = V.

Note that the image of I'y X --- X I';, under A, op* is A X I'y X --- x [y,
where A takes up the two first components in W57, So I,(8) o A, o p* should
count the number of marked curves whose first two marks map to the same
point in W. These are exactly the curves that I.(5) should count.

V. Products

Let 7 and 7' be two stable modular graphs and o the stable modular graph
whose geometric realization is the disjoint union of the those of 7 and 7. We
write 0 = 7 X 7' (and not 7 I17'). For Hy(W)* markings 8 on 7 and 8’ on 7/
we denote by 8 x 8’ the induced Ho(W)™ marking on ¢. The product axiom
requires that under such conditions the diagram

H*(W)®S' ® H*(W)S?' I?(B)Q;L,;/(,B/) H*(MT) ® H*(MT/)
! !
H*(W)eS- et H*(M,)
always commutes. Here the vertical maps are the isomorphisms induced by
the isomorphisms W% = W% x WS and M, = M, x M.

This axiom expresses the expectation that the number of solutions to the
enumerative geometry problem (7, 3) multiplied by the number of solutions of
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the problem (7/, ') is the number of pairs solving the ‘composite enumerative
geometry problem’.

VI. Fundamental class

Let o be a stable modular graph and f € S, a tail of 0. Let 7 be the modular
graph obtained by simply omitting f. We assume that 7 is still stable.

Remark Since there is a canonical way of associating a stable modular
graph to any modular graph (called its ‘stabilization’), one might wonder if
there is also an axiom that applies in the case that 7 is not stable. The
answer is that such an axiom would follow from the others and is therefore
not necessary. To see this, assume that the stabilization of 7 is not empty.
Then the process of removing the tail from ¢ and stabilizing the graph thus
obtained can also be described (albeit not uniquely) as an edge contraction
followed by a tail omission that does not lead to an unstable graph.®

In this situation we get a morphism
oM, — MT,

defined in the following way: take the curve corresponding to the vertex of the
tail f, which has a marked point on it indexed by f. Omit this point z; and
stabilize the marked curve thus obtained. To stabilize means to contract (blow
down) the component on which z; lies, if it becomes unstable by omitting
zs. (This can only happen in case this component is rational.) It is proved
in [9] that M, — M, is the universal curve corresponding to the vertex of f.
More on stabilization in the next section.

Our axiom requires that the diagram

mwyes- “@  H(3,)
| l e
H(W)es: =8 [ (M,)

commutes for every Ha(W)* marking 8 one can put on V, = V;. Note
that ¢ has exactly one tail more than 7 and that therefore we can identify
WS = W x W5 and p is the projection onto the second factor.

The geometric meaning of this axiom is that if one of the homology classes
Ty« - >V SAY 71, is [W], then the space T} obtained for ¥, ..., ", is a curve
over the corresponding space T for 7, ...,7,. This is because for z; to be in
W is no condition, so it can move anywhere on C leading to Ty — T being
the universal curve.

81t is precisely for this reason that the notion of ‘isogeny’ of stable graphs is introduced
in Part II of [4]. If one were to use only the morphisms defined in Part I, one would not
be able to decompose a tail omission that necessitates stabilization in this way.
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VII. Divisor

The setup is the same as in Axiom VI for the fundamental class. The divisor
axiom says that for every line bundle L € Pic(W) (and every ) the diagram

H W)es: PRE® g7 )

a(ly | T a.

H W) 22 H(,)
commutes. Here the vertical map on the left is

H*W)®S — H*(W)® H*(W)®
v — q(L)®7.

This axiom expresses the expectation that modifying an enumerative prob-
lem by adding a divisor D (such that L = O(D)) to the list I'y,..., I, mul-
tiplies the number of solutions by 8(L), because for a curve C of class 3 to
intersect D is no condition, and in fact the additional marking on C can be
any of the 8(L) points of intersection of C' with D.

VIII. Mapping to point

This axiom deals with the case that 8 = 0. Let 7 be a nonempty connected
stable modular graph. Over the moduli space M, there are universal curves,
one for each vertex of 7, obtained by pulling back the universal curves from
the factors of M,. If v € V; is a vertex of 7 then the associated universal
curve C, has sections (z f), one for each flag f € F;(v). Now define a new

curve C over M, by identifying x; with x5 for each edge {f, f} of 7. We call
C the universal curve over M,. It has connected fibers since the geometric

realization of 7 is connected. Denote the structure morphism by 7: C—-M,.
Consider the direct product of M, and W, with projections labelled as in
the diagram
M, xW 2 W

7l

M.
We get an induced homomorphism

p: H*(W) — H*(M,)
Y o q*(P*(’Y) U Ctop(Rlﬂ'*Oé X TW))

Here Tw stands for the tangent bundle of W and ctop for the highest Chern
class, which in this case will be of degree g(r) dimW.
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The mapping to point axiom now states that
L(0): H(W)® — H*(M,)
is given by

L)Yy, ) = p(m U+ Up).
This axiom expresses the fact that in this case
T=M.xT1N---NT,,

since a constant map to W has to map to I'1N- - -NT,.. Note that for g(7) > 1
the factor cyop (R'm,O58Tw) is put in to satisfy the grading axiom. It is a sort
of excess intersection term coming from the fact that there are obstructions
in this case. More on this later (see Section 4.6).

Remark Axioms I-VIII imply the axioms listed in [11], except for the mo-
tivic axiom. This follows from the construction we give below. Axioms III,
IV and V (contractions, glueing tails and products) imply the splitting and
genus reduction axioms.

3 Construction of Gromov—Witten invariants

3.1 Stable maps

Gromov—~Witten invariants are constructed as integrals over moduli spaces,
namely, moduli spaces of stable maps. The notion of stable map is a natural
generalization, due to Kontsevich, of stable curve (Deligne and Mumford
[5]) and stable marked curve (Knudsen and Mumford [9]). Let us recall the
definition.

Definition 3.1 Fix a smooth projective k-variety W. A stable map (to W)
over a k-scheme T, of genus g € Zxo, class 8 € Ho(W)* and marked by a
finite indexing set § is:

1. a proper flat curve C — T such that every geometric fiber C; is con-
nected, one dimensional, has only ordinary double points (i.e., nodes)
as singularities and arithmetic genus 1 — x(Og,) = g;

2. a family (z;)ics of sections z;: T — C such that for every geometric
point ¢ € T, the points (z;(t))ics are distinct, and not equal to a node;
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3. a morphism f: C — W such that for every geometric point t € T,
denoting the restriction of f to the fiber C; by f;: C; — W, we have
B(L) = deg f(L) for all L € PicW (or written more suggestively,
[ t*[Ct] = B);

such that, for every geometric point ¢t € T, the normalization C’ of every
irreducible component of C; satisfies:

fi(C") is a point = 2¢(C") + #{special points of C'} > 3;

here a spectal point is one that that lies over a mark z; or a node of C..
A morphism of stable maps ¢: (C,z, f) — (C', o', f') over T is a T-iso-
morphism ¢: C' — C’ such that ¢(z;) =z} for all i € S and f'(p) = f.

Let M, s(W, 8) denote the k-stack of stable maps of type (g, S, 3) to W.
Just like an algebraic space, or a scheme, or a variety (all over k), a stack
is defined by giving its set of T-valued points for every k-scheme T, except
that the set of T-valued points is not a set, but a category, in fact a category
in which all morphisms are isomorphisms, in other words a groupoid. So the
moduli stack M, s(W, f) is given by

M, s(W,B)(T) = category of stable maps over T of type (g, S, 3) to W,

for every k-scheme T.
The concept of stable maps was invented to make the following theorem
true.

Theorem 3.2 (Kontsevich) The k-stack M, s(W, 3) is a proper algebraic
Deligne-Mumford stack.®

The Deligne-Mumford property signifies that the ‘points’ of M, s(W, 3)
have finite automorphism groups. The properness says two things. First, that
every one dimensional family in M, s(W, 8) has a ‘limit’, and secondly that
this limit is unique. This translates into two facts about stable maps, namely
first of all that every stable map over T — {t}, where T is one dimensional,
extends to a stable map over T". For this to be true one has to allow certain
degenerate maps, namely those with singular curves. The amazing fact is
that by including exactly the degenerate maps which are stable, one picks out
exactly one extension to T from all the possible extensions of the stable map
over T — {t}. This makes the ‘limit’ unique, and hence the stack M, s(W, )
proper.

For a proof of this theorem we refer to [7].

9At least if chark = 0 or if B(L) < char(k) for some ample invertible sheaf L on W.
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Note For each 7 € S there is an evaluation morphism

evi: Mgs(W,0) — W

These moduli stacks are now taken as building blocks to define moduli
stacks of stable maps associated to graphs.

So let (7, 3) be a stable modular graph with an Hy(W)* marking. The
associated moduli stack we construct is denoted by M (W, 7), abusing nota-
tion by leaving out §. We list three conditions on these moduli stacks that
determine them completely.

1. Stars If 7 is a star, i.e., a graph with only one vertex v, and set of
flags S, which are all tails, then

M(W,T) = Myw),s(W, B(v)).

2. Products If 7 and o are stable modular graphs with Hy(W)* mark-
ings, and o X 7 denotes the obvious stable modular graph with Hy(W)*
marking whose geometric realization is the disjoint union of the geometric
realizations of ¢ and 7, then

MW, x o) := M(W, 1) x M(W,0).
3. Edges If 7 has two tails ¢, and i, and o is obtained from 7 by

glueing these two tails to an edge (so that conversely, 7 is obtained from ¢
by cutting an edge), then M(W, ¢) is defined to be the fibered product

MW,0) — 4
! {a
Mw,r) T wxw

It is not difficult to see that M (W, 7) is well defined by these conditions for
every stable modular graph 7 with Ho(W)* marking. Moreover, all M(W, 1)
are proper Deligne-Mumford stacks.

Note There exists an evaluation morphism ev;: M(W,7) - W for each tail
i € S,, and the product of these is the evaluation morphism ev: M(W, 1) —
Wsr,

For future reference, we now construct the universal curve on M(W,T).
Fix a vertex v € V,. By construction, there exists a projection morphism

M(I/Vv T) — Mg(v),Ff(v)(VVa ﬂ(’U)),
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and we can pull back the universal stable map. This gives us a curve C, over
M (W, 7) together with a morphism f,: C, — W, and sections z;: M(W, 1) —
C, for all i € F,.(v).

We glue the C, according to the edges of 7 (i.e., identify z; with z;, ;) to
get a curve C — M(W,7) called the universal curve, even though its fibers
are only connected if 7| is. There are induced sections {2;);cs, of C and an
induced morphism f: C — W.

Stabilization

Let 7 = (7,) be a stable modular graph with Ho(W)* structure. There
exists a morphism

MW,7) — M,

given by ‘stabilization’. To define it, it suffices to consider the case that 7 is
a star. So we are claiming that there exists a morphism

Mg,S(mﬁ) a— —M—g,S
(Cyz,f) — (C,2)™"

In other words, we take a stable map (C, z, f) and forget about the map f,
retaining only the marked curve (C, z). The problem is that (C, z) might not
be stable, so to get a point in M, s we need to associate to (C,z) a stable
marked curve, in a natural way.

This is done as follows. Let 7: C — T be a curve with a family of sections
z: T — C, x = {x;)ics. Then its stabilization is defined to be the curve

C' = Projr (@ 7r*(L®")> ,

v2>0

where

L =wer (Z :ri) .
€S

Here wg/r is the relative dualizing sheaf twisted by the Cartier divisor given
by the images of the sections z; in C. Note that there is a natural map
C — C' and so one gets mduced sections in C’.

One proves that C’ together with these induced sections is a stable marked
curve, and one calls it (C,z)"**. For details of this construction, see [9].

The morphism C — C’ just contracts (blows down) all the unstable ra-
tional components any fiber of C — T might have.
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3.2 The construction: an overview

As usual, let 7 = (7, 8) be a stable modular graph with vertices marked by
elements of Hy(W)*.

Consider the diagram

MW,r) = WS
l stab (2)

M,
In what follows, we construct a rational equivalence class
[—M(W, T)]virt (S Adim(W,'r)(—M(W, T))

called the virtual fundamental class of M(W, 7). Here A stands for the Chow
group (with rational coefficients) of a separated Deligne-Mumford stack, con-
structed by Vistoli [13]. This class has degree

dim(W,7) = x(r)(dim W —3) — B(7)(ww) + # Sr — # E-,

which is the ‘expected dimension’ of the moduli stack M (W, ,7). If MW, T)
happens to be of dimension dim(W, 7), then [M(W, 7)]" = [M(W, 7)] is just
the usual fundamental class.

Then the Gromov-Witten invariant

L(B): H*W)®" — H*(M,)
¥ I‘r(ﬁ)(’)’)
is defined by
L(B)(7) N [M.] = stab.(ev*(y) N [M(W, 7)]""). 3)

Note that this condition defines I;(5)(7) uniquely, because of Poincaré duality
on the smooth stack M.
Alternatively, consider the morphism

n: M(W,7) — M, x W5

(induced by Diagram 2) which is proper and so we may consider the push-
forward

T [M(W,7)]'F,

which is a correspondence M, ~» W5 so we get I,(3) through pullback via
this correspondence:

L(B)(7) = pr.(p3(7) U clm, [M(W, 7)]"™).
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Hence this construction implies the ‘motivic axiom’ of [11].
Now all the axioms required of I.(3) reduce to axioms for

J(W,T) = [M(W,1)]""".

Before we list these, some more remarks.

As in the above discussion of the geometric interpretation of Gromov-
Witten invariants, consider the situation where S = {1,...,n}, and
Ih,...,T are dual cycles to the cohomology classes vq,...,v, € H*(W).
For ease of exposition, let us assume that the I'; are actually algebraic sub-
varieties of W. We can now give a more precise definition of the moduli space
T mentioned above. It is defined to be the fibered product

T — Iy x.--xT,

1 1
MW, 7) = Wx-..xW

This will in fact assure that T is proper, and thus we have solved the problem
of compactifying the earlier T.

Now, if the I'; are in general position, then T should be smooth of the
expected dimension, which is

n
dim(W, 1) — Z codimy T';.

i=1
In fact, one could use this principle as a definition of general position, defining
['y,...,Tn to be in general position if T is smooth!® of this dimension. As
mentioned above, the problem is that one cannot always find I'; in general
position.

But let us assume that I'y,...,T’, are in general position. Then

[T] = ev*[[) x - x [y]
and

IY(B)(T),...,[Ta]) = stab,[T],

because the virtual fundamental class agrees with the usual one in this case.
So defining Gromov-Witten invariants by (3) leads to the situation anti-
cipated by our geometric interpretation detailed above. In particular, for the
case that M(W, ) is of dimension dim(W, 7) the above heuristic arguments
explaining the motivations of the various axioms give proofs of the axioms.

191 fact, purely of the expected dimension would be enough, if one is willing to count
components of T’ with multiplicities given by the scheme (or stack) structure. The difference
is the same as that between transversal and proper intersection in intersection theory.
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Remark 3.3 If one prefers cohomology, in the case that H(VV, 7) of smooth
of the expected dimension dim(W, 7), one can also think of I.(8)(m,---, )
as obtained by pulling back v,...,7, by the evaluation maps, taking the
cup product of these pullbacks and then integrating over the fibers of the
morphism stab: M(W,7) — M,. Thus I.(8) should lower the grading by
twice the dimension of the fibers of this map, which is

dim(W, 7) — dim M, = x(7) dim W — B(1)(ww).

This gives another interpretation of the grading axiom.

3.3 Axioms for J(W, 1)
We now list the properties that the

J(W,r) = (MW, )™

must satisfy in order that the induced Gromov-Witten invariants I () should
satisfy their respective properties. This amounts to five axioms for J(W, 1),
and we refer to them by the names given in [4].

I. Mapping to point

Assume that |7] is nonempty connected and that 8(7) = 0, so that in fact
Bv) =0for allv € V.

In this situation the universal map f: C — W factors through the struc-
ture map 7: C — M(W,7) of the universal curve, since a map of class zero
maps to a single point in W. We call the resulting map ev: M(W,7) — W,
since it is also equal to all the evaluation maps. Now the morphism

M(W,r) "2 M, x W
is an isomorphism, since giving a stable map to a point in W is the same as
giving a stable curve and a point in W.
The axiom is that

J(VVa T) = Cg(r) dimW(Rlﬂ'*Oa X TW) n [—M—(VV, 7’)]

For future reference, let us give an alternative description of R!'m, Oz T .
Consider the vector bundle

Rz, f*Tw R'm (7" ev* Tw)

= R7,0c®ev*Tyy.



44 Algebraic Gromov—Witten invariants

Note that we have a Cartesian diagram

c = MW,r)
,l, ,l, stab
c - M,

since in the case of mapping to a point, there is no need to stabilize and thus
the pullback of the universal curve over the moduli space of curves is the
universal curve over the moduli space of stable maps to a point. Thus we can
write the above tensor product as an exterior tensor product:

R'm f*Tw = R'n,0 R Ty.

Note that rank R'm, f*Ty = ¢g(C) dim W = g(7)dim W.

II. Products

Let o and 7 be stable modular graphs with Ho(W)* marking. Recall that we
have

M(W,T x o) = M(W,7) x M(W,0).
Our axiom is that

JW,r x o) =JW,7) x J(W,0).

II1. Glueing tails

Let 7 be obtained from o by cutting an edge. Recall that then we have a
Cartesian diagram

MW,0s) — W

l la
M(W,7) — WxW

Since W is smooth, A is 5 a regular immersion, and so the Gysin pullback
A': A, (M(W, 7)) — AJM(W,0)) exists. (See [6], Section 6.2 for Gysin
pullbacks in the context of schemes, [13] in the context of stacks.) The axiom
is that

A JW,T) = J(W,0).
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IV. Forgetting tails

Let o and 7 be as in the fundamental class axiom for Gromov—Witten invari-
ants. Endow both ¢ and 7 with the same Hy(W)* marking 8. Then we get
an induced morphism of moduli of stable maps

®: M(W,0) — M(W, 7).

To construct it, it suffices to consider the case of stars. So let o be a star with
set of tails F, = S = {0,...} and let 7 have set of tails F,, = ' = {... }.
Then & is defined by

®: Mys(W,0) — Mys(W,5)
(C,zo, (), f) — (C,(zs), f)™".

The construction of the stabilization is as before. One chooses a very ample
invertible sheaf M on W. Then stabilization replaces the curve 7: C — T by

C' = Proj @ﬂ'* (LB,

k>0

where L = wer(}_ ;) ® f*M®2. As before, this amounts to contracting or
blowing down any rational components that become unstable on leaving out
the section zo.

Now a slightly nontrivial fact is that

®: My s(W,B8) — Mys(W,B)

is isomorphic to the universal curve over M, s (W, 8) (see [4], Corollary 4.6).
In the case of general graphs ¢ and 7 this translates into the fact that the
morphism z, in the diagram
MW, o) = G,

&\ !
M(W,7)

is an isomorphism. Here C, is the universal curve over M(W, 7) corresponding
to the vertex v = 8(0).

In particular, the morphism @ is flat of constant fiber dimension 1. There-
fore the flat pullback homomorphism

9" A(M(W,7)) — A(M(W,0))
exists. Our axiom is that

' J(W,T) = J(W,0).
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V. Isogenies

This axiom is really four axioms in one. The name of the axiom comes from
the fact that it deals with those operations on a graph that do not affect its
genus.

So let o be a stable modular graph and let 7 be obtained from ¢ by
contracting an edge or omitting a tail. Assume that 7 is also stable. Then
choose an Hy(W)* structure on 7. In each case, we construct a commutative
diagram

HMW,0) — MW,1)
! | stab (4)

where the disjoint sum is taken over certain Ho(W)* structures on o.

Case I This is the case where we contract a loop in ¢ to obtain 7. Here
there is only one possible Ho(W)* structure on ¢ compatible with that on 7.
So [[ M (W, o) = M(W, o) and the two horizontal maps in (4) are obtained by
glueing two marked points (or sections), as described above. The two vertical
maps are given by forgetting the map part of a triple and then stabilizing.

Case II Here we contract a nonlooping edge of o, i.e., an edge with two
vertices. Let v be the edge of 7 onto which this edge is being contracted and
v1, Ve the two vertices of this edge in o. For an ordered pair 8,82 € Hao(W)*
such that 8, + B2 = [B{(v), define a marking on ¢ by setting B(v1) = 5,
B(ve) = B2 and for the other vertices of o take the marking induced from
7. Then take the disjoint union over all such pairs (3, 2) of the associated
stack of stable maps M (W, o). This is [[ M(W,0). The maps in (4) are now
defined the same way as in Case 1.

Case III This is the case where 7 is obtained from o by forgetting
a tail. The H2(W)+ structure on o is induced in a unique way from 7,
[IM(W, o) = M(W,0) and all the maps in (4) have been explained already.

Case IV In this case 7 is obtained from ¢ by ‘relabelling’. In other words
there is given an isomorphism between ¢ and 7. The H2(W)+ structure on ¢ is
induced via this isomorphism from 7 and [[ M(W, o) = M (W, o). Moreover,
the horizontal maps in (4) are isomorphisms.

Now in each case the commutative diagram (4) induces a morphism

h: [TM(W,0) — M, x37, M(W,T)
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and our axiom states that
h(>_I(W,0)) = @' J(W, ).

Note that @ is a local complete intersection morphism, since both M, and

M. are smooth. Therefore the Gysin pullback
@' A,(M(W, 7)) — A(M, x37, M(W, 7))

exists. Since all the stacks involved are complete, the morphism A is proper
and so the proper pushforward exists.

Proposition 3.4 The five azioms for J(W,r) imply the eight azioms for
1:(B).

Proof The grading axiom follows from the fact that the J(W, ) have the
correct degree. The product, glueing tails and mapping to point axiom for /
follow from the axioms for J with the same name. The forgetting tails axiom
for J implies the divisor axiom for /. Finally, the isomorphisms, contractions
and fundamental class axioms for I all follow from the isogenies axiom (with
the same proof). O

Remark The part of the isogenies axiom dealing with omitting tails
(Case III) follows from the forgetting tails axiom (as can be seen, for ex-
ample, by examining the proof of the isogenies axiom in [2]). So technically,
the axioms for the virtual fundamental classes J(W, ) contain some redun-
dancy.

The reason why the isogenies axiom is stated in this slightly redundant
form is that in this formulation it characterizes an aspect of the operad nature
of J(W, -). (By this, we mean its description as a natural transformation
between functors from a category of graphs to a category of vector spaces.)
The forgetting tails axiom does not feature in the operad picture, but it is
still needed for the divisor axiom (which does not fit naturally into the operad
framework).

3.4 The unobstructed case

In the unobstructed case there is no need for a virtual fundamental class. The
usual fundamental class of the moduli stack will do the job.

Definition 3.5 We say that a stable map f: (C,z) — W is trivially un-
obstructed, if H*(C, f*Tw) = 0.
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Definition 3.6 A smooth and projective variety W is convez if for every
morphism f: P! — W we have H(P, f*Tw) = 0.

Examples of convex varieties are projective spaces P", generalized flag
varieties G/ P (were G is a reductive algebraic group and P a parabolic sub-
group), and in fact any variety for which the tangent bundle is generated by
global sections.

The following proposition is not difficult to prove.

Proposition 3.7 If W is convez, then all stable maps of genus 0 to W are
trivially unobstructed.

Because of this, the ‘tree level’ system of Gromov—Witten invariants for
convex varieties may be constructed without recourse to virtual fundamental
classes. By the tree level system we mean all the invariants I(3), where the
graph 7 is a forest.

Theorem 3.8 Let W be convex. Then for every forest T the stack M(W, 1)
s smooth of dimension

dim(W, 7) = x(7)(dimW — 3) = B8(7)(ww) + # Sr — # E-.

Moreover, the system of fundamental classes (where T runs over all stable
forests with Ho(W)™ marking)

JW,T) = [M(W,7)]

satisfies the above five axioms.!!

Proof Details of the proof can be found in [4]. Essentially, what is going
on is that the definition of trivially unobstructed is of course precisely the
condition needed to assure that the obstructions vanish,'? which implies that
the moduli stack is smooth. (More about obstruction theory in a later sec-
tion.) The first four axioms for J follow from basic properties of Chern classes
and Gysin pullbacks. For the last axiom one has to note also that h is an
isomorphism generically. O

It is explained in [11] and [7] how to construct the quantum cohomology
algebra of W from the tree level system of Gromov-Witten invariants.

If one wants to count rational curves through a number of points in general
position on a convex variety, then the cycles I'y, ..., I';, are all just points, and

11Of course only those instances of the axioms for which all graphs involved are forests.
12The obstructions may also vanish if H!(C, f*Tw) # 0, but HY(C, f*Tw) = 0 is the
only ‘general’ condition that always assures vanishing of the obstructions.
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it follows from generic smoothness, that (at least in characteristic zero) the
points can be put into general position. Therefore these special Gromov-
Witten invariants actually solve numerical geometry problems (i.e., they are
enumerative).

For the case of generalized flag varieties G/ P all cohomology is algebraic
and so all Gromov-Witten invariants can be defined in terms of algebraic
cycles I'y,...,I',. Using results of Kleiman one can then prove that it is
possible to move I'y, ..., I, into general position. Therefore these tree level
Gromov-Witten invariants are enumerative. For more details see [7].

Let us now give a few examples of stable maps that are not trivially
unobstructed.

1. Consider stable maps to W = P". If f: (C,x) — P" is such a map,
then we may pull back the exact sequence

0 — 00— 0" —Tpr —0
to C to get the surjection
fro* — f*Tp- — 0
and the surjection
HY(C, frOo()* — HY(C, f*Tr) — 0.

So if C is irreducible and deg f = deg f*O(1) > 2¢(C) — 2, then f is trivially
unobstructed.

Thus the ‘good’ elements of T/fg,n (P, d) (i.e., those corresponding to irre-
ducible C) are trivially unobstructed for sufficiently high degree d > 2g — 2.
If we knew that M, ,(P",d) is irreducible, then its generic element would be
trivially unobstructed, and the virtual fundamental class would be equal to
the usual one. But whether M, ,(P",d) is irreducible is far from clear. Any-
way, the Gromov-Witten axioms involve the boundary of M,,(P",d) in an
essential way, and so this unobstructedness result is not of much help.

2. For g > 0 already the constant maps are not trivially unobstructed.
As we already saw in the two mapping to point axioms, the moduli stack

M,.(W,0) has higher dimension than expected. On the other hand,
Myn(W,0) = M, x W is smooth, so there are no obstructions. Constant
maps are unobstructed, but not trivially so.

The fact that _J\/Tg,n (W,0) has higher dimension than expected, leads to
boundary components of M,,(W,3) with 8 # 0 having higher dimension

than expected. For example, consider W = P" and the graph 7 with two
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vertices vp and v;, one edge connecting v and vy, and g(vg) =0, g(v1) = g.
Let d(vp) = d # 0 and d(v1) = 0. Then

—M-(]Pr, 7') = —M—O,l (]P’r, d) X Mg,l
and so
dmM(P',7)=r+d(r+1)+3g—4

whereas the expected dimension is 7 + d(r + 1) + (3 — r)g — 4. The stack
M(P",7) is a boundary component in MQ,O(IP”, d), whose ‘good’ component
attains the expected dimension r+d(r+1)+(3—r)g—3 in the range d > 2g—2.
So if d > 29 — 2 and rg > 1 this boundary component has larger dimension
than the ‘good’ component.

3. Let W be a surface and E C W a rational curve with negative self-
intersection E? = —n. Let f: P! — E C W be a morphism of degree d # 0.
Pulling back the sequence

0—>TE _’TW_’NE/W —0
via f, we get the sequence
0 — f*TE — f*TW — f*NE/W —_— 0 (5)

Now deg(Ng/w) = E* = —n and so f*Ng/w = O(—dn). Moreover, Tp1 =
O(2) and so f*Tg = O(2d). Therefore, we get from the long exact cohomology
sequence associated to (5) that

dim H' (P!, f*Tw) = dim H'(P',O(—dn))
= dim H°(P!, O(dn — 2))
= dn-—1.
Soifd > 1orn > 1, then f is not trivially unobstructed. Since the ‘boundary’
of the moduli space usually contains maps of degree larger than 1, we must

deal with maps that are not trivially unobstructed as soon as the surface W
has —1 curves.

4 Virtual fundamental classes

4.1 Construction of J(W,7), an overview

We will give an overview of how to construct the virtual fundamental classes
J(W, 7). Many points are discussed in greater detail in the following sections.
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This is where Artin stacks appear for the first time, and so we have to
stop pretending that stacks are just spaces. Otherwise many facts would
seem counterintuitive. But the only Artin stacks involved are of a particularly
simple type, namely quotient stacks associated to the action of a vector bundle
on a scheme of cones.

As usual, let 7 be a stable modular graph with an Ho(W)* marking on
the vertices. Consider the universal stable map of type 7

c L.w

L

MW, 7)

From this diagram we get the complex Rw,f*Tw, which is an object of
D(M(W,T)), the derived category of O-modules on M(W,7). In fact we
may realize Rm, f*Tw as a two-term complex [Ey — Ej] of vector bundles on
M(W, 7). Then we have ker(Ey — E,) = 7,f*Tw and coker(Ey — E;) =
Rlﬂ' *f*Tw.

In this context, the basic facts of obstruction theory are that for a mor-
phism f: C — W, the vector space H°(C, f*Tw) classifies the infinitesimal
deformations of f and H'(f*Tw) contains the obstructions to deformations
of f. Thus the complex Rm,f*Tw is intimately related to the obstruction
theory of M (W, 7).

To Rm.f*Tw we get an associated vector bundle stack €, which is simply
given by the stack quotient € = [E;/Eo)] (but is an invariant of the isomor-
phism class of R, f*Tw in the derived category).

The next ingredient is the intrinsic normal cone. If X is any scheme (or
algebraic space, or Deligne-Mumford stack), it has an associated intrinsic
normal cone, which, as the name indicates, is-an intrinsic invariant of X, but
is constructed from the normal cones coming from various local embeddings
of X. The intrinsic normal cone is denoted €x and it is a cone stack, i.e., a
stack that is étale locally over X of the form [C/E], where E — C is a vector
bundle over X operating on a cone over X. (As above, [C/E] denotes the:
associated stack quotient.)

The intrinsic normal cone €x is constructed as follows. We choose a local
embedding i: X — M, where M is smooth. Then we get an action of the
vector bundle ¢*Ts on the normal cone Cx/y and the essential observation is
that the associated stack quotient [Cx/a/7*T] is independent of the choice
of the local embedding i: X — M. Thus the various [Cx/p/i*Tn] coming
from local embeddings of X glue together to give the cone stack €x over X.
A basic fact about €y is that it is always purely of dimension zero.

For our application we will use the relative intrinsic normal cone. This is
an intrinsic invariant of a morphism X — Y and is denoted €x/y. It has the
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property that for every local embedding

X 5 M
N
Y

of X into a scheme which is smooth over Y, it is canonically isomorphic to
Cx/y = [Cx/m /T Tuyy)-

In our case we consider the morphism _]\/T(I/V, 7) — M,, where M, has
the same definition as M, except that the stability requirement is waived.
So M, is an open substack of 91, and 91, is not of finite type, or Deligne-
Mumford, or even separated, but still smooth. The map M(W,7) — M, is
given by forgetting f in a triple (C, z, f), but not stabilizing. We define

€ = Cxrw,ry/am, -

Finally, we remark that there is a natural closed immersion of the cone
stack € into the vector bundle stack € over M(W,7). This is because
Rm, f*Tw is what is called a (relative) obstruction theory for M(W, 1) over
m,.

We now consider the pullback diagram

MW,7) — ¢
l l
MW,7) — €

where 0 is the zero section of the vector bundle stack €. We obtain the virtual

fundamental class as the intersection of the cone stack € with the zero section
of &.

J(W,7) = (W, 7)™ = 0'[e].

We should point out, though, that lacking an intersection theory for Artin
stacks, we cannot apply this construction directly. Therefore we choose
as above a two-term complex of vector bundles [Ey — E)| representing
Rrm, f*Tw. Then € C € induces a cone C C E; and we define

0g[€] = 05, [C].

4.2 Cones and cone stacks

We explain the basics of the theory of cones and cone stacks. For proofs see
[3]. Let X be a Deligne-Mumford stack (or algebraic space, or scheme) over
k, where k is our ground field. Later, X will be our moduli stack.



K. Behrend 53

Cones

Let us recall the definition of a cone over X.
Consider a graded quasicoherent sheaf of Ox-algebras
s=@ps,
>0
such that S® = Ox, S? is coherent and S is locally generated by S*. Then
the affine X-scheme!® C = Spec S is a cone over X.

The augmentation S — S° defines a section 0: X — C, the vertex of
the cone C — X. The morphism of Ox-algebras S — S[z] mapping a
homogeneous element s € S* of degree 4 to sz* defines a morphism A! x C
— C, which we call the A'-action on C. It is an action in the sense that
(Ap)-c=A(p-¢), 1-¢c = cand 0-¢ = 0. Another, longer, but more descriptive
name for this map could be the ‘multiplicative contraction onto the vertex’.

Example (Abelian cones) Let F be a coherent Ox-module. Then we get
an associated cone by

C(F) = SpecSym F.

Note that for a k-scheme T we have C(F)(T) = Hom(Fr, Or), so that C(F)
is a group scheme over X. A cone obtained in this way is called an Abelian
cone.

If C is any cone, then Sym S! — @) S* defines a closed immersion C —
C(S'). We denote C(S*) by A(C) and call it the Abelian hullof C. It contains
C as a closed subcone and is the smallest Abelian cone with this property.

Example (Vector bundles) Let £ — X be a vector bundle and £ the
corresponding Ox-module of sections. Then E = C(£Y) is an Abelian cone.
Note that a cone C — X is smooth if and only if it is a vector bundle.

Example (Normal cones) Let :: X — Y be a closed immersion (or more
generally a local immersion), with ideal sheaf I. Then

Cxyy = SPecx(@ I/
n>0
is the normal cone of X in Y. Its Abelian hull,
Nxy =C(I/1*)

is the normal sheaf of X in Y. Note that ¢ is a regular immersion if and only
if Cx/y is Abelian (i.e., Cx;y = Nx/y) which in turn is equivalent to Cx/y
being a vector bundle.

137t should be noted that whenever we talk of X-schemes or schemes over a stack X, we
actually mean stacks over X that are relative schemes over X.
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Vector bundle cones

Now consider the following situation. Let E be a vector bundie and C a cone
over X, and let d: E — C be a morphism of cones (i.e., an X-morphism that
respects the vertices and the Al-actions). Passing to the Abelian hulls we get
amorphism E — A(C) of cones over X, which is necessarily a homomorphism
of group schemes over X, so that E acts on A(C). If C is invariant under the
action of E on A(C), so that we get an induced action of E on C, then we
say that C is an E-cone.

Example Let i: X — M be a closed immersion, where M is smooth (over
k). Then Cx/u is automatically an ¢*T-cone.

We now come to a construction that may seem intimidating, if one is not
familiar with the language of stacks. We will try to explain why it shouldn’t
be.

Whenever we have an E-cone C, we associate to it the stack quotient
[C/E]. At this point it is not very important to know what [C/E] is, only to
understand the main property, in fact the defining property of [C/E], namely
that the diagram of stacks over X

ExCc L ¢

rl l (6)
c — [C/E|

is Cartesian and co-Cartesian.!* Here o and p are the action and projection,
respectively.

Recall that for an action of a group (like E) on a space (like C), the
quotient C/ E is defined to be the object (if it exists) which makes the diagram
(6) co-Cartesian, i.e., the pushout. (This applies to many categories, not just
(schemes/X).) If it turns out that (6) is also Cartesian, then C/E is the
best possible kind of quotient, since to say that (6) is Cartesian means that
the quotient map C — C/E is a principal E-bundle (or torsor, in different
terminology).

The construction of stacks like [C/E] should be viewed as a purely formal
process which supplies such ideal quotients if they do not exist. On a certain
level, this is analogous to the construction of the rational numbers from the
integers. If a certain division ‘doesn’t go’, one formally adjoins a quotient.

Applying this viewpoint to our situation, where we are trying to divide
cones by vector bundles, we may say that the division C/E ‘goes’ (or that

14Note that everything is happening over X; E is a relative group over X (so its fibers
over X are groups), C is a relative cone over X (so its fibers over X are ‘usual’ cones), the

action of E on C is relative to X and so in particular, the product E x C is a product over
X.
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E divides C) if there exists a cone such that when inserted for [C/E] in (6)
it makes (6) Cartesian and co-Cartesian. If E does not divide C, then we
formally adjoin the quotient. Of course, one has to introduce an equivalence
relation on these formal quotients. So if C is an E-cone and C’ an E’'-cone,
and there exists a Cartesian diagram

E —
! ! (7)
FE — C

where C' — (' is a smooth epimorphism, then we call the quotients [C/E]
and [C'/E’] isomorphic. This may be motivated by noting that if we have
a diagram (7) then there exists a vector bundle F' such that C = C'/F and
E = E'/F and thus we should have

[C'/F]

B = 7R

= [C'/E"].

By this process one enlarges the category of cones over X, and obtains a
category where quotients of cones by vector bundles always exist. The one
convenience one has to give up in the process is that of having a category of
objects. The stacks that we obtain in this way form a 2-category, where there
are objects, morphisms, and isomorphisms of morphisms. But for the most
part we ignore that effect, to keep things simple.

Of course one has to do some work to prove that one can still do geometry
with these new objects [C/E]. If one does this, then the quotient map C —
[C/E] turns out to be an honest principal E-bundle. So over each point z
of X the fiber [C/E], is the quotient [C,/F,]. This is a usual cone divided
by a usual vector bundle, but the quotient map C, — [C,/E,] is a principal
E,-bundle, which means that the fibers of C, — [C,/E,] are all copies of E,
(but not canonically).

It also makes sense to speak of the dimension of [C/E]. Since the fibers
of the morphism C — [C/E] are vector spaces of dimension rank E' we have
dim[C/E] = dim C —rank E.

Two extreme cases might be worth pointing out: if £ = X, then [C/E] =
C. If C = X, then [C/E] = [X/E] is the stack over X whose fiber over z € X
is [{z}/E.), a point divided by a vector space. One also uses the notation
BE, = [pt/E,) and BE = [X/E]. So in the naive picture of a stack as a
collection of points with groups attached, BE has points {z | z € X} and
groups (E,)zex. Note that dim BE = dim X — rank E.'

15The appearance of negative dimensions for Artin stacks is completely analogous to the
appearance of fractions when counting points of finite Deligne-Mumford stacks.
g P
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Cone stacks

We have to take one more step to get the category of cone stacks. We need to
localize, meaning that we want to call objects cone stacks if they locally look
like the [C/E] we just constructed. For the applications we have in mind,
this step is not really necessary, since in the end all cone stacks we use will
turn out to be of the form [C/E]. But for the general theory of the intrinsic
normal cone it would be an awkward restriction to require cone stacks to be
global quotients. So we make the following definition.

Definition 4.1 Let € — X be an algebraic stack with vertex 0: X — € and
Al-action v: A! x € — €. Then € is a cone stack if, étale locally on X,
there exists a vector bundle E over X and an E-cone C over X such that
€ & [C/E) as stacks over X with Al-action and vertex.

Every such C is called a local presentation of €. If one can find local
presentations C which are vector bundles (so that locally € 2 [E;/Eg), for a
homomorphism of vector bundles Ey — Ej, then € is called a vector bundle
stack.

4.3 The intrinsic normal cone

As before, let X be a Deligne-Mumford stack over k.
A local embedding of X is a diagram

v LM
il
X

where i is étale, f a closed immersion and M is smooth.
A morphism of local embeddings is a commutative diagram

Ul—f/->M1
1) 1)
v -Lowm

where U’ — U is an étale X-morphism and M’ — M is smooth.
Given such a morphism of local embeddings we get a commutative diagram

Ty — f"Twr — TV’
4 ! 4

Ty — Cyypmr — Cuym|U
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The rows are exact sequences of cones. The square on the right is Carte-
sian and Cyr/p — Cyym|U’ is a smooth epimorphism. All these are basic
properties of normal cones and tangent bundles.

As explained above, in this situation the quotients [Cy/a/f*Tn]|U’ and
[Curyme [ f*Tap) are canonically isomorphic. Thus all these locally defined
cone stacks (one for each local embedding) glue together to give rise to a
globally defined cone stack on X (note that X can be covered by étale U — X
that are embeddable into smooth varieties). This cone stack is called the
intrinsic normal cone of X and is denoted by €x.

Proposition 4.2 The stack €x is a cone stack of pure dimension'® zero. For
any local embedding we have

Cx|U = [Cysm/ f*Twul.

Proof It is a general property of normal cones that they always have the
dimension of the ambient variety. So we have dim Cy/y = dim M and there-
fore

dim[Cu/M/f*TM] = dim CU/M — rank f*TM =dimM—-dimM=0 0O

Remark One can do the same construction with normal sheaves Ny in-
stead of normal cones Cy/py. Then one gets the intrinsic normal sheaf Mx
of X. Moreover, €x C My is a closed substack and My is the Abelian hull
of €x (this notion also makes sense for cone stacks).

Let Ly be the cotangent complex of X and 7>_,Lx its truncation at —1.
Again, this is nothing deep, over a local embedding it is simply given by the
two term complex

(ronr Lx)IU = [I/1* = f*Qul,

where [ is the ideal sheaf, and the map is the map appearing in the second
fundamental exact sequence of Kahler differentials.

One can prove that the stack 9y only depends on the quasi-isomorphism
class of 751 Lx, in other words it is an invariant of the object 7>_1Lx €
ob Dﬁ;}}"](ox). In fact, one can define for every M* € ob Dg}f’ol((?x) an
associated Abelian cone stack €(M*). To do this, write (locally over X)
M* = [M™' > M° with M° free. Then pass to C(M® — C(M™!), the
associated Abelian cones, and let €(M*®) be the stack quotient €(M*) =
[C(M~1)/C(MP®)]. This construction globalizes and is functorial. Alternative
notations are €(M*) = h'/h°(M*), used in [3] or €(M*) = ch(M*Y), in [1],
Exposé XVII.

16 Absolute dimension over k, not dimension over X
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The following are a few basic results on the intrinsic normal cone. None
of them are deep or difficult to prove, they just reformulate known results
about normal cones and tangent bundles.

Proposition 4.3 The following are equivalent.
1. X is a local complete intersection,
2. €x is a vector bundle stack,
3. €x =MNx.
If X is smooth then €x = Nx = BTx.
Proposition 4.4 €xxy = €x x €y (absolute product, over k).

Proposition 4.5 Let f: X — Y be a local complete intersection morphism.
Then there is a short exact sequence of cone stacks

Nx)y — Cx — f*Cy.

Here Nyxy = Ql(L;m,), which is a vector bundle stack. The notion of
short exact sequence of cone stacks is a straightforward generalization of the
notion of short exact sequence of cones. What it means is that the cone stack
on the right may be viewed as the quotient of the cone stack in the middle
by the action of the vector bundle stack on the left.

For example, if f is smooth we have an exact sequence

BTx)yy — €x — f*Cy,
and if f is a regular immersion we have

Nx;y — €x — f*&y.

4.4 The intrinsic normal cone and obstructions

We will now look at the ‘fiber’ of the intrinsic normal cone over a point of
X. So let p: Speck — X be a geometric point of X (which just means that
k is an algebraically closed field, not necessarily equal to the ground field, by
abuse of notation). Pulling back the intrinsic normal cone €x via p, we get
a cone stack over Speck.

If we look at cone stacks over an algebraically closed field, they are neces-
sarily given as the quotient [C/E] associated to an E-cone C, where E is just
a vector space. In this case the quotient of C by the image of d: E — C exists,
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and choosing a complementary subspace for kerd in E, we get a Cartesian
diagram

E 4 ¢

! !
kerd - C/imd

showing that, as cone stacks, [C/E] is isomorphic to the the quotient of
C’' = C/imd by kerd acting trivially. So for studying this cone stack, we
may as well replace d: E — C by 0: kerd — C’ and assume from the start
that E acts trivially on C, i.e., that the map d: E — C is the zero map.
Then we have that [C/E] = BE x C, where BE is the quotient of the point
Spec k by the vector space E.

Considering such a cone stack BE x C over Speck, we may interpret the
cone C as the ‘coarse moduli space’ of BE x C. Any stack has a coarse
moduli space associated to it; it és the set of isomorphism classes of whatever
the objects are that the stack classifies. The vector space E is the common
automorphism group of all the objects that the stack classifies.

Now let us determine what these objects and automorphisms are, for the
case of p*€x. Before dealing with the intrinsic normal cone, though, let
us consider the intrinsic normal sheaf. We have p*x = p*€(r>_1Lx) =
Q(p*Tz_le).

Recall the ‘higher tangent spaces’

Ty, = Ext'(p"Lx, k) = h*(p"Lx)"

of X at p. For example, Ty, = Hom(Qx,k) is the usual Zariski tangent
space. It classifies first order deformations of p, i.e., (isomorphism classes of)
diagrams

Speck — Speck]e]

P\ ly
X

where k[e] is the ring of dual numbers (meaning that €2 = 0). The first higher
tangent space T}(,p is the obstruction space, and classifies obstructions.
Now

p*rs_1Lx = [R (p*Lx) — h°(p*Ly)]
and so

p*mx = BT)O(,p X T)l(,p.
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Thus the intrinsic normal sheaf classifies obstructions, with deformations as
automorphism group. Since the intrinsic normal cone is a closed substack of
Nx, we get that

p*Q:X = BTg,p X CX,p,

where Cx, C Tk, is some cone of obstructions.

To describe what kind of obstructions the intrinsic normal cone classifies,
let us recall what an obstruction is. Let A’ — A be an epimorphism of local
Artinian k-algebras with kernel k (i.e., a small extension). Let T = Spec A
and T" = Spec A’ and assume given an extension z of p to A, i.e., a diagram

Speck — T
PN e
X

In this situation we get a canonical morphism z*Lyx — L7, by the contra-
variant nature of the cotangent complex. From the morphism T' — T” we get
a morphism Lp Xk of degree 1. It is essentially the morphism from Lt to
Lr/r.. Composing, we get a morphism z*Lx — k of degree 1, in other words
an element of

Ext!(z*Lx, k) = Ext'(p"Lx, k) = Tx,,,

which is called the obstruction of (A’ — A,z). The justification for this
terminology is that it vanishes if and only if z extends to A’, i.e., if and only
if there exists z’: 7" — X making the diagram

T — T
:z\ lz’
X

commute.

In more concrete terms the obstruction of (4’ — A, z) can be described
as follows. Choose a local embedding f: U — M of X at p, where U and M
are affine. Let I be the corresponding sheaf of ideals, which we identify with
an ideal in the affine coordinate ring of M. Then we have

T}(,p = coker(p* f*Ty — (p*I/1?)Y).
Now given z: T — X it is possible to choose z”: 7" — M such that

T — T
zl lzu
v LM
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commutes, since M is smooth. This diagram of two closed immersions induces
a morphism on the level of ideals, namely I — ker(A’ — A) = k. This element

of I' induces the obstruction in T, (which is independent of the choice of
f and M and z").

The small extension A’ — A is curvilinearif it is isomorphic to k[t]/t*t! —
k[t]/t* for some s > 1. This notion gives the answer to our question of what
are the obstructions classified by the intrinsic normal cone:

Proposition 4.6 FEvery element of T}(,p obstructs some small extension. It
obstructs a small curvilinear extension if and only if it is in Cxp C T}(,p.

Proof See [3], Proposition 4.7. O

4.5 Obstruction theory

Let us start with an example. Consider the Cartesian diagram

X SV
) Ls (8)
Speck — W

where f is a morphism between smooth varieties. Thus X is a fiber of f. This
is a typical intersection theory situation. One defines a cycle class on X by
[X]Y** = w'[V]. This class is called the specialization of [V] at w. The class
[X] is first of all in the expected degree, namely dimV —dim W, even if X
actually has larger dimension. Moreover, it leads to numerical data which is
independent of the parameter w-€ W. In the case that dimV = dim W this
means that the degree of the zero cycle [X]"'* is independent of w. For an
explanation of what it means if dim V' > dim W, see [6], Chapter 10.

Because of this invariance of numerical data defined in terms of [X]"'*,
this class is a sensible one to use for questions in enumerative geometry. Let
us recall the construction of w'[V] (or at least how the definition is reduced
to the linear case). One replaces Diagram (8) by the following:

X — Cx/v
) ) (9)
X % Tw(w)x X

Here Cx/v is the normal cone and the normal bundle of w: Speck — W
pulled back to X is Tw(w) x X, the tangent space to W at w times X. Then
[X]" = 0'[Cxyv].
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Now we also have a Cartesian diagram

X — [CX/V/’U*Tv]
1 1 (10)
X = [Tw(w)y/v'Ty]

which is obtained from (9) simply by dividing through (in the stack sense)
by v*Ty. Now note that [Cx/v/v*Ty] = €x is just the intrinsic normal cone
of X and € = [Tw(w)y/v*Ty] is a vector bundle stack on X into which €x
is embedded.

If there was an intersection theory for Artin stacks (or just cone stacks),
then certainly 0'[Cx/v] = 0%[€x], where the first 0 is the zero section from
(9). So we can characterize the virtual fundamental class of X in terms of
the intrinsic normal cone of X, which is completely intrinsic to X and the
vector bundle stack €, which is, of course, not intrinsic to X, but has to do
with the obstruction theory of X.

In fact, € = v*[f*Tw/Tv], and because [Ty — f*Tw| = Ty, is the
tangent complex of f, we have that € = v*€(Ly,w). So € can be thought of
as the linearization of f. Moreover, h®(v*Ty,w) = Tx classifies the first order
deformations of X, and hA'(v*Ty,w) contains the obstructions to deforming
X.

So we have replaced the ambient morphism f, which defined a virtual
fundamental class on X, by this vector bundle stack &, which serves the same
purpose. Now if X is a moduli space (oxstack), then it might be hopeless to
try to embed X globally into a smooth space (or stack) but such an € can
sometimes still be found; in fact, it comes naturally from the moduli problem -
that X solves.

The two essential properties of € are

1. &is a vector bundle stack, i.e., it is locally defined in term of a complex
of two vector bundles [E~! — E°]. Such a complex is referred to as
being perfect of amplitude contained in [—1,0]. In other words, it is an
object of DI[;rlf")]((’)x).17

2. The intrinsic normal cone €x is embedded as a closed subcone stack
into €.

This motivates the following definition.

17Note that the superscript [—1,0] does not refer to the object of the derived category
having cohomology in the interval [—1, 0], but to its perfect amplitude being in that interval.
The latter is stronger than the former.
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Definition 4.7 Let E be an object of DL;lf’ol(Ox). A homomorphism
¢: E — Lx (and by abuse of language also E itself) is called a perfect

obstruction theory for X if
1. h°(¢) is an isomorphism,
2. h7Y(yp) is surjective.

It is not difficult to prove that the two conditions on ¢ are equivalent
to the morphism Mx — € (where € = €(F)) induced by ¢ being a closed
immersion. Moreover, if p: Speck — X is a geometric point of X, then an
obstruction theory induces an isomorphism

Tk — h@"EY)
and a monomorphism
T)l{,p —s hl (p*EV)’

so, in a sense, E reflects the deformation theory of X and contains the ob-
structions of X.

As an example, let C be a pre-stable curve, W a smooth projective variety
and f: C — W a morphiém. Then H°(C, f*Tw) classifies the infinitesimal
deformations of f. The obstructions are contained in H!(C, f*Tw). To see
this, let U, be an affine open cover of C. By the infinitesimal lifting prop-
erty the morphism f can be extended over each U,. Over the overlaps U,z
two extensions differ by an infinitesimal deformation, i.e., a section of f*Tw
over U,s. The vanishing of this Cech 1-cocycle with values in f*T means
extendability of f.

These observations can be translated into the following statement. Let
X = Mor(C, W) be the scheme of morphisms from C to W. Then there is a
perfect obstruction theory on X given by (R, f*Tw)¥ — Lx, where

CxX—f—>W

L
X

is the universal map. Note that since 7: C x X — X has one dimensional
fibers, the complex (R, f*Tw)" is indeed perfect of amplitude 1.

This is in fact the obstruction theory we want to use to construct the
virtual fundamental class on M (W, 7). But a deformation of a stable map
may deform the curve C as well as the map f: C — W. So we note that the
morphism M(W,7) — 9, that forgets the map (and does not stabilize) has
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fibers of the form Mor(C,W). So we would like to adapt the above theory to
this relative situation.

Working in the relative rather than the absolute setting has the advantage
that the obstruction theory is much simpler. Also, many of the axioms we will
have to check involve the relative setting of M(W, 1) over M. So the relative
obstruction theory is better suited for proving the axioms of Gromov-Witten
theory. (Note, however, the difference between M, and M,. It is the main
difficulty in proving the axioms.)

The reason why the relative obstruction theory works, is that the base
9N, is smooth.

So we replace the base Speck by Y, where Y is any smooth algebraic
k-stack of constant dimension n. It does not even have to be of Deligne-
Mumford type. Let X — Y be a morphism which makes X a relative Deligne—
Mumford stack over Y. This just means that any base change to a base Y’,
where Y’ is a scheme, makes the fibered product X’ a Deligne-Mumford stack.

Embedding X locally into stacks that are smooth and relative schemes
over Y, one defines just as in the absolute case the intrinsic normal cone
Cx/y and its Abelian hull 9x;y. A complex of Ox-modules E that is locally
quasi-isomorphic to a two term complex of vector bundles, together with a
map in the derived category E — Ly, is called a perfect relative obstruction
theory, if it induces a closed immersion of cone stacks €x/y — ¢(E).

It follows from [3], Proposition 2.7 that the relative intrinsic normal cone
Cx/y is ‘just’ the quotient of the absolute intrinsic normal cone €x by the
natural action of the tangent vector bundle stack Ty of ¥. The same is
true for the intrinsic normal sheaves. Moreover, in our application, the rela-
tionship between the vector bundle stacks given by the relative and absolute
obstruction theories, respectively, is also the same. This implies that the
virtual fundamental class defined in the relative setting is the same as that
defined in the absolute setting.

Let us make more precise the sense in which a relative obstruction theory
E — Lx/y governs the obstructions of X over Y.

Let
T =5 X
! ! (11)
T — Y

be a commutative diagram, where T — T' is a square zero extension of
(affine) schemes, with ideal N (i.e., a closed immersion with ideal sheaf N
such that N2 = 0). Such a diagram induces an obstruction o € Ext'(z*E, N),
which vanishes if and only if a map T’ — X completing Diagram (11) exists.
Moreover, if the obstruction o vanishes, then all arrows 79 — X complet-
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ing (11) form a torsor under Ext®(z*E, N), i.e., there exists a natural action

of Ext’(z*E, N) on the set of such arrows T" — X, which is simply transitive.
The obstruction o is obtained as follows. A fundamental fact about the

cotangent complex is that is classifies extensions of algebras, i.e., that

Extalgy (T, N) = Ext!(Lry, N).

Thus T — T" gives a morphism of degree one Ly/y — N. Composing with
the natural maps z*Ly;y — Lty and 2*F — z*Lx/y we get a morphism of
degree one z*E — N, in other words an element o € Fzt!(z*E, N).

Note In the case that X — Y is a morphism of smooth schemes, we can
take the identity L%, — L%y as relative obstruction theory for X over Y.
Pulling this relative obstruction theory back to a fiber of X — Y, we get the
absolute obstruction theory of the fiber described earlier.

4.6 Fundamental classes

Since the relative case is no more difficult than the absolute one, we assume
from the start that we have a perfect relative obstruction theory E for X over
Y. To define the associated virtual fundamental class we need to assume that
E has global resolutions, i.e., that E is globally quasi-isomorphic to a two term
complex [E~! — E° of vector bundles over X. This condition is satisfied for
the relative obstruction theory of M(W,7) (see [2], Proposition 5). Then the
stack € = €(E) associated to E is isomorphic to [Ey/Ey|, where E; denotes
the dual bundle of E~*. Since €y is a closed subcone stack of €, it induces a
closed subcone C of E), and we define

[X]Vin = [Xa E] = 0'E'1 [C] € AdimY+rankE(X)a
which is a class in Vistoli’s Chow group with rational coefficients. This class
is independent of the global resolution chosen to define it. The fact that
this class is in the expected degree dimY + rank F follows immediately from
the fact that the relative intrinsic normal cone has pure dimension dimY

(which corresponds to the fact that the absolute intrinsic normal cone has
pure dimension zero).

Example 4.8 If X is smooth over Y, then h%(E) = h%(Lx/y) = Qxyy is
locally free. Hence E~! — E° has locally free h® and h~!, and so the same
holds for the dual ¢: Eg — E). Also, €y = BTx)y — [E1/Eqy| identi-
fies BT'x/y with Bker ¢, which is isomorphic to [im ¢/FEqg], and so the cone
induced by €x in E, is equal to im ¢. Hence
[X]"™ = 0Of,[imy]
Ctop(COker 90) n [X]
cop(RH(EY)) N [X].
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In the above example of Mor(C, W) we have
(X" = cyop(R'm.Tiw) N [X].

Proposition 4.9 If X has the expected dimension dimY + rank E, then X
is a local complete intersection and [C, E] = [X], the usual fundamental class.

Proof For simplicity, let us explain the absolute case ¥ = pt. Let k be
algebraically closed and A a localization of a finite type k-algebra at a max-
imal ideal. Write A = (k[z1,...,2Za]/(f1,---, fr))(@1,...2n), let m be the maxi-
mal ideal of k[zy, . .., Tn)(zy,..zn) a0 T = (f1,..., fr) CK[Z1, ..o, Tnl(zy,..on)-
Then the truncation at —1 of the cotangent complex of A is I/I? —

,,,,

there is an exact sequence
0 — TYA)Y — I/mI — m/m? — T°(A)Y — 0,

where T%(A) is the i-th tangent space of A at the maximal ideal.

After projecting Spec A into its tangent space at the origin, which only
changes A by an étale map, we may assume that I C m2. This entails that
I/mI — m/m? is the zero map and hence T°(A)Y = m/m? and T'(A)Y =
I/ml. Clearly, Ti,. .., T, is a basis of m/m?. By Nakayama’s lemma we may
also assume that f,,..., f, form a basis of I/m/. Hence n = dim 7°(A) and
r=TY(A).

Now clearly, dim A > n — r. If equality holds, then fi,..., f. is a regular
sequence for k[zi,...,%r)(z,..z,) and so A is Cohen-Macaulay and a local
complete intersection.

Now assume given a perfect obstruction theory E* for A. Then T°(A) =
R°(E*Y ® k) and T*(A) — h'(E*Y ® k). Hence n — r > rank E* and so
dim A > rank E*. By the previous argument dim A = rank E* implies that A
is a local complete intersection. Moreover, dim A = rank E* implies n —r =
rank E* and T*(A) = h!(E*Y ® k). This, in turn, implies that E* — L% is an
isomorphism and so [X,E*] = [X]. O

Corollary 4.10 If the expected and actual dimension are both zero, then
[X]VI*t counts the number of points of X with their scheme (or stack) theoretic
multiplicity.

Remark I X can be embedded into a smooth scheme M and E* is an
absolute obstruction theory for X then we have (in the notation above)

[X’ E.] = (C(El) n S(C))rankE"
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where s(C) is the Segre class of C and ¢ denotes the total Chern class. The
subscript denotes the component of degree rank E*. (See [6], Chapter 6.)
Now we have

(Er)c(Eo) " e(Eo) N s(C)
(E.) " ¢(Eo) N s(C)
(E) ™ e(i*Tar) N s(Cxyar)
= ¢(E"Y)eu(X),

«(E)Ns(C) = ¢

o]

where c,(X) is the canonical class of X (see [ibid.]). Hence
(X, E*] = (c(E) ce(X))rank Eo-

Thus the intrinsic normal cone may be viewed as the geometric object un-
derlying the canonical class. As such it glues (which cycle classes usually do
not) and is thus also defined for nonembeddable X.

4.7 Gromov—Witten invariants

As always, let W be a smooth projective k-variety and 7 a stable modular
graph with an Ho(W)* marking 3.
As indicated, we use the Artin stacks

M. = [] Mo)p. 00

veVy

where 9, s is the stack of S-marked pre-stable curves of genus g. Pre-stable
means that the singularities are at worst nodes and all marks avoid the nodes.
Note that 9, is smooth of dimension

dim(7) = # S, — # E, — 3x(7).
We consider the morphism

MW,7) — M,
(Cz,f) — (C,a),

where no stabilization takes place. Note that the fiber of this morphism over
a point of M, corresponding to a curve C is an open subscheme of the scheme
of morphisms Mor(C, W).

As before, let m: C — M(W,7) be the universal curve and f: C —» W
the universal map. Then we have a perfect relative obstruction theory (even
though this was only explained in the absolute case)

(R f*Tw)” — Lizw,qr/om,
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and hence a virtual fundamental class
J(W,7) = [M(W, )" = [M(W,7), (R, f*Tw)"]

in A,(M(W, 7)) of degree dim(7) + rank R, f*Tw .
Let us check that this is the degree we claimed [M (W, 7)]"™ to have:

dim(7) + rank Rm. f*Tw
= #5 —#E; = 3x(7) + x(f*Tw)
# S — # E; — 3x(7) + deg f*Tw + dim Wx(Oc¢)
#S, —#E, - 3x(1) — Blww) + dim Wx(Oc)
x(T)(dimW - 3) — B(ww) + # S, — # E;
dim(W, 7).

This calculation justifies the grading axiom for Gromov-Witten invariants.

Theorem 4.11 The classes J(W, T) satisfy all five azioms required.

Proof The mapping to point axiom follows from the Example 4.8. For the
proofs of the other axioms see [2]. One has to prove various compatibilities
of virtual fundamental classes. These follow from the properties of normal
cones proved by Vistoli [13]. O

Corollary 4.12 The Gromov-Witten invariants I.(8) defined in terms of
J(W, 1) satisfy all eight axzioms required.

4.8 Complete intersections

These ideas can easily be adapted to construct the tree level system of
Gromov—Witten invariants for possibly singular complete intersections.

So let W € P™ be a complete intersection, i: W — P the inclusion mor-
phism. Then [*Tp» — Nywypn] is the tangent complex of W. So as obstruction
theory for M(W,7) — 9, we may take (Rm, f*[i*Tps — Nw/p=])V. This will
be a perfect obstruction theory if we restrict to the case where 7 is a forest,
because then the higher direct images under 7 of f*i*Tp~ and f* Ny p~ vanish.
So we get the tree level system of Gromov—Witten invariants of W.

As an example, consider a cone over a plane cubic, which is a degenerate
cubic surface in P?. There is a one dimensional family of lines on this cubic,
namely the ruling of the cone. On the other hand, the expected dimension
of the space of lines on a cubic in P® is zero. Therefore the Gromov-Witten
invariant Ip (1) is a number, which turns out to be 27. So the ‘ideal’ number
of lines on a cubic is 27, even in degenerate cases.
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Kahler hyperbolicity and variations
of Hodge structures

Philippe Eyssidieux

There is a well-known duality, pervasive throughout the theory of Her-
mitian symmetric spaces, sending a symmetric space of compact type to its
noncompact dual (see, for example, [9], Chap. VIII, §4 and Chap. X1, p. 354);
whereas the former is a projective variety, the latter can be realized as a
bounded domain in C*. For example, the Grassmannian Grass(p,p + ¢) =
SU(p+4)/S(U(p) x U(q)) has as its dual the quotient SU(p, q)/S(U(p) xU(g)),
which is the bounded symmetric domain {Z € CP9 | *ZZ — I, < 0}. A ge-
ometric statement concerning a Hermitian symmetric space of compact type
often has an associated ‘dualized’ statement about its noncompact dual. 1
formulate such a dual pair of problems and discuss some aspects of the version
on a Hermitian symmetric space of noncompact type.

Let © be a Hermitian symmetric space of noncompact type that has a
compact dual (that is, a bounded symmetric domain). Let Ag be the evenly
graded commutative real algebra generated by the Chern—Weil forms of homo-
genous holomorphic Hermitian vector bundles on €2; then Agq is isomorphic
to the real cohomology algebra of the compact dual of €. Setting degc¢; = 2i
defines a grading on the polynomial algebra Bq = Aglcy, ..., ¢, - .. ]

Let T = (M, p,i) be a triple consisting of a connected n-dimensional
complex compact manifold M, a representation p of 7;(M) in the isometry
group Aut) and a p-equivariant holomorphic immersion i: M — Q from
the universal covering space M of M into 2. Typical examples arise from
complex submanifolds of Hermitian locally symmetric manifolds uniformized
by €. Since every homogenous vector bundle Vg on €2 descends to a vector
bundle Vs on M, there is a canonical morphism i*: Bg — H*(M,R) defined
by i*ci(Va) = ¢i(Vu), i*c; = ¢;(M). Evaluation on the fundamental class of
M defines a linear form er: BZ* — R. I call such a triple an n-dimensional
positive cycle of .

Define the closed convex cone of universal Chern numbers inequalities to
be K% = {a € B¥;er(a) > 0 for all T'}. Consider the following problem:

Problem Describe completely the closed convex cone K3. Construct opti-
mal universal inequalities, and describe the cases of equality. A specialization

71
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of the latter question is of interest: describe the optimal inequalities whose
cases of equality are the totally geodesic submanifolds of Q/T for I a discrete
cocompact subgroup of Aut (2.

The dual problem is easy to describe. To the compact dual ﬁ, we associate
the algebra Ay generated by the Chern-Weil forms of homogenous vector
bundles on  and we set Bg = Agler, ..., ¢n,y. .. ], with dege; = 2i. Then Bg
and B are isomorphic. We define the n-dimensional positive cycles as the
n-dimensional projective algebraic submanifolds of Q. The cone K s defined

as before. The structure of K3 N A is known when 0 is a Grassmannian:
this is the content of the Fulton—Lazarsfeld theorem on universal inequalities
for ample vector bundles [5].

However, there are also very significant differences between the problems
of describing universal Chern numbers inequalities for Q and Q. In the latter
case, every projective algebraic manifold M (of sufficiently small dimension)
may occur as the first term of a cycle (M, p,7). In the case of interest, the
projective manifolds M that occur are of general type and have large funda-
mental groups.

I cannot formulate any reasonable conjecture describing K, and I only
explain how to construct some interesting elements. There are various ways
of constructing elements of K. For instance, because Chern—Weil theory en-
ables us to compute Chern numbers as integrals of differential forms, starting
from curvature tensors (whose explicit form is well known, see for instance
[14]), explicit computations can be performed. The computational complex-
ity of the problem grows so quickly with n that more subtle approaches are
necessary.

In the situation of interest, { carries many homogeneous flat complex
vector bundles which in addition underly a complex variation of Hodge struc-
ture. This structure pulls back to the universal covering M of M and then
descends to M. The universal inequalities we will discuss in this article will
be deduced from the study of these complex variations of Hodge structures.
In the case that M is a totally geodesic complex submanifold of §2, we call the
resulting variation of Hodge structure a locally homogeneous variation and its
period map a homogeneous period map.

More generally, we can consider complex variations of Hodge structures
on M with their period map M — D, where D is the associated Griffiths
period domain. See (3] for this construction and [7] for a thorough study of
the homogenous domain D.

The manifold M is almost never compact. Fortunately, if the period map
does not contract curves, the metric properties of the period map M — D
ensure that M admits a Kahler form @ which is Lipschitz equivalent to the
pullback of any given Kahler form on M and is the de Rham coboundary



Philippe Eyssidieux 73

of a smooth 1-form which is bounded with respect to @. Such a Kahlerian
compact manifold M is called weakly Kdhler hyperbolic.

This structure makes it possible to apply Gromov’s methods from [8] to
the L? cohomology with values in the variation of Hodge structure on the
universal cover and the main result from [4] follows.

Main Theorem Let M be a compact weakly Kdhler hyperbolic manifold,
and suppose that (M,V,F* S) is a complez polarized variation of Hodge
structures (VHS for short). Denote by Kp the holomorphic vector bundle
on M given by Kp = FP~"/FP*1 @ Q" and by Kp the complex

o V 1 vV dim¢ M
Kp— Kp— .- — Kp .

Then (—1)d4ime(M)y (M, K3) > 0.

Via the Riemann-Roch theorem, these give inequalities for the Chern
classes, which I call Arakelov type inequalities. Going back to homogeneous
variations over a bounded domain D = 2, one obtains nontrivial elements
of K§. In the general case, one has to work with Ap, the algebra gener-
ated by the Chern forms of homogeneous Hermitian vector bundles, and with
Bp = Apley,...). 1 define a positive n-dimensional cycle of D to be a triple
T =(M,p,i) with M a connected n-dimensional complex compact manifold,
p: m(M) — Aut(D) a representation and i: M — D a p-equivariant holo-
morphic horizontal immersion; the cone K7 is defined as the dual cone of
the convex cone generated by irreducible positive cycles. The Arakelov type
inequalities define nontrivial elements in this cone. An interesting feature is
that, for a general Griffiths domain, these Arakelov type inequalities cannot
be deduced from the explicit formulas for the curvature, even when n = 1.
Another interesting phenomenon is that one can construct cases of equality
for some of them that are locally homogenous. I conjecture that in fact every
case of equality is locally homogenous (I call the corresponding positive cycles
geodesic cycles). I can only prove this when the geodesic cycles satisfy some
strong rigidity properties.

We describe the organization of this article. Section 1 reviews Gromov’s
notion of Kahler hyperbolicity, and vanishing theorems for L? cohomology.
Section 2 recalls the definition of a VHS and sketches the proof of the Main
Theorem; for more details, see [4], on which my talk at the Warwick Euro-
Conference was based. The rest of the article is devoted to a systematic
investigation of the cases of equality in the main theorem, which was lacking
in [4]. Section 3 describes locally homogenous VHS on irreducible symmetric
domains along the lines of Zucker’s article [17] and gives a criterion derived
from a formula of Kostant that identifies the cases of equality in the main the-
orem among them (Proposition 3.5.2). This criterion leads in principle to an
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algorithm producing the list of every locally homogenous VHS that gives rise
to a case of equality in the main theorem. In this spirit, Appendix A.2 gives
an algorithm to determine every such locally homogenous VHS uniformized
by a classical domain. Section 4 establishes a part of the conjecture that every
nontrivial case of equality of the universal inequalities among Chern numbers
of Theorem 2.2.1 is actually a locally homogenous VHS, and describes the
strong rigidity properties satisfied by certain of these examples (a list is given
in Appendix A.3), which gives some more evidence for the gap phenomenon
conjectured by N. Mok and the author (see [12], §4 and the introduction to
(13)).

I thank the editors and referees for help in improving the exposition.

1 Harmonic bundles and Kahler
hyperbolicity

1.1 Kahler hyperbolicity

Recall the following definition of Gromov [8]: let (M,w) be a compact Kéhler
manifold and M — M its univeriall covering. (M,w) is Kdhler hyperbolic if
the Kahler form w pulled back to M is the de Rham coboundary of a bounded
smooth 1-form. This notion depends on the chosen Kahler class. The basic
examples are Kahler manifolds admitting a Riemannian metric of strictly
negative sectional curvature (for any Kahler form) and submanifolds of Her-
mitian locally symmetric manifolds of noncompact type (for the restriction
of the symmetric Kahler form). I need the following variant: M is said to be
weakly Kdhler hyperbolic if M carries a bounded smooth 1-form o whose de
Rham coboundary da is a Kahler form Lipschitz equivalent to the pullback
of some (and hence every) Kéihler form on M.

1.2 The Lefschetz—Gromov vanishing theorem

Let (X, g) be a complete Riemannian manifold and V a flat vector bundle
endowed with a flat connection D and a Hermitian metric &, not necessarily
flat. Let L2dR?(X, g, V, h) be the Hilbert space of square integrable p-forms
on X with values in V whose distributional de Rham coboundary is still
square integrable. Define the L2 de Rham complex as the following complex
of topological vector spaces:

L*dR%(X,g,V,h) = L2dR\(X, g,V, h) 5 ... -4 L2dRI™X (X, g, V, h).

The cohomology of this complex is called the L? cohomology of (X, g)
with values in (V) h), and denoted by H(‘2)(X ,9,V,h). It is obviously a bi-
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Lipschitz invariant. Gromov [8], 1.2.B, p. 273, asserts that the L? cohomology
of the universal covering of a compact Kahler hyperbolic manifold (M, w) with
values in the trivial flat vector bundle (or any unitary flat vector bundle)
vanishes in degree # dim¢ M.

As observed in [4], Théoréme 1, Gromov’s proof also extends to VHS
(see below). In fact, the same proof also holds for Higgs bundles equipped
with a harmonic metric. Recall ([16]) that a Higgs bundle on a complex
manifold M is a holomorphic vector bundle V' together with a holomorphic
map 6: V — V@0, with § A9 =0 in End(V) ® Q22,. Not all such bundles
admit harmonic metrics; one needs that the underlying flat bundle is semi-
simple. Such Higgs bundles are called harmonic Higgs bundles. Variations of
Hodge structures provide examples, as we see below.

Proposition 1.2.1 Let M be a compact weakly Kahler hyperbolic manifold.
Then the L? cohomology of its universal covering with coefficients in the pull-
back of a harmonic Higgs bundle on M endowed with its harmonic metric
(cf. [16]) vanishes in degrees # dim¢ M.

Note that on M the harmonic metric is Lipschitz equivalent to a Hermitian
metric constructed by parallel transport of a Hermitian metric on some fibre
if and only if the (real) monodromy group is compact, which is rarely the
case.

2 Variations of Hodge structures

2.1 Definition

Definition 2.1.1 Let M be a complex manifold. A quadruple (M,V, F*,S)
is called a complex polarized variation of Hodge structure if V is a flat bundle
of finite dimensional complex vector spaces with a flat connection D, F* a
decreasing filtration of V ® Op by holomorphic subbundles indexed by the
integers, and S a flat nondegenerate sesquilinear pairing such that

1. The C* vector bundle V' associated to V decomposes as a direct sum
V =, H? with FP = &D,>p HY;

2. S(H?,H") =0 for p # r, and (—1)?S is positive definite on H?;
3. DYWOFP C Frl@ Q).
The numerical vector {dim¢ H" },¢z is called the Hodge vector of the VHS.

The subbundle H? can be given a holomorphic structure by the iso-
morphism HP — FP/FP¥l. Write dl;{ for the corresponding Dolbeault op-
erator, and set d” = @, d;. Then D 0 induces a C*-linear map V,: H? —
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HP~1 @ Q! called the Gauss-Manin connection; we set V' = @, V,. The
Hermitian metric H = €@,(~1)?Sy» is called the Hodge metric. The pair
(V® O, V') is a Higgs bundle and H is a harmonic metric on the associated
flat bundle V.

For our purposes, the weight of a VHS is not relevant; instead, we are
interested in the length of a VHS, the number prax — Pmin, Where prax and
Pmin are the maximum and minimum of the (finite) set of integers p with
dim H? # 0.

The Kéahler hyperbolic assumption in Proposition 1.2.1 is well adapted to
nondegenerate VHS by [4], Proposition 4.6.1:

Proposition 2.1.2 Let M be a compact Kihler manifold and (M,V, F*, S)
a VHS on M. Assume that for any connected smooth curve C mapping to
M with 1-dimensional 1mage, the induced VHS on C has a nonzero Gauss—
Manin connection (equivalently, no curve on M is contracted by the Griffiths
period map). Then M is a projective weakly Kdahler hyperbolic manifold. Thus
the L? cohomology H{y (M, V) vanishes in degree # dimc M.

2.2 Arakelov type inequalities

Set EP? = @@, -p, pog HP ® * and D" = d" + V'. It follows that
D"EPQ c EPQ+!. Furthermore, Deligne proved (cf. [4], Proposition 2.2.1)
that given any Kahler metric, if we take formal adjoints of differential opera-
tors with respect to this Kahler metric and the Hodge metric on V, the usual
Kihler identities hold, for instance 2(D"(D")*+(D")*D") = DD*+D*D. It

follows that the L? cohomology on the universal covering M with coefficients
in V has a Hodge decomposition.

Theorem 2.2.1 Let M be a compact weakly Kéhler hyperbolic manifold and
(M,V,F* 5} a VHS. Denote by K} the holomorphic vector bundle on M
given by Kp = HP~" @ O and by K} the complex

0— K% kL Y, o KlmeM g
“Then (—1)3mcM)y (M, K3) > 0. In terms of Chern numbers, this reads:
(—1)%me®) Y " (—1)" ch(HP") ch({2},) Todd(Tar)[M] > 0.
Sketch of proof Let G be a countable group, endowed with the counting
measure, and write [ or r: G — U(L*(G)) for its left (respectively right)

regular representation. The commutant of ! is a von Neumann algebra W*(G).
Every element a of W;*(G) has a unique expression as a = 3 . a,7(g), with
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ag € C. Set 7(a) = a.. The linear form 7 is a finite trace on W;*(G), because
for all a, b,

T(ab) =7(ba) and a #0 = +o0 > 7(aa*) > 0.

The orthogonal projection p onto a closed G-invariant subspace E of L*(G)
belongs to W*(G) and we may try to define dimg(E) = 7(p). In fact, this
definition can be extended to any Hilbert space with a left G-action, provided
it can be realized as a G-stable closed linear subspace of L?>(G)®N. This
provides a dimension theory for a certain class of unitary representations of
G, similar to the dimension theory of linear algebra over C (the particular
case G = {1}). For instance, E = 0 <= dimg E = 0. The differences that
have to be stressed in this article are that, when the group is infinite, the
dimension function takes values in R* and that an admissible G-module of
nonzero G-dimension is infinite dimensional in the usual sense.

We can now explain Atiyah’s L? index theorem (for details, see [1]). Let
D be an elliptic differential operator on the compact connected C'*°-manifold
X, and Ind D its index. Then D can be lifted to a differential operator D on
the universal covering space X which is invariant under the natural action
of m(X). Then the m;(X)-module kery2(D) = {u € L*(X); Du = 0} has a
well-defined 7 (X)-dimension and

dimg, (xy kerp2(D ) dimg, (x) kerLz( ") =Ind D.

This theorem is the analogue for infinite coverings of the multiplicative prop-
erty of the usual index under finite coverings.

x(M, K3) is the usual index of the elliptic complex D": EF* — EP*+1,
By Atiyah’s L? index theorem, it can be computed as the L? index of the
lifted elliptic complex on M where the vanishing theorem Proposition 2.1.2
is available. O

3 Locally homogenous variations of Hodge
structures

3.1 Hermitian symmetric spaces of noncompact type

Let € be an irreducible Hermitian symmetric space of noncompact type. Its
group of isometries is an almost simple adjoint Lie group Aut§2, and we
set g = Lie(Aut). Let G¢ be the simply connected complex semisimple
algebraic group associated to gc = g ®g C. Then G¢ has a connected real
form G with Lie algebra g, and Aut 2 is the adjoint group G* of G. Let K
be a maximal compact subgroup of G and observe that & = G/K. Since
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is Hermitian symmetric, [ = Lie K has a 1-dimensional center z([) and splits
as I =z(I) ® [I,1). Thus Z = exp(z(I)) is isomorphic to U(1). We write x for
the degree of the covering map Z — Z24.

Now suppose that zp € Z*¢ is an element of order 4. Then 22 = ¢ is a
Cartan involution. Write g = [ @ p for the corresponding Cartan decomposi-
tion. Then z, induces on p = T.xG/K the tensor +J, where J is the almost
complex structure of 2. We may thus choose z inducing J on p. Write
accordingly p ® C = p* @ p~, where p* = ker(ad 2o — £v/—1).

We can choose a Cartan subalgebra b of g contained in L. Let Ay C hg be
the root system for gc. These roots take purely imaginary values on §. There
exists a partition Ag = A(UA,; for which pc = P,cp, 8% and lc = Poca, 8%
One can choose an ordering on v/—1h* such that p* = @@, a4 8%, where
Af = At N A, (respectively, Al = AT NA).

3.2 Homogenous holomorphic vector bundles

We say that a holomorphic vector bundle V' —  of finite rank is homo-
genous if the natural action of G on £ lifts to an action on V which preserves
the complex structure. Homogenous holomorphic vector bundles correspond
1-to-1 to finite dimensional K-modules. Under this correspondence the holo-
morphic tangent (or cotangent) bundle of  corresponds to p (respectively

po)

3.3 Homogenous VHS

There is another natural correspondence between flat homogenous vector bun-
dles on 2 of finite rank and finite dimensional complex linear representations
of G. As observed in [17], an irreducible flat homogenous complex vector
bundle V on §2 can be given the structure of a homogenous VHS.

Let us describe Zucker’s construction. V = V. is the representation
space of the associated representation p of G. Let Z = Hom(Z,U(1)) = x%
with x§ the character of Z acting on p*. Decompose V according to the
action of Z: V = @, 5V (x). Then V(x) is K-invariant. Observe that
p(PEV (X)) C V(x - xE#). Let xv be the highest nontrivial character (with
the convention that xo > 0). It follows from the irreducibility of p that there
exists an integer N, such that V = @n%, V(xvxs™*), and every summand is
nonzero.

Define a decreasing filtration of V' by setting FPV = @{i"p Vioxg™).
The Lie subalgebra g. = [ @ +/—1p C gc is compactly embedded, and pre-
serves a positive definite Hermitian sesquilinear pairing H (unique up to scalar
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multiple). The decomposition V = @,N;O Vixvxo ') is orthogonal and pre-
served by [.

Since p(p) B even Vv X0™) = By 0aa V(xvxs™), it follows that g pre-
serves the Hermitian nondegenerate pairing § = @,(-1)'H iV(xvx"") which
polarizes the filtration F°. °

Let z = gK € Q, and set FPV, = p(g) - FPV C V,, S; = Sop(g)~.
The F; and S, glue together to yield a holomorphic filtration on V satisfying
Griffiths transversality (because p(p*)FP C FP~1) and a polarization S of this
filtration. I henceforth refer to this VHS as the irreducible homogenous VHS
associated to p. The number N, is the length of the VHS (see Definition 2.1).

For the reader’s convenience, Appendix A.l1 describes all fundamental
VHS on classical domains.

A simple modification of this construction works for reducible Hermitian
symmetric spaces and yields:

Proposition 3.3.1 Let Q! be a Hermitian locally symmetric space of non-
compact type, g the Lie algebra of its automorphism group and p: g — gi(V)
a complex linear representation.

There exists a g-invariant Hermitian form S, that is nondegenerate (but
indefinite unless p is trivial). Moreover, the constant local system V x Q0 —
underlies a VHS polarized by S, which is invariant under a finite covering
group G of the automorphism group of Q, G acting on Q x V by g - (0,v) =
(g © 0,9 ’U)‘

For every p € Q, we let p(p) = {F*(V)} be the corresponding Hodge fiag.
The group U(S,) acts transitively on Hodge flags and if we fix some origin
o € 2 and let U be the stabiliser of the flag defined by o, the set of Hodge flags
can be described as a homogeneous domain D, = D(U(S,), ¢(0)) = U(S,)/ U.
This domain is called the Griffiths domain. The Griffiths period map corre-
sponding to the VHS constructed above is the holomorphic horizontal map
f: Q@ — D, described by f(p) := ¢(p).

From a homogenous VHS, that is, a VHS on a bounded symmetric domain
Q invariant under some {finite) covering group G of the automorphism group
of €, one associates a representation p of G in the obvious way, so that
there is a 1-to-1 correspondance between homogenous VHS on a bounded
symmetric domain and complex linear representations of the Lie algebra of
its automorphism group.

3.4 Locally homogenous VHS

Let M = Q/T be a Hermitian locally symmetric manifold of noncompact type
with universal covering space the Hermitian symmetric space 2. Say that a
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VHS on M is locally homogenous if its lift to £ is a homogenous VHS. It is
proved in [4] that the partial converse to Theorem 2.2.1 holds:

Theorem 3.4.1 Let M be a compact Hermitian locally symmetric manifold
of noncompact type and (M,V, F*,S) a locally homogenous VHS. Recall that

K% is the holomorphic vector bundle on M given by Kb = HP ™" @ ¥, and

K3 the comples 0 — K% K} NN KameM _, 0. Then

(=1)3meMy (M, K3) 2 0,
with equality if and only if Kp is acyclic.

Matsushima and Murakami ([11], Theorem 12.3, p. 33) prove that, if p is
an irreducible complex representation of G associated to a nonsingular highest
weight, H'(m (M), p) = H'(M,V,) = 0 unless i = dimc(M). This vanishing
theorem is stronger than the L? vanishing theorem applied to a Hermitian
locally symmetric space. Furthermore, Theorem 3.4.1 can be deduced, for a
nonsingular weight, from their work, and should be viewed as a weak version
of their theorem holding for singular weights.

3.5 A formula of Kostant

Let p: G — GL(V,) be an irreducible complex representation. The complex
K} associated to the homogenous VHS it defines on {2 is obviously the com-
plex of homogenous vector bundles associated to the following complex of
K-modules:

T v, T - r
Ky V,): - = Ap~ @ Vo) > A~ @ Viag T ) — -+

where x = xvxs'* and Vi,=3 e aF pleq) ® e_o A. This complex computes
the part of the K-module H*(p*,V,) on which the central subgroup Z acts
with character x.

Write Wy and Wi = Wy for the Weyl groups of g, respectively |, and
II; € b and II; € b for the weight lattice of g, respectively | in v—=1h*. The
Grothendieck ring of the category of representations of g and [ is isomorphic
to the ring Z[I1;)"s, respectively Z[II;|"". The fact that the Weyl group is
simply transitive on the Weyl chambers yields:

Lemma 3.5.1 ([10]) Denote by Wy, the right coset space W\Wy. Then
Wo={weW;: wA7 N A'gF - Aj} — Wy is a set of representatives.

Set Wo = U, Wo(g) where Wo(g) = {w € Wo : {wA7 NAY| =g}
Let C’; and C{" be positive Weyl chambers for g and [. For a dominant
weight A € II 06: for g, write EY for the irreducible g-module with highest
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weight A; similarly, for a dominant weight u € H[ﬂﬁf for [, write EL for the
irreducible l-module with highest weight u.

Let pg, o and p, be half the sum of the positive roots in A} (respectively,
Af and A}).

The following is due to Kostant:

Proposition 3.5.2 (see [17],(10]) Let A € Il;NCyF. Then

{
H(p*, EY) = Z Buortog)-pg°
woeWo(q)

We need to decompose this formula further according to the action of Z.
First of all, observe that:

Lemma 3.5.3 wp, = p, for all w € Wi.

Proof Let ¢ be a generator of z(I). Clearly (py,{) = c|Af| # 0. Observe
that w- Ay, = A;. It follows that

(wpp, Q) = c(lwAf NAS| = [wA; NAL]).

The Weyl group W, acts orthogonally on h (w.r.t. the Killing form of g),
leaving h N [I, 1] invariant. Thus, z(f) = [(,{|* is also W-invariant. Since &(w),
equal to —1 to the power the number of reflections in any decomposition of
w as a product of reflections, does not depend on whether we view w as an
element of W; or of W, and is the determinant of the linear transformation
it induces on h and on [I, ], 2(I) is fixed by Wi. It follows that (w(py),¢) =
(Pp, w2¢) = (pp, ¢), and thus wpp, = p,. O

The latter argument implies also that, by means of the identification of
h and its dual space via the Killing form, p, is identified with a positive
generator of z(I), since [I,[¥* = {0}. Set @ = dimc(p™)pp/p(pp, pp). Let
I, ¢ II¥ C II; be the lattice consisting of those weights of [ arising from
K-modules, and let A € TIX be a dominant weight. Observe that Z acts by
the character x4 on E} if and only if (\,@) = [.

This implies the following:

Corollary 3.5.4 Let X € 11 be a dominant weight. Then:

. 4
Hq(KXS(Eg)) = Z Ewo(/\+ﬂs)—ﬂs'
woeWy(qg) s.t.
(wo(A-pg)—pg@)=l
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We apply this to p = 0, where V), = 0 and H‘(K;B(Eg)) = K;B(Eg) =
A~Y “p: (I £0), and call ¢, the (unique) element of W, that corresponds to
Adimcp p—.

In particular Wy(0) = {id}, Wy(dim ) = {c,}. For a possibly reducible
Hermitian symmetric space, elements of W;(1) are in 1-to-1 correspondance
with its irreducible factors.

It follows from Corollary 3.5.4 that for any X € II; N 5: that HO(p*, EY)
and HI™®(p+ E?) are irreducible K-modules; these modules are easily iden-
tified. They correspond to the two complexes K3()) with a single term;
namely K> (\) = V(xv), and

K:(Vx'(NAHim(»*))M(}‘) = V(XVXENW) ® Adim(p+)p_
0

correspond to the elements w = e € W), respectively w = c,. Therefore:
Lemma 3.5.5 The length of the VHS associated to A € TI;N C;' is
Ny = (A, (id =, 1)@).

We say that the character x € Z is critical with respect to the dominant
weight A € Il  if some Kib (E%) is not 0 but K3 (E3) is acyclic. In view of
0
Theorem 3.4.1, we get the following criterion:

Proposition 3.5.6 x}, is critical with respect to \ if and only if the following
hold:

1. 1=()\®) mod u;

2. 1 ¢ {(wo(A + pg) — 05, @) Yuoewo;

3. (es(M+ pg) — pg, @) <1 L (N, W).

This provides us with many nontrivial examples. For example:

Corollary 3.5.7 Let Q be a Hermitian symmetric space of noncompact type.
Set 1,(R2) = |Wo| — dim¢ 2. Every dominant weight whose associated VHS
has length > 1.(Q) has critical characters. Moreover, every dominant weight

in the series (npg)n>1 or (npg+(n+ 1))\)"21‘/\ n,nT), has critical characters.

Since the length of the VHS associated to the dominant root A is given
by the positive linear form I(E)) = (A, (id —¢,!)@), the corollary shows that,
for each bounded symmetric domain €2, only a finite number of weights have
no critical character (I refer to these as the special weights of §2).
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Although I did not find a simple condition for a weight of a classical
domain of type I, I or III to be special, the proposition gives in principle an
algorithm to determine every special weight. See Appendix A.2 for details
and specific examples.

We consolidate our gains in the following result.

Theorem 3.5.8 Let §2 be an n-dimensional Hermitian symmetric space of
noncompact type and A a nonspecial weight with critical character xvXxo Pu,
Let ES be the highest weight module attached to X\. Let G = (0, V, F*, S) be
the homogenous VHS attached to ES (see Proposition 3.3.1).

Then equality occurs in the universal inequality

(—1)"(ch(K}p) Todd(TM))n’n[M] >0

(which, in virtue of Theorem 2.2.1, is valid for every VHS with the same
Hodge vector as G having an immersive period map) if the VHS is a locally
homogenous VHS uniformized by G.

4 Hyperrigid locally homogenous variations
of Hodge structure

4.1 Scalar curvature for a Griffiths period map

Let D = W/U be a Griffiths domain. The Lie algebra of W has a real Hodge
structure of weight 0, polarized by the Killing form.

On D there is an invariant closed symplectic form w which is not a Kéhler
form with respect to its complex structure. In fact, A(X) = w(X,JX) is an
indefinite nondegenerate form. However w is positive definite on horizontal
directions.

Let T = (M, p,i) be an irreducible n-dimensional positive cycle. The
form w restricts to a Kahler metric wy on M which descends to M. In fact, it
may also be defined as the curvature of the pullback of a certain equivariant
holomorphic line bundle on D. Assume that the Griffiths period map ¢ sends
T € M to eU € D(W,p) = W/U. Then i,TM can be identified with
a complex Abelian subspace of Lie(W)~!!. Let (e;); be a unitary basis of
this subspace. Using the Gauss equation and the formulas in [7] (for quick
reference, see [14], Corollary 2.2), one easily computes:

Lemma 4.1.1 The scalar curvature of M at x is:

Scal(M, ) = —|| Z[ei,éi]w - X2 = S5(A) - 2%
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Viewing TM as a subbundle of the bundle associated to Lie(W)~! (this
is the horizontal tangent bundle) identifies the term X2 with the square of
the norm of the metric second fundamental form; thus it vanishes identically
on M if and only if T is a geodesic cycle.

If p is a linear representation of W, one constructs the associated VHS
(M,V,, F*,S), and for every integer P, the complex Kp:

K3:0— FP/FP1 T FP-ypP2 g o), ¥,
.o 25 PP FPrl @ 0 0.

Lemma 4.1.2 There exists a constant CH and a function S5 on the space
E,, of n-dimensional complex Abelian subspaces of Lie(W)~b! such that, if
T = (M, p,i) denotes an n-dimensional positive cycle, then:

a(Kp)wi™! = Ch(Scal(M, z) + SH(T.M))w} at every z € M.

4.2 Hyperrigidity
4.2.1 Definitions

Definition 4.2.1 Let D = W/U be a Griffiths domain and Q@ = G/K a
Hermitian symmetric space of noncompact type; we say that the homogeneous
period map 2 — D is 0- (respectively 1)-hyperrigid if it satisfies Condition 1
(respectively, Conditions 1-2) below:

1. S(TQ) is the maximal value of the scalar curvature in the space on
n-dimensional Abelian subspaces of Lie(W)~11.

2. There is a linear representation p of W and an integer P such that for
the induced homogenous VHS on , the complex K} is nontrivial but
acyclic, satisfies C} # 0 and S§ is maximal at TQ. (This condition
follows automatically if Lie(W)~!! happens to be an irreducible U-
module.)

4.2.2 Rigidity phenomena

The following lemma is elementary:

Lemma 4.2.2 Assume that there is some 0-hyperrigid period map 2 — D
with scalar curvature S, and dimQQ = n. Then, for each n-dimensional pos-
itive cycle (M, p,i) of D, one has (Swp — ci(M)wp™")[M] > 0 and every
case of equalily is a geodesic cycle uniformized by some 0-hyperrigid locally
homogenous period map.
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Now, assume that there is some 1-hyperrigid homogenous period map 2 —
D, with dim 2 = n . Denote by F* the Hodge filtration on the representation
space of p. For each Abelian n-dimensional complex subspace A C Lie(W)~1!
one defines the complex:

Kp(A): 0 — FP/FP-t Y, pP-1/pP2 g g+ T,
. __V_'_> FP—n/FP—n+1 ®AnA* S0

When A arises as the tangent space to a Griffiths period map, this complex
is identified with the already defined complex K3 of the associated VHS. Let
U C E, be the (Zariski open) subset of the space of all Abelian n-dimensional
complex subspaces A of Lie(W)~11 such that Kp(A) is acyclic.

One may build holomorphic homogenous fibre bundles U — D and E,, —
D with fibres at the origin U, respectively Fq. The Gauss map of a positive
cycle T = (M, p,i) is the map v: M — i*Eg/71(M) sending each point to
its embedded tangent space.

The following theorem follows almost immediately from the definition of
1-hyperrigidity:

Theorem 4.2.3 Let 2 be an n-dimensional Hermitian symmetric space of
noncompact type. Suppose that there is some 1-hyperrigid homogenous period
map Q@ — D. Let T = (M, p,i) be a positive n-dimensional cycle of D. The
Gauss map of T takes values in i*U/m (M) if and only if T is a O-hyperrigid
geodesic cycle.

Proof Theorem 3.4.1 tells us that for any cocompact fixed point free discrete
subgroup I of Aut €2, one can construct a positive cycle T = (/T p|r, i) such
that ch(Kp) = 0. In particular, f, /T ci(Kp)wp™ = 0. The integrand from
Lemma 4.1.2 is constant along /T. So the maximal value of S§ is exactly
minus the scalar curvature of . In particular, due to Definition 4.2.1, for
any nongeodesic n-dimensional cycle T = (M, p, i) (and also for any geodesic
cycle of nonmaximal scalar curvature) f,, ci(Kp)wp™! # 0.

But, tautologically, to say that the Gauss map ~ of the cycle T should
take values in ¢*U/m (M) means that Kp is an acyclic complex. Thus
Jyca(Kp)wp™' =0, and T is a geodesic cycle. O

On the other hand, the following theorem of [4] is more difficult to prove,
and uses in a crucial way an improvement, due to Gromov [8], of Atiyah’s L2
index theorem.

Assume that there is some 1-hyperrigid period map @ — D = W/U. Set
n = dim Q. Let p be the representation of W and P the integer provided by
Definition 4.2.1. For a positive n-dimensional cycle of D, T' = (M, p, i), we
write (M,V, F*,S) for the VHS on M associated to the representation p.
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Theorem 4.2.4 Assume that (M,w;,) is a Kahler hyperbolic manifold in the
strong sense. (This condition is automatic when D is Hermitian symmetric.)
Then x(M, Kp) = 0 if and only if T is a 0-hyperrigid geodesic cycle.

Sketch of proof Let L be the homogenous holomorphic vector bundle on
D such that ¢;(L, h) = wy. Since i*wy, is exact on M, it follows that *L — M
is topologically trivial. Thus, one can construct, for each ¢ € R, a Hermitian
holomorphic line bundle L* on M such that ¢,(Lf) = €wp. Furthermore,
there is an extension I: of m; (M) by U(1) whose action on M lifts to L¢. One
can construct a variant of Atiyah’s L? index theory for I'.-invariant elliptic
operators.

Set EP9 = @, ropspeq HP O *® LF and D} = d!+V,. In view of the
higher index theory mentioned above, the L? D”-complex with its I'.-action
has index given by the polynomial

P(e)=/Mexp(ewh)ch(K;;)Todd(TM).

Now by Proposition 1.2.1, x(X, Kp) = 0 implies that the L? D”-complex
is acyclic for £ = 0.

Due to the boundedness of the postulated primitive of wy, the L? D!-
complex is also acyclic for small values of €. In particular:

X(M,Kp) =0 = a; = wp *(ch(K;) Todd(Ty)), [M] =0 forallk <n.

Now, for k = n -1, a; = f,,c1(Kp)wp~! (note that a, = 0 since there
is some n-dimensional geodesic cycle M’ which satisfies x(M’, Kp) = 0). We
are thus reduced to the situation of Theorem 4.2.3. O

4.3 Constructing examples

The conditions in Definition 4.2.1 are so strong (and so artificial) that one
might wonder if 1-hyperrigid homogenous period maps can exist at all. Since
I have not found any general principle to classify 1-hyperrigid homogenous
period maps, I only explain here how to construct all the nontrivial examples
I know (see Appendix A.3 for a list of examples).

Lemma 4.3.1 Let Q) = G/K be an irreducible Hermitian symmetric space of
noncompact type and X € HBOU: a weight whose associated VHS has length 1
(or 2 and is defined over the real numbers with Hodge vector (a,b,a)). Then:

(1) The Griffiths period map associated with the direct sum of k copies of
E3, @ — D, ,, (respectively,

Q — Dg(ka, kb, ka) = SO(2ka + kb)/S(U(ka) x O(kb))
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is 0-hyperrigid.

(2) Assume moreover that \ has a critical character, or that some multi-
linear functor (for example, a symmetric or an exterior power) of ES
is an irreducible g-module whose highest weight has a critical character.
If CE # 0, then the homogenous period map is also 1-hyperrigid. In the
case of a length 1 VHS with a critical character, this is always satisfied.
In the length 2 case,

CP=0 < dimQ=2P and b/a=2dimQ/(dimQ +2).

Proof 1 give the proof of (1) only for VHS of length 1, the case of length 2
being similar. Recall the formula of Lemma 4.1.1 for the scalar curvature
of a Griffiths period map. Observe that, for any locally homogenous VHS,
>-ilei, &) € vV=1s(u(kp) x u(kq)) is the image under the representation of p,.
Thus it is a central element, that is, a matrix of the form (ali,, blkg), with
pa +bg = 0.

For any n-dimensional subspace of D,Icp,kq, the element

Z[ei, &) € vV—1s(u(kp) x u(kq))

is a pair (A, B) of symmetric matrices, with A positive definite, B negative
definite, Tr A = n and Tr A+Tr B = 0. Then || 3_,[e:, &]||2 = Tr(A%)+Tr(B?)
takes its minimal value at (aly,,blt,) with pa + bg = 0. This gives the
maximality assumption on the scalar curvature.

For (2), the irreducibility of T} under the action of the isotropy group
of the origin of the Griffiths domain D enables to conclude that S§ is con-
stant on the space of Abelian subspaces. The main point to be verified for
the statement on 1-hyperrigidity is thus C5 # 0. This follows from simple
calculations. O

A Tables

The tables in this appendix were completed using the tables in [2], p. 251-276
and [9], p. 518.

A.1 Length of the fundamental representations

In Table 1, w; denotes the weight of the ith fundamental representation using
the notation of [2].

The exceptional isomorphisms between classical domains are: DIl = A,
DIIBI = B3a DII = Dfliva Déu = Dzlsv) D5,2 = DAIIV
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0 gand [ |dime(Q)] |Wol I(E.,)
71 )
B su(n, 1) n n+l [(E,)=11<i<n
s(u(n) x u(l1))
(E,)=14 1<i<p
DL, for |su(p,q), . <p+q) UE.)=p p<i<q
q2>p=2|s(u(p) x u(qg)) P J|(E,)=p+qg—i

(E,)=41<i<n-—2

$0*(2n), u(n) <n) 2t (By,y) = [(n-1)/2)
? (E..) = [n/?]

DI for
n>4

DIII’ f
2 O op(n, R), u(n) <"+1) o |(E,) =i1<i<n

n>3 2
DY, for [so(2n,2), on on + 2 (B,)=21<i<n-1
n>2 lso(2n) x s0(2) (E,,)=1UE..,,)=1
DY .., for[so(2n + 1,2), on omt 1 (E,)=2,1<i<n

n>2 |so(2n+ 1) x s50(2) (Bu,,,) =1

pv |1 16 27

$0(10) x s0(2)
DYU leqas), ¢ x 50(2) 27 56

Table 1: Lengths of fundamental representations

In the case of type I domains, the weight w1 corresgmnds to the funda-
mental representation p; : su(p, q) — gl(p + ¢,C). E™®

In the case of type III domains, the welght wy corre (ponds to the fun-
damental representation p;: sp{n,C) — gl(2n,C). is the primi-
tive part of A¥p; (and can be seen as the primitive part of R*n,C where
m: Al — DIl g the universal family parametrizing marked principaly po-
larized n-dimensional Abelian varieties).

In the case of type II,, and IVgn_g domains, E,, is the fundamental rep-
resentation p; : s0(2n) — gl(2n,C). E,, = Alp; for i <n ~2, and E,,,_, and
E,, are the two halfspin representations.

In the case of type IVa,41 domains, E,, is the fundamental representation
p1:50(2n+1,2) — gl(2n+3,C). E,, = Aip; for i < n, and E,,,, is the spin
representation.
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Lacking expertise on the two exceptional symmetric domains, I did not
perform all the relevant computations. However, observing that length one
homogenous VHS can be used to classify totally geodesic holomorphic em-
beddings on symmetric domains into classical ones (compare our table with
the list of embeddings of a classical domain into another one given by {15],
p. 188), the fact that DV and D! have no such embedding ([15], p. 187)
is equivalent to the fact that they do not carry any length one homogenous
VHS.

A.2 Special weights for classical domains

For each classical domain, the combinatorial recipe for testing whether a
dominant weight is special is given in Table 2:

Q A=Y, nw; is special if and only if:

B —
T A
q Z p>2 e =

> jeal+ny)(min(j,p) — [AN{L,....j}) =k
Vk€{0,..., (3) + it il + 252 )lar + (2]},
3AcC {1,...,n} with |[A| =0 mod 2 such that
beat=p=t + Nica(n— i+ Bt 4+ S720) = b

DM for | Vke{o,... ﬁﬁ"—+—12+z i}, 3AC {1,...,n}

DY for
n>4

n>3 such that > ., (n—i+1+3> 0 m) =k

DY for X € {0,wy, wp1}, where E, ,E, ., are

n>2 the halfspin representations of s0(2n + 2)
DY, ,, for A= 0

n>2

Table 2: Special weights

Except in the particular cases of type IV domains and of the complex
ball or of some other small domains, I cannot give the whole list of special
weights, but can give specific examples. In the following list, the weight A is
supposed to be the sum A = Y, Liw;, with [; € N:
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Case D;,q forg>p>2
o If I, # 0 (or I, # 0) then A =} liw; is not a special weight.

o If 11 #0 and [,_; # 0 (or lgx; # 0) then A = > Liw; is not a special
weight.

® Twpye-1 (respectively rwy) is special if and only if r < 1+ (p—1)(g—1).
Case DM for n > 2

e If I, #0 or l,_; # 0 then X is not special.
® puwy + qus is special if and only if p < g"—"lé"—_Q and ¢ < i'-‘—"—?)éﬂ

e puw + qws + Tws is special if and only if r < ("_4)2("‘3) ,q < (""2)2("_3)
and [n -3 +7r—p|l < 1+£—'i_—3§"—_22.

In particular, for DY, 7w, + 3w, is not special whereas Tw; + 3wy + ws is

special; this shows that being nonspecial is not a monotonous property, that

is, A nonspecial does not necessarily imply that A + x is nonspecial.

Case DY for n > 4

e If I, # 0, X is not special. When n = 1 mod 2, a special weight also
hasl,_y=0and [, <1.

e The weight > 72 Liw!! is a special weight for DI iff S"72Lw!l is a
special weight for DI .

Q D Nonspecial isotypic VHS
B Digr-ipop L ST <Mk EN (E,,)®
Dy D}c2",k2"? keN (E., )%
DY,n>4|D,, Ej, (= A""E)
D},H,n 23 1 Egﬂ'd)wl(= Sl+dE3)Ill)’
n=0,14]| ™ d=(";)
Br Dr(ka;, kb;, ka;) El . 1<%
2 Dr(kCy™', k(Cr, + Ci2), kCi™Y) | (BS)®* = (WEL])®*,r < n

Table 3: Hypperrigid homogeneous period maps
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A.3 Examples of 1-hyperrigid period maps

Table 3 gives the examples of hyperrigid homogenous period maps Q@ — D
constructed thanks to Lemma 4.3.1.
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Algorithms for computing intersection numbers
on moduli spaces of curves, with an application
to the class of the locus of Jacobians

Carel Faber

The first purpose of this note is to explain how to compute intersection
numbers of divisors on the moduli spaces M,, of stable pointed curves.
The Witten conjecture, proved by Kontsevich, gives a recipe to compute the
intersection numbers of the n basic line bundles on M,,. As we will see,
knowing these numbers allows one to compute all other intersection numbers
of divisors as well. That this is possible was pointed out to me by Rahul
Pandharipande. Earlier, Eduard Looijenga had made a remark that went a
long way in the same direction.

After describing the various divisors on M, ,, we proceed to discuss the
algorithm computing their intersection numbers. We discuss our implemen-
tation of this algorithm and the results we obtain from it. For example, we
compute all intersection numbers on M, for g < 6. (Copies of the program
and some data computed with it are available from the author.)

A refined version of the algorithm requires us to take into account certain
higher codimension classes, introduced by Mumford and Arbarello-Cornalba;
it computes all intersection numbers of these classes and divisors. Recently,
we realized that the Chern classes of the Hodge bundle can be taken along
as well; hence all intersection numbers of Mumford’s tautological classes and
divisors can be computed. This has several applications. In §4 we discuss
one application in detail: the calculation of the class of the locus of Jacobians
in the moduli space of principally polarized abelian varieties of dimension
g (projected in the tautological ring). This class was classically known for
g = 4 and we computed it by ad hoc methods for ¢ = 5; the new method
allows us in principle to compute the class for all g, in practice currently for
g < 7. Other applications may be found in the recent papers of Graber and
Pandharipande [GP] and Kontsevich and Manin [KM].

93
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1 Line bundles and divisors on M,

For nonnegative integers g and n with 2g — 2 + n > 0, denote by M, the
moduli space of stable n-pointed curves of genus g, over an algebraically closed
field k. This is the Deligne-Mumford compactification of the moduli space
Mg of smooth n-pointed curves (C;zy,...,z,) of genus g (with z; # z;
if ¢ # j). We consider certain classes in the rational Picard group of ./\_/lg,n.
First, for 1 < 7 < n, let 9; denote the first Chern class of the line bundle whose
fiber at a stable n-pointed curve (C;zy, ..., z,) is the cotangent space to C at
x;; that is, ¥; = c1(0}(wn,,,,)), where Tp4;: M i1 — M, is the morphism
obtained by forgetting the (n + 1)st marked point (the universal curve, cf.
[Kn 1]), wn,,, is the relative dualizing sheaf, and o1, ..., 0, are the natural
sections of 7,41 (the image of a stable n-pointed curve under o; is the stable
(n+ 1)-pointed curve obtained by attaching a 3-pointed rational curve at the
ith point and considering the remaining 2 points on that curve as the ith
and (n + 1)st point). Next, following [AC 2], §1, we define k1 = mpq1(K?),
with K = ¢1(wn,,,(3ie; Di)), where D; is the divisor that is the image of
the section o;, for 1 < < n. Note that it is a consequence of results of Harer
(cf. [Ha 1], [Ha 2], [AC 1]) that over C the restrictions to M, of the classes
k1 and ¥y, ..., %, generate the rational Picard group of M,,.

To get generators for the rational Picard group of M, ,, we have to add
the fundamental classes of the boundary divisors. Exactly when g > 0, there
is a boundary component whose generic point corresponds to an irreducible
singular curve. It is the image of mg_l’n+2 under the degree 2 map that
identifies the (n + 1)st and (n + 2)nd point on each curve. Following [AC 2],
we denote this locus by A, and its class in the Picard group by .. (For
g = 0 this class is 0 by definition.)

The other boundary components parametrize reducible singular curves.
The generic point of such a component corresponds to a curve with two
irreducible components C; and C; of genus ¢, and g2 with g; + g2 = g, and
labelled by subsets N; and N, of n = {1,2,...,n} satisfying Ny [[N: = n
that correspond to the marked points on the two components. All partitions
of g and n that lead to a stable curve occur; this just translates as the
condition |N;| > 2 when g; = 0. Such a boundary component is the image of
Mg, 1n+1 X Mg wpp41 under the natural map that identifies the two ‘extra’
points and labels the |N;| remaining points on C; with the labels from N;.
We choose to denote this boundary component in the case n > 0 by Ay, v,
where N; is the subset of n containing 1. In the case n = 0 the N; are empty
and we may drop them in the notation; note that A, = Ay, and that this
component is usually denoted by Amping,,g:)-

Although this plays no role in the sequel, we point out that the classes
in the rational Picard group introduced so far are independent whenever
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g 2 3. For g = 2, there is one relation, arising from the fact that x; on
‘M comes from the boundary. For g = 1, both k; and the %; come from
the boundary; the boundary components are independent. For g = 0, the
boundary components generate, but are not independent; the relations arise
from the various projections to Mp4 and the equivalence of its 3 boundary
cycles. For proofs of these statements, see [Ke| and [AC 3].

There is one other divisor class which is most useful: A;, the first Chern
class of the Hodge bundle. The Hodge bundle is the locally free rank g sheaf
(on the moduli functor) whose fiber at a curve C is H*(C,w¢). So it is 0 in
genus 0, while it is a pullback from M1 1 0r Mg in case g = 1, respectively
g2

2 The idea of the algorithm

Suppose given a monomial of degree 3g—3+n in the divisor classes k1,1, - - -,
¥n, 8ir and the &y, y, on M, ,; we want to compute the corresponding inter-
section number. We'interpret the divisor classes as classes on the moduli func-
tor. In the case of a boundary divisor, this means that we divide the usual
fundamental class by the order of the automorphism group of the generic
curve parametrized by the divisor. We denote these divisor classes by 4., to
distinguish them from the actual boundary divisors A .

The case in which the monomial involves only the %; is of course covered
by the Witten conjecture [Wi], proved by Kontsevich [Ko]. As explained in
[AC 2], this also allows us to compute intersection numbers involving both &,
and the ’tp,'.

It remains to compute the intersection numbers involving a boundary
class. We think of such a number as the intersection of the remaining classes
on the corresponding boundary component. A problem with this approach
appears to be that most boundary components have singularities that are not
quotient singularities, which means that one cannot properly do intersection
theory on them. This problem is easily solved: we have seen that each bound-
ary component is the image under a finite map of a moduli space of stable
pointed curves or a product of two such spaces. (The map almost always has
degree 1; the only exceptions are the degree 2 map from Mg 1nt2 0 Aip
and, in the case g even, the degree 2 map from M, 9/21 X Mg /2,1 10 Dgp3.) So
we wish to pull the remaining divisor classes back by means of this map. If
we can express the pullbacks in terms of the basic classes on the new moduli
space (or product of moduli spaces), we will be done, by induction on the
dimension of the moduli space.

So the point is to understand the pullbacks of the basic divisor classes
from ﬂg,n to the moduli spaces occurring in its boundary components.
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It is clear that the %; pull back to 1; on the new moduli space(s): to the
first n on Mg-l n+2, and to the |Ni| classes ; on My, v, 141 and the |No|
classes 1; on .Ms,2 |Nz|+1 that correspond to the points not identified in the
map to Ay, N,

As explained in [AC 2|, the class ) pulls back to k; on My_jn42, Te-
spectively to the sum of the pullbacks of the ; from the two factors on the
product My, w41 X Mgy |1

Pulling back a boundary divisor other than the one under consideration to
the new moduli space(s) is not difficult. The main point is that two distinct
boundary divisors intersect transversally in the universal deformation space
(see [DM]). It remains to identify the boundary divisors on the new moduli
space(s) that arise as the inverse image of the intersection of the boundary
divisor under consideration with a distinct one.

For example, in the case Ay, the pullback of the class & s to ﬂg_l,n+2
is the sum

Oh—1,MU{n+1,n+2} + On,M,

with some exceptions: when n = 0 and 2h = g, the two classes in the sum are
equal and the pullback consists of that class just once; when n = 0 otherwise,
0np was denoted d,_1_p {1,2) above; when & = 0 or h = g, the first, respectively
the second, summand is not defined, and should be omitted.

We now consider the pullbacks of boundary divisors to a product of the
form ﬂgﬂ Nil+1 X —M-—m No|+1- The pullback of &, is the sum of the éi; on
the two factors. It remains to find the pullbacks of the boundary divisors
parametrizing reducible curves of type other than that under consideration.

We start with the case n = 0. Hence N} = N, = ). We may assume that
g1 < g2, and we want to pull back a class 0, with h < g—h and 2 # g,. The
general point in a component of the intersection of the two boundary divisors
parametrizes a chain of 3 irreducible curves. There are a priori 4 possibilities
for the genera of the 3 components:

(1) [h, g1 — h,g2), occurring when g; > h;

3

)

(2) [hyg2 — h, g1], occurring when g > h;
) [91,h — 91,9 — h], occurring when h > gi;
)

(4) [g2,h — g2, 9 — h], occurring when A > g,.

Here the second entry refers to the genus of the middle component; note that
[a,b,c] and [c, b, a] describe the same type of curves.

Note that & < g/2 < go. In fact A < g9, since equality implies h = g,
which we have excluded. So (4) never occurs, while (2) always occurs. We
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conclude that, with one exception, the pullback of 8, equals

{pr’{ 591*’1»{1} + pr3 592—’1»{1} if g1 > h;
Pr30g,—h(1) + P Ohg, (3 A > gy,

where pr,, pr, are the projections to the two factors of ﬂm Nij+1 x-ﬂm No|+1-
The exception is when h = g — h (implying h > g¢1), and the two summands
in the second line are equal; then the actual pullback consists of that class
just once.

Now for the case n > 0. We may assume that 1 € N; and we want to pull
back a class 0 p other than dy, ny,. So 1 € M and (h, M) # (g1, N1), but we
no longer have g; < g, or h < g — h. Again there are a prior: 4 possibilities
for the genera of the 3 components, where as before the second entry refers
to the genus of the middle component:

(1) [h,g1 — h, g2, occurring when g; > h and M C Ny;
(2) [h,g2 = h, 1], occurring when g > h and M C Ny;
(3) [91,h — g1,9 — h], occurring when h > g; and N; C M;
(4) (g2, h — g2, 9 — R, occurring when h > g, and N, C M.

Observe that (2) never occurs, since 1 € M and 1 ¢ N,. Note also that the
other possibilities indeed yield stable curves in all cases: in (1) and (3) the
necessary condition M # N; when h = g, is fulfilled, and in (4) the equality
M = N, never occurs. Finally, note that types (1), (3) and (4) are mutually
exclusive.

This means that the pullback of 8 s consists of the sum of 0, 1 or 2 of
the classes from the following list, depending on which conditions hold:

(1) pr}dnn, pullback from My, n,u(y when g3 > hand M C Ny
(3) pr3dh—g;,M—Nu(1}, Pullback from —./\_/-i-gz,mu{l} when h > g; and N; C M;
(4) pr} dn—g, M—Nu(s}, Pullback from —./\—/i—gl,Nlu{*} when h > g3 and Ny C M.

Here we have identified the factors of the product of moduli spaces by means
of sets of marked points instead of just their number of elements. In light
of our convention to label a divisor parametrizing reducible curves by the
genus of the component containing 1 and by the set of marked points on that
component, it is natural to give the ‘extra’ point in case (3) the label 1, rather
than *.

Finally, we have to deal with self-intersections of boundary divisors: we
need to pull the class of a boundary divisor back to the corresponding moduli
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space (or product of moduli spaces). It is not difficult to deal with this
directly, but it is easier to use the fundamental identity on Mg,

k1 =12\ -6+ 79,

where ¢ is the sum of the functorial classes of the boundary divisors and v is
the sum of the n classes 9; (see [Co]). Namely, every divisor class on ./Vg,n
discussed so far occurs in this identity. So a given boundary divisor class
can be expressed as a linear combination of other divisor classes, and if we
know how to pull back the other classes, we will also know how to deal with
self-intersections. We have discussed the pullbacks of k;, the ¢; and the other
boundary divisor classes above, so we only need to determine the pullback of
A1. Note that the pullback of the Hodge bundle to mg_lm.g is an extension
of a trivial line bundle by the Hodge bundle in genus g — 1, whereas the
pullback of the Hodge bundle to Mg, |n;j41 X Mgy |nyj+1 IS the direct sum of
the Hodge bundle in genus ¢, and the Hodge bundle in genus g, (see [Kn 2] or
[Co].) Hence we find that the pullback of A; to M,_; 42 equals A;, whereas
its pullback to Hmm“ X ﬂmw“ equals pr} A\, + pri Ay

This determines the pullback of a boundary divisor class to its correspond-
ing (product of) moduli space(s). We find that for n = 0, the pullback of &,

to My_, 2 equals

92

— — Yo + Oir + Z On,(1}>

h=1

whereas in the case n > 0 the pullback of 6;, to ./_\/l_g_lynw equals

—¢n+l - ¢n+2 + éirr + Z (éh,MU{n+l} + 6h,MU{n+2})-

0<h<g-1,1eMCpn
M#n when h=g~—1

In the case of a boundary divisor parametrizing reducible curves, an ac-
tual self-intersection is much rarer. We find that the pullback of 4, N, to
MMy X Mgy Npu1y equals

— pri Y(x} — Pr3 1 + Pr3 Ogymgy, (1} if n=0and g, < go;
—pI‘I 1/"{*} - pr; 1/"1 + pr’{ 691—92,QU{*} ifn> Oy Nl =n and qa > g2 > 0;
—pr} Yy — Pr3th otherwise.

This finishes the theoretical description of the algorithm.
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3 Implementation and results

We have implemented the algorithm outlined in §2 in Maple [Ma]. This
first requires an implementation of Witten’s algorithm [Wi] to compute the
intersection numbers of the 1; on _M—g,,.. For this, we gratefully use the results
of Chris Zaal [Za] who, using such an implementation, computed a table
containing all the intersection numbers

dy .d d,
(TarTdy -+ Ta,) = YUY - 5"

on M, with g <9 for which all d; > 2 (hence n < 24 since  » ,(di — 1) =
3g—3). The intersection numbers for which a d; equals 0 or 1 can be computed
from these by means of the string and dilaton equations [Wil:

(TOTayTdy * ** Tdn) = Dica>0 (Tdy " Tadim1 *** Tdn) (string equation),
(MTay Ty Tan) = (29 — 2+ 1) (T4, Tay -+ * Td) (dilaton equation).

From the intersection numbers of the 1;, one can determine the inter-
section numbers of the classes x; on M, introduced by Mumford [Mu], as
outlined in [Wi]. Arbarello and Cornalba [AC 2] introduced classes k; on
M, generalizing Mumford’s classes, and they show that the intersection
numbers of the v; determine the intersection numbers of these k; as well as
the ‘mixed’ intersection numbers of the divisor classes k; and ;. So in par-
ticular the intersection numbers of k; and the v; are determined. It is easy
to implement the calculation of these numbers from the intersection numbers
of the 9; (especially so with a formula we learned from Dijkgraaf [Dij]), and
we have for instance calculated the numbers 3~ on M, for g <9.

Naturally the various divisors on Mg,,. have to be ordered in some consis-
tent way. On -M—g we start with ki, followed by dy, and then the ‘reducible’
boundary divisors, ordered by the minimum of the genera of the 2 compo-
nents, for a total of [g/2]+2 classes. (The class A\; was introduced only to deal
with self-intersections of boundary divisors and is not actually used in the pro-
gram.) When n > 0, there are (g+1)2"~! +1 classes: first ¢, ..., %,,x; and
dir, then the reducible classes, ordered first by the genus of the component
that contains the point 1, then by the number of points on that component,
and finally by the lexicographic ordering of subsets of n (of equal size and
containing 1). (Recall that in genus 0 the class &, is 0; it is included for
convenience. )

In the case of a pullback to a product of moduli spaces, we need to renum-
ber the indices from N; U {*} as well as those from {1} UN;. For this we just
use the natural ordering of the elements of n, taking * as the (n + 1)st point.

The implementation of the actual algorithm is now rather straightforward.
Given a monomial M in the divisor classes involving at least one boundary
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divisor, we order the classes as above, and pull M back to the (product of)
moduli space(s) corresponding to the last divisor that occurs. Note that
whenever the monomial contains several distinct boundary divisors, we have
a choice here; while the ordering we choose is probably optimal for Xfi—g,
it is probably not for n > 0: we have recently experimented with another
ordering, which indeed appears to be better; the idea is that in the reducible
case one should try to pull back to two moduli spaces parametrizing curves
of approximately equal genus and number of points.

In case the last divisor is Ay, we find a homogeneous polynomial of degree
39 — 4 + n in the divisor classes on ﬂg_l,nﬂ. After expanding, it is a sum
of monomials (with coeflicients) in the divisor classes; these are evaluated by
means of the (heavily recursive) algorithm.

In the reducible case, we also find a homogeneous polynomial of degree
3g — 4 + n, but this time in two sets of variables, the divisors on Mg, v, )41
and those on Hyz,l No|+1- Many of the monomials will not have the correct
degree 3g; — 2 + [ V}] in the first set of variables and are 0 for trivial reasons.
The others automatically have degree 3gs — 2 + [Np| in the second set of
variables; writing such a monomial as ¢ - M; - M3, where ¢ is the coefficient
of the monomial and M; is the monic monomial in the ith set of variables,
it contributes ¢ - a(M,) - a(M,), where a(M;) is the result of applying the
algorithm to M; on My, |n;j+1-

Using this implementation of the algorithm, we have computed, for ex-
ample, the 28 intersection numbers of &1, &, and & on Ma, confirming the
results of [Fa 1]. However, because of its heavily recursive character, the
algorithm already becomes impracticable in the computation of certain inter-
section numbers on M. Most intersection numbers are still easy to compute,
but especially the numbers x} %8¢ with  large take a long time. It is quite
clear why: firstly, a pullback to Hg_l,mug is the ‘worst case’, since the changes
in genus and in dimension of the moduli space are minimal, while the number
of points increases by 2, so that the number of divisors increases by a factor of
almost 4; secondly, as we saw in §2, the pullback of &, to ﬂg_l,n” involves
by far the highest number of terms.

Observe however that the class é;, is a pullback from —./\79, respectively
-./\—/l_l,l. This first of all implies

5iTr+l =0,

where m = max(g,3g — 3), for all g > 0. Using this identity systematically
already saves a considerable amount of time. Moreover, any product involving
only «,, the ¥; and §;;; can be pushed down to Mg, respectively M; 1, by using
the projection formula and the formulas in [AC 2]. This leads to intersection
numbers on those spaces of monomials in §;, and the higher x; mentioned
before. As observed by Arbarello and Cornalba, the «; behave very well
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under pullback, and it is clear that all intersection numbers involving divisors
as well as the k; can be computed by means of an algorithm almost identical
to that in §2. Even the implementation is easy to adapt. The point is that
this greatly simplifies the calculation of the numbers involving only x;, the
¥; and §y;: in the naive implementation, the complexity of a calculation
increases at least exponentially with the number of points, and one would
have to calculate certain numbers on Ho,zg to get all numbers on Hg; but
now many of the hardest numbers can be computed using at most 2-pointed
curves at all stages of the computation.

With these simple changes implemented, the calculation of many more
numbers becomes practical. We have calculated all intersection numbers of
divisors on Hg for g < 6 as well as on Ha,l and HM. To obtain the
2 numbers x,61% and 825 on Mg, we used the relations M36i.6; = 0 and
APBS2, = 0, consequences of the relation A}38;y, = 0, which is geometrically
obvious.

This section of the paper would hardly be complete without some actual
intersection numbers. Here are a few:

o _ —251987683 o 1
On My: O = —355 and Ay = 793900
. —1766321028967 o 81
On Ms: O = 6048 and A" = 630400
_ —32467988437272065977 431
) 15 _ 15 _
On Ms: b 7257600 and A= =010

We computed the number A} on M, in [Fa 2] by a completely different ad
hoc method. Calculating it with the algorithm amounts to calculating all 220
intersection numbers of divisors on My, which provides a nice check of the
implementation.

4 The class of the locus of Jacobians

We used the calculation of A on M in [Fa 2] to obtain the well-known result
that the class of the locus J; of Jacobians of curves of genus 4 in the moduli
space Ay of principally polarized abelian varieties of dimension 4 equals 8);.
Using the computation of A\}? on Ms as well as some computations in the
tautological ring of My as in [Fa 3], we could determine the class of J5 in
As, as we explain in a moment. Recently we realized that Mumford’s formula
[Mu] for the Chern character of the Hodge bundle on M_g, together with an
algorithm similar to that discussed in §2, enables one to compute the class of
J, in A, for all g, at least in principle. In practice, we have carried this out
for g < 7. We also discuss these results here.
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We first recall the set-up, and explain our restricted interpretation of the
“class of the locus of Jacobians” in the moduli space of principally polarized
abelian varieties: by this, we mean a class in the tautological ring of Ay, the
Q-subalgebra of the cohomology ring of a toroidal compactification .Zg of Ay
generated by the Chern classes A; of the Hodge bundle E on .Zg. From [Mu],
§5 we know the relation

(1—/\1+/\2—/\3+"'+(—1)9/\9)(1+/\1+/\2+/\3+"'+/\g)=1,

equivalently, chor(E) = 0 for all £ > 1. The tautological ring is in fact the
quotient of Q[Ay,...,A,] by the ideal generated by the homogeneous compo-
nents of the relation above and is thus a complete intersection ring. A detailed
description of the tautological ring may be found in [vdG]. In particular, the
relation with the cohomology ring of the compact dual of the Siegel upper
half space via Hirzebruch’s proportionality principle is explained there. This
includes the fundamental identity

g B g |B2
=11

that enables one to compute intersection numbers in the tautological ring of
Ag: the monomial of top degree on the left, interpreted as an intersection
number, equals the number on the right. Here B,, are the Bernoulli numbers,
defined as in [BS] via t/(e* — 1) = 14+ Y o (Bm/m!)t™. So for g = 1,2,3
respectively,

m—-l

1 1 1
— = —— Adods = .
510 MM =g MM =5e0aais

/\1=

Denotlng by t: My — A the extended Torelli morphism and its image
by Jg, we are after the functorial class [\75,] of the locus of (generalized)
Jacobians, which is one half its usual fundamental class. In other words,
we wish to determine 3t,1, since a generic curve of genus at least 3 has no
nontrivial automorphisms, while the generic p.p.a.v. and the generic Jacobian
of dimension at least 3 have two automorphisms.

It is important to point out that this is not what we actually compute.
We do not know whether, modulo boundary classes, the class of the locus
of Jacobians lies in the tautological ring; our feeling is that this is probably
false for g large enough, but we cannot even envisage a method to decide this.
Instead, we compute the projection [Jg]T of this class in the tautological
ring; this is well defined by the perfect pairing in the tautological ring and
the cohomology ring of A,. In other words, we compute the class [Jg]Q
modulo a class X that has zero pairing with all tautological classes of the
complementary dimension.
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The method to compute [,’Z,]T is the following. It is a class in the tauto-

logical ring of .Zg of dimension 3¢ — 3, hence of codimension ¢ = (9 ;2) Write
it as a linear combination with unknown coefficients a; of the elements s; of
a basis of the degree ¢ part of the tautological ring:

[,’Z,]T = @181 + @282 + - - - + xSk, [,’Z,]Q = [.Z]T+X.

(A natural basis is for instance the collection of square free monomials of
degree c in Ay,...,A;.) To compute the coefficients a;, we have to evaluate
the k£ monomials A; of a basis of the degree 3¢ — 3 part of the tautological ring
on this class. The evaluation of expressions A;s; in the tautological ring of
.Zg uses the relations between the A; and the proportionality relation stated
above. So the expressions A;(a;s; + - - - + axsi) yield k linearly independent
rational linear combinations of the unknowns a;. The values of these expres-
sions can be determined as 3t.(t*A;) = (3t.1) - A, provided we know how to
evaluate t*A; on M,.

The simplest nontrivial example is ¢ = 4. Here ¢ = 1, a basis in codimen-
sion 1 is Aj, a basis in codimension 9 is )\? (or any nonzero monomial in the
Ai), so to compute the class of ,’74 in .14 we only need )\? on M,. We have
seen above that this can be evaluated, for example, by means of the imple-
mentation of the algorithm; we find the well-known result that [J]r = 8)\;.

The situation for ¢ = 5 is more interesting. Here ¢ = 3 and a basis
in codimension 3 is given by Aida(= 3X3) and A;. We need to evaluate 2
independent monomials of degree 12 in the A; on Ms. The algorithm will
naturally yield only the number A\}? (whose value we gave at the end of §3).
However, we can use the simple observation that the class A;Ay) vanishes on
the boundary M, — M, (see [Fa 3] or [Fa 4]). As a corollary, the numbers
MA2dsds and AsAghs on Ms satisfy the same relation as the classes Aj)g
and A; in the degree 3 part of the tautological ring R*(Ms) of Ms, which
is 1-dimensional. This relation was worked out in [Fa 3]: 10A; = 3\ A A
quick calculation in the tautological ring of As shows that this implies that
the class of the locus of Jacobians satisfies

[Fslr = a(3Auha — 22s).

Another such calculation, using A\}2 = g3 on M, then shows that a = 24,
hence

[Felr = 72012 — 48X,

For higher genus, this method only provides some of the coefficients, not
all of them. We start with a general formula:
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Conjecture 1 In the basis of monic square free monomials in Ay,..., Ay of
degree (9;2), the coefficient Chya,..9-3 0f A1hg -+ Ag—3 in the (projected) class

[.79],1, equals
1 52
29 -2 11 (26 + 1)| By °

Thus for g =3,...,7 it equals 1,8, 72,384, 768 respectively, while it is not an
integer for any larger value of g.

The conjecture holds for ¢ < 15: it is a consequence of a conjectural
formula in [Fa 3] for the number A3_, on M that is proved for g < 15. To
derive it from that formula, note simply that A3_, = 2X;_5A,_1), and that
A1Ag - - Ag_3 is the unique monomial in the basis that has nonzero pairing
with Ag_gAs—1A,.

Note that we could have used this formula instead of that for A2 to
compute the class of [Js]r.

For g = 6 we find the coefficient of A\ using the relation between A;As
and Ay in R*(Me):

02,4 = —3011213 = —1152

The knowledge of A1® (see §3) gives a nontrivial relation between the remain-
ing coefficients of A\; A5 and Ag:

7336704
691

Ce + 1601’5 =

A new ingredient will be required to solve for these coefficients. It is
provided by Mumford’s formula [Mu] for the Chern character of the Hodge
bundle on M,:

00 g-1
Bai 1 . i— i— i—
ch(E) =g+ ) (2—:), Racr+ 5 Y ine (K7 = KYF Ky 4+ K3?)
i=1 : h=0

(Note that Mumford’s convention for the Bernoulli numbers differs from the
one we use: By = §, By = 37 etc.) Here ig: My 19 — Ay C M, and
ih: —./\7;.,1 X —./\79_;.,1 — Ap C —./\—/I-g are the natural maps, and K; is the first
Chern class of the relative cotangent line bundle at the ith point.

The formula is ideally suited for a recursive computation of the intersection
numbers of the x; and the chy;_;(E). Namely, suppose given a monomial in
those classes of degree 3¢ — 3+ n on _ngn. If only k; occur, we can proceed
as explained in §2, using the Witten conjecture (Kontsevich’s theorem). In
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any case, as the Hodge bundle is a pullback from M, or M, ,, we can push
down the expression to Mg, respectively M. 1,1, and obtaln a sum of similar
expressions. In genus 1, we only need the well-known equalities

chi(E) =\ =k =t = (n)= %
So assume the genus is at least 2 and the monomial on M, contains at least
one chy;_, (E). Take the highest odd Chern character component that occurs,
and expand it using Mumford’s formula. In the first term, that chgx_; is
replaced by a x2x—) (up to a factor), so it is determined inductively. The other
terms involve expressions in the K; pushed forward via the maps i,. The point
is that these can be written as pushforwards from M, 2 or My X My_p1
of intersection numbers of the classes Kj, x; and Chern character components
of the Hodge bundles in genus g — 1, respectively genus h and g — h. This is
clear from the Arbarello-Cornalba formulas for i}, and the fact that i§(E)
is the extension of a trivial line bundle by the Hodge bundle in genus g — 1,
while for h positive i} (E) is the direct sum of the Hodge bundles in genera h
and g — h.

After expanding and omitting the terms that are 0 for dimension reasons,
we find an expression in intersection numbers of the classes just mentioned
on spaces of 1- or 2-pointed curves. These can be pushed down again to
intersection numbers of x; and chy;_,(E) on M, (with b < g) or ﬂl,l. By
induction on the genus, these numbers are known.

Having discussed the implementation of the divisor algorithm in some
detail, we content ourselves with saying that the implementation of the new
algorithm proceeds along similar lines and is considerably easier.

Because the \; can be expressed in the ch;(E), this means that all the
intersection numbers of the A; on M, can be computed recursively. By the
discussion above, it follows that for all g the projection in the tautological
ring of A, of the class of the locus of Jacobians can be computed, at least in
principle.

Currently, we have carried this out for g < 7. For g = 6, only one more
relation was required. Either one of the two relations following from

1697 150719
Aedadede = ossoeoosaonn 0 MMM = Treeangrate000
suffices to solve for Cs and C)5 (the first relation involves C1s only). The
result is

~ 474048 248064
= - - by
[Telr = 384X X023 — 1152020 + 601 A5 6oL ®
2469 646
— 97 3 _
=23 </\1/\2/\3 3o + 1382/\1/\5 691/\6> .
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It may be worthwhile to point out the relation 15Cs + 28C) 5 = 2933.
In genus 7 the result is:

[Tr)r = 768\ Aodshg — 69122025 )5 + 2209152/\1)\4/\5
7522176 8842752 968832 3276672
g M Ade = A + e dadr — “ Aoy,

As stated, this result is not very pretty; perhaps the class looks better in
a different basis. We would like to point out though that the class can be
computed with any choice of 7 independent monomials of degree 18 in the
Ai; once this is accomplished, the values of all other such monomials can be
determined by means of an easy calculation in the tautological ring of A7.
In particular, one can choose ‘easy’ monomials to compute the class, and get
the ‘hard’ ones for free. In this way, for instance, we computed A1® on M:

15 32017001
1 ™ 638512875

Finally, we have another general formula:

Conjecture 2 In the basis of monic square free monomials in Ay,...,Ag
of degree (952), the coefficient Cay3,. g-4,g-2 Of AoX3 -+ - Ag—a)g—2 in the (pro-
jected) class [J,) equals

29 — 2
(9_(_%_2____2 - 29-3) Ch2,...9-3

g—2 g—2

g 2 1 i 4
TR @i+ DBy 49411 @+ DBl

Thus for g = 5,6,7 it equals —48, —1152, —6912 respectively, while it is not
an integer for any larger value of g.

The conjecture again holds for g < 15; it is a consequence of Conjecture 1
and of the conjectural formula x,\g—3 = g(2g — 2)A,—2 in R972(M,) that
can be proved for ¢ < 15 using the results of [Fa 3] (note that the only
2 monomials in the basis that have nonzero pairing with AiAg_3A,_1), are
/\2/\3 s ’\g—4/\g—2 and Ay\g v Ag_g).
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Finally, some remarks about possible uses of the implemented algorithms.
The algorithm for computing intersection numbers involving Chern classes
of the Hodge bundle (described in §4) has already found applications in the
recent work of Graber and Pandharipande [GP] and Kontsevich and Manin
[KM]. For moduli spaces M,,, of small dimension and with not too many
divisors, one can use the divisor algorithm to determine the part of the coho-
mology ring generated by divisors. Recently, Getzler [Ge] did this for Ma;
he shows in fact that the divisors generate the cohomology ring. As in that
paper, such calculations may have applications to computing Gromov—Witten
invariants. Also, the algorithms involving the x; and the chy;_; allow one to
do calculations that include those classes; this covers, for example, the Chow
ring of M. It is even possible to include arbitrary boundary strata as module
generators, by pulling back all other classes to the corresponding product of
moduli spaces via a sequence of maps, each identifying a single pair of points.
Writing algorithms that can handle intersections of arbitrary boundary strata
will be considerably more difficult, however.

The various algorithms, and some tables of intersection numbers computed
with it, are available from the author by e-mail, although only the initial
version of the divisor algorithm is currently available in a user friendly format.

Note added in proof Conjecture 1 is now proved: Rahul Pandharipande
and I have proved the formula for A\3_; that implies it [FaP].
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On some tensor representations of the
Cremona group of the projective plane

Marat Gizatullin

Intellectus est universalium et non singularium.
Thomas Aquinas, from Summa contra gentiles (1264)

0 Introduction

The Cremona group Cr = Cr(2, K) is the group of birational automorphisms
Bir P; of the projective plane; it is (anti-)isomorphic to the automorphism
group Aut K (z,y) of the rational function field in two variables.

Let W be a 3-dimensional vector space (over an algebraically closed field K
of characteristic zero), and P, = P(W) its projectivization; P = Aut(P;) =
PGL(W) = PGL(3, K) is the collineation group of P,, that is, the group
of projective linear transformations. Thus P C Cr is a subgroup of the
Cremona group. For a linear representation r: GL(W) — GL(V), consider
the projectivization

p=P(r): P=PGL(W) - PGL(V) = Aut P(V).
An extension of p is a homomorphism
p: Cr— BirP(V)
which restricts to p on P, that is, ﬁlp = p: P — AutP(V); in other words,
there is a commutative diagram
P £ AutP(V)
1 1

Cr % BirP(V)
where the vertical arrows are the natural inclusions.

Question Given the projectivization p of a linear representation r, does
there exist an extension p of p to the whole Cremona group Cr?

111
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We shall see that the answer is yes if 7 = S™(rg) is the mth symmetric
power of the natural representation ro of GL(W) in the vector space W* of
linear forms, and m = 2,3, 4. In other words, the Cremona group of the plane
has an action on the spaces of plane conics, cubics or quartics, extending the
actions of the group of plane collineations.

A first approach to the above question was proposed by Igor Artamkin in
his thesis [1], [2], where he constructed an action of the Cremona group of the
plane on moduli spaces of stable vector bundles over the projective plane, and
deduced an action on the curves of jumping lines of the bundles. A drawback
of his approach is that the generic curve of degree > 3 is not realized as
the curve of jumping lines of a vector bundle. Moreover, Artamkin’s action
applies to curves with the additional structure of an even theta characteristic.

Our approach is more algebraic, although we believe that at a deeper level,
the reasons underlying Artamkin’s constructions and ours are the same. A
rough outline of our constructions is as follows.

The group Cr(2, K) is known to be generated by the collineations P and
the standard quadratic transformation. Given a variety and an action of P,
we can obtain the required extension by choosing an action of the standard
quadratic transformation with the lucky property that all the relations hold-
ing between the collineations and the standard quadratic transformation are
satisfied. Of course, to realize this approach, one needs to find a handy and
explicit way to verify the list of relations. Section 1 of this paper carries out
this program. In a sense, this section complements the main theorem of [11];
it was omitted from [11] in view of the length of the paper.

Section 2 contains a series of general definitions of some objects con-
nected with natural actions of the group Cr(n, K), or of a more general group
UCr(n, K) (Definition 2.7), which we call the universal Cremona group. Our
definitions are perhaps too general for applications, but we hope that this
philosophy will clarify our constructions. Section 2 ends with a series of
verifications of relations as just explained.

Section 3 describes actions of the Cremona group of the plane on the
spaces of curves of degrees 2, 3 and 4. We present the first two actions in
some detail, but only sketch the treatment for quartics; we hope to return to
this case on another occasion.

As an introduction to these ideas, we describe the effect of the standard
quadratic transformation so on a generic conic C, following Artamkin [1]. We
write C for the dual conic of C ; let Fy, P, P» be the three fundamental points
of so and Qg, @5, @1, @Y, @5, Q5 the six points of intersection of C with the
sides of the fundamental triangle, with @}, Q7 on the side L; opposite the
vertex P; for 0 < ¢ < 2. Write R} and R} for the intersection points of L;
and the proper transforms of the lines P,Q} and P;Q7 under sp; then all six
points R}, R} lie on a conic D, and the dual conic D is the image of C by the
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action of the standard quadratic transformation on the space of conics.
About the same time, a letter from Dolgachev [7] contained the formulas

ro_ o o o ro_ o
Ty = I1Z2, T) = T2To, Tp = ToX1, T3 = T3Zg, Ty = T421, Ty = LT

for a quadratic transformation of Ps, which he considered as an analog for
Ps of the standard quadratic transfog\mation s0. These formulas express the
relation between the coefficients of C and of D in Artamkin’s construction
(compare (3.0) below).
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1 Generators and defining relations for Cr

1.1 Generators of the Cremona group

We suppose that the ground field K is algebraically closed; let (zq : z; : 2)
be homogeneous coordinates on the projective plane P, over K. A rational
transformation of P, can be written

zg = fo(To, T1,22), 2y = f1(Zo,z1,22), o = fo(Zo, T1,Z2), (1.0)

where fy, f1, f2 are either homogeneous polynomials of the same degree, or
quotients of homogeneous polynomials having the same degrees of homogene-
ity. The image of a point (ag : a; : az) € P, under such a transformation
is

(fo(ao,a1,a2) : fi(ao,a1,a2) : f2(ao, a1,a2)).
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Let Cr = Cr(2, K') denote the set of all invertible rational transformations of
P, over K.
Let P = AutP, = PGL(3, K) be the set of all projective transformations

Ty = CooZo + Co1Z1 + Co2Ta,

13,1 = ¢1gZg + C11Z1 + C19T9, With Ci; € K and det(c,-,-) ié 0. (11)

Ty = C20Zo + C1Z1 + C22Ta,
We write Q for the set of all quadratic transformations, that is, invertible
rational transformations of the form (1.0), where fy, f1, fo are homogeneous
polynomials of degree 2 with no common linear factor. The set of quadratic

transformations splits into three double cosets under the group of collineations
(more precisely, with respect to the natural two-sided action of P x P on Q):

Q =PsgPUPsPUPsP, (1.2)

(here U means disjoint union), where sq is the so-called standard quadratic
transformation, given by

’ ! ’
S0 Ty = T1T, T, = TeT2, Ty = ToTy, (1.3)
or azh=zxzt, )=z, zp=ax3" (1.4)
Next, s, is the first degeneration of the standard quadratic transformation,

where two of the three fundamental points of sg come together, and is given
by

o a2 !l ’__
$1: Ty =T}, Ty =ToXi, Ty= Tolz, (1.5)
or  ThH=IyTy'T, T)=T1, Tp=To. (1.6)
Finally, s; is the second degeneration of 3o (or a further degeneration of s;),

where all the fundamental points of s, come together to one point, and is
given in formulas by

Sy: Tph = Ta, T) =TTy, Th=Ii— ToTz, (1.7)

or  ITy==%o, IT)=21, Th = T1%5 %1 — Ta. (1.8)

Note that (1.4), (1.6), (1.8) are destined for future noncommutative general-
izations (see (2.9)).

Remark 1.1 The third double coset PsyP of (1.2) contains all nonunit ele-
ments of the following one-parameter subgroup o; (with parameter t € K)

Oy Th=T3, ) =TeT1, Th=ToTy+tzs
or  TH=7zTg, Ti=T1, Th=xo+tT125 7).



Marat Gizatullin 115

We can write these elements as composites o; = py 0 83 0 p; in terms of sy and
the collineations p;, ps € P given by

. /o o o
DTy =1%o, Iy =—tr1, o= —1Iy,

and pp: Th =1z, T} =—t"'zy, zp=1tlm.
Theorem 1.1 (Max Noether) The Cremona group Cr(2, K) is generated
by PUQ.

Note that one can, as usual, replace P U Q by the more economic set of
generators P U {so}, writing the transformations s;, sy in terms of sp and
collineations. More precisely,

81 = g0 © 80 © go © 50 © go, (1.9)
where go: To =1 — Zo, I} =1I1, ZTo= Tg; (1.10)
and
Sy = 8,0 g1 081, (1.11)
where gi: 5 =0, Zi\=1I1, Tyh=To— 2Ty (1.12)

Remark 1.2 The identities (1.9) and (1.11) have interesting analogs in the
Cremona group Cr(3, K) of 3-space. The involution

So: Ty =15, Ty =27, zh=1x3', 2} =az3" (1.4a)
is the standard cubic transformation of P;. Take the projective transformation
Go:Th=T1~To, ZTy=71, To=1Ty Ty=713 (1.10a)
as an analog of (1.10). Then the composite
S1 = Gp08p0GpoSyo Gy, (1.9a)
is the quadratic space transformation
S1:zy =12, I) =1zoT1, Th=ToTy, T4= ToTs. (1.5a)
Moreover, if we take the collineation
Gi:zy=1%0, T\ =1T), Th=1xy, IThy=To— T3 (1.12a)
as an analog of g; in (1.12), then the composite

Sg =SIOG1081, (111&)
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is the quadratic transformation

o e 2 ro_ r_ r__ 2
Syt xy =T, Ty = ToT1, Ty = ToZy, Ty = T} — ToT3 (1.7a)

or (in affine coordinates = = z; /o, y = Zo/Zo, 2 = T3/To)

So:x' =z, Y=y 2=zl-2

The composites (1.9a) and (1.11a) contradict some propositions of Dolgachev
and Ortland [9], p. 93 (which are comparatively lucid paraphrases of some
claims of S. Kantor [13], A. Coble [6], H. Hudson [12], and P. Du Val [10]).

More precisely, write Cryeg(3, K) for the subgroup of Cr(3, K) generated
by Sp and the subgroup of collineations; the elements of Cryeg(3, K) are the
“regular” transformations in the sense of Coble. Let Punct(3, K) be the
set of Cremona transformations of P; without fundamental curves of the
first kind, that is, transformations without curves whose proper image in the
projective space is a surface, see [12], [9]. The authors listed above start
by asserting (sometimes with some provisos) that “one can prove that all
punctual transformations form a subgroup of the Cremona group”. This
is false, because each factor of the right-hand side of (1.9a) is a punctual
transformation, whereas the composite S; has o = 0, 7 = 0 as a fundamental
line of the first kind (maybe, more precisely, a curve infinitely near to this
line is a fundamental curve of the first kind); at any rate, no blowups of
P; at a finite sets of points can reduce the transformations S; and Sy to
pseudoisomorphisms in the sense of Dolgachev and Ortland [9]. The identity
(1.9a) also refutes the conjectured equality Punct(n, K) = Crye(n, K), or
even the inclusion D. Note that the fact that the composites (1.9a) and
(1.11a) have even degree also contradicts Coble’s formulas, according to which
the degree of a “regular” transformation of P, is of the form (d — 1)m + 1.

1.2 Defining relations between the generators P U Q

We now reproduce and comment on the main theorem of {11], Theorem 10.7,
with some changes of formulation. If a,b,c, ... are finitely many elements of
the set P U Q of generators of Cr(2, K) (see Theorem 1.1}, we write abc- - -
to mean a word over the alphabet P U Q, whereas the expression aoboco---
means the ordinary composite in Cr, that is, a birational transformation of
P,. The theorem on relations is as follows.

Theorem 1.2 Every relation between the generators P U Q that holds in
Cr(2, K) is a consequence of the 3-term relations of the form

19293 =1, (1.13)
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where {¢1, 92,93} is an ordered triple of elements of P U Q for which the
corresponding composite g; © g2 0 g3 of rational maps equals the identity trans-
formation of Ps.

We pull out some special relations from the above large family (1.13), and
each relation of the family will be a consequence of the marked special ones.

1.2.1 The first family of special relations: the multiplication law
of the projective group

They are relations of the form

P1p2p3 = 1, (1.14)

where p;, ps,p3 € P are collineations, and pl_1 = ps 0 P3.

1.2.2 Generalities on edge relations

The edge relations arise from the two-sided action of the collineations on the
set of quadratic transformations, and are of the form

PGPz = Q2 (1.15)

where py,ps € P, 1,92 € Q, and p;0q,0p2 = g2. More precisely, each relation
(1.15) gives three 3-term relations for use in Theorem 1.2:

namog) =1, plaom)e'=1,

_ 1.15a
and (p; © q1)p2¢; 1=, ( )

We picture a relation (1.15) as follows:

i
n O%O p2

a;"

This describes a relation (1.15) as a loop of length 2 going out along an edge
and back along the same edge; our term “edge relation” arises from this. The
family of all relations (1.15) is still too large and cumbersome, but in 1.2.3,
1.2.4, 1.2.5 below, we distinguish three special edge relations which, together
with (1.14), imply all the edge relations. Note that in any relation (1.15), the
quadratic transformations ¢; and ¢z both belong to the same double coset of
(1.2); this leads us to separate and classify the edge relations according to the
subscript n of the representative s, of the double coset Ps, P for n € {0,1,2}.
We call the corresponding relation an (n)-edge relation.
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1.2.3 The (0)-edge relations

Our second family of special relations are edge relations arising from a loop
of length 2 obtained by going out and back along an edge corresponding to
the standard quadratic transformation sg. The loop in question is a marked

So
9 O0—0@™

So
Figure 1: (0)-edge relation

path in the graph I'; (see Figure 1 and compare [11}, 4.1, 4.4, 4.5 and 10.5.3).
Let Gy be the collineation group consisting of the transformations

9: Ty =1toT;, T =1tz To=loTx, (1.16)

where {3, 7, k} is a permutation of {0,1,2} and ¢, t;,ts € K*. In other words,
Go = Aut V;, where Vjy — P; is the blowup of P, in the three points

{(1:0:0),(0:1:0),(0:0:1)}.
Let g — 7 be the involutive automorphism of Gy taking (1.16) to
gz =1ty T, ) =t7'z; TH=13'xs. (1.17)
Our second family consists of the relations of the form
S0gso =7 forge Gy C P. (1.18)

More precisely, each relation (1.18) provides three 3-term relations for use in
Theorem 1.2:

s09(s00 (@) =1, s0(goso)@ =1,

and (spog)so(3) ' =1; (1.18a)

compare (1.15) and (1.15a). Note that one of the simplest consequences of
(1.18) is s2 =1 (take g =1 in (1.18)).

1.2.4 The (1)-edge relations

Our third family of special relations are edge relations arising from a loop
of length 2 obtained by going out and back along an edge corresponding to
the first degeneration s, of the standard quadratic transformation (see (1.5),
(1.6)). See Figure 2, where we omit arrows that can be deduced by analogy
with Figure 1.
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S1
g O—sl——O @
Figure 2: (1)-edge relation

Let G, be the collineation group consisting of the transformations
g: To = toTo, Ty =117y, Th = toTo + TT, (1.19)

where tg,%1,t € K* and r € K. The group G, is Aut V;, where V; — P is
the minimal resolution of the indeterminacy of the rational map s; of (1.5).
Let g — G be the involutive automorphism of G sending (1.19) to

7 xp=tat5lry, ) =tizy, b=tz +ro). (1.20)
Our third family consists of the relations of the form

51951 =7, (1.21)
where g € G;. More precisely, as in (1.15a) and (1.18a), (1.21) provides three
3-term relations. As before, s? = 1 is a consequence of (1.18).

1.2.5 The (2)-edge relations

Our fourth family of special relations are edge relations arising from a loop of
length 2 obtained by going out and back along an edge corresponding to the
second degeneration sp of the standard quadratic transformation (see (1.7),
(1.8)). See Figure 3, where we omit arrows that can be deduced by analogy
with Figure 1, and, here and below, we label the edges by n in place of s,.

2 —\—
9 O——0@"
Figure 3: (2)-edge relation
Let G be the collineation group consisting of the transformations

g: Th=7To, T)=1tx), &h=txs+7T)+ 5To, (1.22)

wheret € K* and r,s € K. The group G, is isomorphic to the group Aut V3 of
automorphisms of the surface V;, the minimal resolution of the indeterminacy
of the rational map sg. Let g — 7 be the involutive automorphism of G,
sending (1.22) to

T Ty =1z, T)=tx), ThH=1tTy—rz; — STo. (1.23)
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Our fourth family consists of the relations of the form
82982 = G, (1.24)

where g € G,. As in (1.15)—(1.15a), (1.18)- (1.18a), (1.24) provides three
3-term relations. As before, s2 = 1 is a consequence of (1.24).

1.2.6 Generalities on triangular relations

The relations (1.18), (1.21) and (1.24) were pictured as walks around the
edge in Figures 1, 2 and 3. Our remaining special relations are pictured as
marked loops around the triangle of Figure 4 (clockwise, as for the above edge
relations). Here the vertices are marked by collineations py, pa,ps € P, and

qQ
N QO p2
a3 (/ ')
Ps

Figure 4: Triangular relations

the edges by quadratic transformations ¢, ¢2,¢3 € Q. The marked triangular
loop of Figure 4 gives a relation of the form

P1q1P2GaP3gs = 1, (1.25)

whenever the composite of rational maps p; 0 ¢, op; 0 gz 0p3 04¢;3 is the identity.
Although as it stands (1.25) has six terms, it actually reduces to a three-term
relation (1.13) if we set g; = p; o ¢;. We call (1.25) a triangular relation.

All the triangular relations follow from the special triangular relations
written down in 1.2.7-1.2.12 below, together with the special relations al-
ready listed above. Each special triangular relation is of the form (1.25) with
@1, ¢2, g3 taken from the quadratic involutions sg, s, or s, of (1.3)—(1.8). If
(1.25) holds with

q1 = Sa(1); 42 = Sa(2) and g3 = Sn(3), (126)
we say that Figure 4 is an (n(1),n(2),n(3))-triangle and that the relation

(1.25) is an (n(1),n(2), n(3))-triangular relation. As in 1.2.5, we label edges
with the number n instead of s,.
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1.2.7 The special (0,0,0)-triangular relation
This is the following relation:

0
ho O ho
0 0 hosohosohoso = 1, (1.27)
ho

where sg is the standard quadratic transformation, and hy the involutive
collineation given by

/ / /
ho: To =9, Ty =ZTo—T1, Th=To— T2 (1.28)

1.2.8 The special (1,0,0)-triangular relation

This is the identity (1.9) written down as the relation
1

90 9o
0 0 905190509080 = 1, (1.29)

o

where go is the projective involution (1.10).

1.2.9 The special (2,1,1)-triangular relation
This is the identity (1.11) written down as the relation:

2
e Oe
1 (/ 1 s2819161 = 1, (1.30)
5N

where ¢, is the projective involution (1.12) and e € P the identity.

1.2.10 The special (0,1,1)-triangular relation

This is the following relation:
0

e (T f
1 1 sofsifsr=1, (1.31)

f

where f is the collineation

/ / /
fi zo=2%2, TI=21, T9= o
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Remark 1.3 It is interesting to note in passing that the relation (1.31) yields
as a corollary:

the set P U {s1} generates the group Cr(2, K)

(if K is an algebraically closed field, of course).

In contrast, the set PU{ss} does not generate Cr(2, K). Indeed, P U {s5}
is contained in the subgroup Cr'®(2, K) c Cr(2, K) consisting of Cremona
transformations (fo, f1, f2) (in the notation of (1.0)) having Jacobian de-
terminant a perfect cube; this is a proper subgroup because, for example,
so ¢ Cr¥(2, K).

1.2.11 The special (1,1,1)-triangular relation

1
h Ohm
1 1 hlslhlslhlsl =1, (132)
h

where h, is the projective transformation

This is the relation:

. /o ! /o
h:zg=21—29, T)=121, Th=2a

1.2.12 The special (2,2,2)-triangular relations

Our final family of relations depends on a parameter ¢t € K, with ¢ # 0, 1.
Write p; for the projective transformation:

P Ty =To, Iy =—tr), 4=t
and s for the second degeneration of the standard quadratic transformation
as in (1.7). Then our final special triangular relations are:

1 1
DerSaPySapysy = 1, wheret' =1 — n and ¢’ = T (1.33)
Remark 1.4 There is a more natural and convenient form of (1.33), namely,
the multiplication law for the one-parameter group o; of Remark 1.1, that is,

the relation
Ot0s = Ots,

where s,t € K, with s, # 0 and s+t # 0. Note that the last equality is
of the form presented by (1.25) with p1 = p2 = p3 = 1, @1 = Ot4s, @2 = 0_s,
g3 = 0—¢.
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1.2.13 Theorem 1.2 revisited
The more detailed statement of the theorem on relations is as follows.

Theorem 1.3 Every relation holding between the generators P U {so, s1, 52}
of the Cremona group Cr(2, K) is a consequence of the special relations (1.14),
(1.18), (1.21), (1.24), (1.27), (1.29), (1.30), (1.31), (1.32), (1.83).

For the proof, see {11], 10.6-10.7.

2 The universal Cremona group

2.1 Admissible triples, their spaces and maps
Definition 2.1 An admissible triple is a triple (R, A, M), where:
1. R is a commutative ring with a unit.

2. A is an R-algebra, not necessarily commutative or associative, but at
least alternative; this means that R is contained in the centre of A and
the subring of A generated by any two elements is associative.

3. M C Ais an R-submodule such that
mMm C M for every m € M.
4. If m € M has a total inverse m~! in A, then m™! € M; here a total

inverse of a (Mal'tsev [15], Chap. II, 4.3) means an element a~! such
that

a Y az) = (za)a™' =z for every z € A.
Let G(M) denote the set of units or totally invertible elements of M.

Definition 2.2 Let R be a commutative ring having an involutive auto-
morphism r ~ T; by default, ~ is the identity map if no involution is specified.

An R-algebra with involution is an R-algebra A with a semilinear invo-
lutive anti-automorphism a — a*; that is, * is an involution satisfying the
identities

(ra+ sb)* =7a*+35b* and (ab)* =b'a".
We write
At ={a€ Ala*=a}, A" ={a€ Ala*=—a}

for the set of x-invariant (respectively *-anti-invariant) elements of A.
For an R-algebra A with involution, a triple (R, A, M) is admissible if it
is admissible in the sense of Definition 2.1, and M* = M.
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Remark 2.1 If A is an R-algebra with involution, then both (R, A, A*) and
(R, A, A™) are admissible triples in the sense of Definition 2.2.

Let R be a commutative ring and n > 0 an integer. We construct a functor
S, from the category of admissible triples to the category of sets.

Definition 2.3 If (R, A, M) is an admissible triple, we say that an (n + 1)-
tuple m = (my,...,m,) € M™*1is invertible if \gmo+- - - +A,my, is invertible
in A for some Ay, ..., A, € R; in other words, if the components of m generate
an R-submodule of M having nonempty intersection with G(M).

On invertible (n+1)-tuples, we introduce the equivalence relation ~ which
is generated by the elementary relation

Jg € G(M) such that (my,...,m,) = (gmog,..., gmn.g).

(This is the point at which we need A to be alternative.) In other words,
two (n + 1)-tuples m and m'’ are equivalent if and only if there are elements
g1, ---, 9k € G(M) such that

m; = g1(- - - (Ge-1{ge(mi)gr)gk—1) - - - )91 for each 0 <7 < m.

We write (mp : - - - : m,,) (or sometimes simply m) for the equivalence class of
m = (my,...,m,), and define S,(R, A, M) as the set of equivalence classes
of invertible (n + 1)-tuples under ~. We define the functors S} and S on
the category of R-algebras with involution by

SH(A) =Sa(R, A, A*) and S7(4) =S.(R,A4 A7)

Remark 2.2 The main example in what follows is the functor S;', especially
its value S} (Mat,(K)) on the K-algebra Mat,(K) of p x p matrices with
entries in an algebraically closed field K, where the involution * is matrix
transposition.

In general, S} (A) is the set of (n + 1)-tuples (ao,...,a,) with a; € A*
and with an invertible R-linear combination Y \a; € G(A), modulo the
equivalence relation:

(@oy---,an) ~ (ag,...,a,) <> bagh= ay,...,bab=a,

where b € G(A) is a product of elements of G(AT). S} (A) is called the
spherical n-space or the n-sphere over A. This is partly justified by the
fact that if A is an algebra with involution * over R or over C, such that
A* =R, then S}(A) is in natural one-to-one correspondence with the unit
sphere S, C R™*1.

If K is an algebraically closed field, then the set G(Mat,(K)*) of invertible
symmetric matrices generates the whole group GL(p, K), hence the spherical
space S}(Mat,(K)) coincides with the “noncommutative projective space” of
Tyurin and Tyurin [17).
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Under certain conditions, we define the polynomial A(K, A, M)(m) and
some other polynomials I'(A), usually considered up to proportionality. These
polynomials depend on dual variables (ug, . .., us) and (zq, . . ., Z, ), and define
hypersurfaces in P, and the dual P,.

Let A be a finite dimensional associative algebra over the ground field K,
and Na/kx: A — K its norm (see Bourbaki, Algebre, [4], Livre II, Chap. VII;
for our purposes, we can use the so-called principal norm in the sense of the
exercise in [4], loc. cit., or the reduced norm if A is a semisimple algebra).
Write p for the degree of the characteristic polynomial of A ([4], loc. cit.),
and let Klug,...,u,)s be the vector space of homogeneous polynomials of
degree d. We assume that the restriction of the norm N4/ to the subspace
M C A is the exact gth power of a polynomial: N /K|y = (N4, where

NJ i € K[M].
Definition 2.4 For a fixed m = (mg : --- : m,) € S,(M), we set
A(K, A, M)(m)(ug, ..., u,) = Ng/K(uom0+---+unmn);

thus A(K, A, M) € Kl[ug, ..., u,) is a homogeneous polynomial of degree p/q.

IfT: Klug, ..., Un]p/qg = K[Zo,...,Z,] is a contravariant and has nonzero
value at A(K, A, M)(m), then TI'(A(K, A, M)(m)) is an equivariant like de-
fined polynomial in the sense of Remark 2.5 below.

Remark 2.3 If A = Mat,(K) is a matrix algebra over a field K, with invo-
lution matrix transposition, then A(K, A, A*)(a) = det(a).

Remark 2.4 If dimg A < oo, the hypersurface A(M)(m)(ug,...,u,) =0
coincides with the so-called spectrum set of m, that is, with the set of all
points (yo : --- : y) € Po(K) for which the linear combination yomo + -- - +
YnMy is a noninvertible element of M. Indeed, by [4], Chap. VII, Proposi-
tion 12, an element = € A is invertible in A if and only if its norm Ng/x(z)
is invertible in K.

Remark 2.5 The group PGL(n + 1, K) of projective transformations

n
9: T, = Zg,'ja:j fori=0,...,n
=0
acts (on the left) on P, and (on the right) on P, by the transpose map

n
gr:ul = E gjiu; fori=0,...,n.
j=0



126 Tensor representations of Cr(2, K)

This group acts (on the right) on P(K[uo,...,unld): if F(u) € K[u]a,
then g(F)(u) = F(g7(u)). It also acts (on the left) on S, (K, M, A):

n
g(m) = (mgy:---:m,), where m)= Zg,-jmj.
j=0

Note that

A(K, A, M)(g(m)) = g(A(K, A, M)(m)),
D(A(K, A, M)(g(m))) = g (T(A(K, A, M)(m))).

The last equality means that the map
T(A(K, A, M)): So(K, A, M) — P(K[zo, ..., Ta])

is equivariant with respect to PGL(n + 1, K'), because the correspondence
g+ (71T is an automorphism of this group.

In the following two definitions, we now construct an analog of homo-
geneous rational functions, specially adapted to the noncommutative case;
these are certain expressions in variables which are either letters, or ele-
ments of a K-algebra A. The pattern of our construction follows that of
the well-formed formulas in the calculus of mathematical logic (for example,
see Church’s book [5]); our functions are always derived from well-formed
rational expressions. Moreover, for a well-formed homogeneous rational ex-
pression f, we define at the same time its domain of definition dom f c M™+!
(here M is the third component of an admissible triple (K, A, M)), its value
f(m) € M at point m = (my,...,m,) € dom f, and the notion of the do-
main of invertibility dom f~! C M™*! of such an expression. The degrees of
homogeneity of our functions f(zo,...,z,) are the numbers +1 and —1; in
what follows, ¢ stands for an element ¢ € {+1,—1}. The ground field K is
fixed, and its elements are called constants.

Definition 2.5 (i) Foreach: € {0,...,n}, we define the coordinate func-
tion f(zo,...,Zn) = z; to be an expression of degree 1. Its domain of
definition dom z; is the whole of M™*!| its value at m = (mo,...,my,)
is equal to m;, its domain of invertibility is

{m=(mq,...,m;,...,m,)|m; € G(M)}.

(ii) If f is an expression of degree ¢ = +1 and )\ a nonzero constant, Af
is an expression of degree ¢ by definition. Its domain of definition (or
invertibility) coincides with that of f, and its value at m is equal to

Af(m).
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(ili) If f and g are expressions of the same degree ¢ = %1, the sum f +g¢
is an expression of degree €. Its domain of definition is the intersection
of the corresponding domains for f and g, its value (f + g)(m) equals
f(m) + g(m) and its domain of invertibility is

{m|m € dom(f + g) and (f + g)(m) € G(M)}.

(iv) If f is an expression of degree ¢, then f~! = 1/f is an expression of
degree —e by definition. The domain of definition and the domain of in-
vertibility of the expression f~! coincide with the domain of invertibility
of f. The value f~!(m) is equal to (f(m))~1.

(v) If f,g are expressions of degree ¢ then fg~!f and f~lgf~!, are ex-
pressions of degree € and —e respectively by definition. The domain
of definition or invertibility of each product is the intersection of the
corresponding domains for all the three factors, and

(fg7'f)(m) = f(m)g™"(m)f(m),
(f~'gf™)(m) = f~(m)g(m)f ™ (m).

The smallest set of expressions satisfying the above conditions (i)—(v)
is the set of well-formed homogeneous K-rational expressions of variables
(xo,...,%,). Every K-rational expression f has a definite degree deg f €
{+1,-1}.

Remark 2.6 If f(x) = f(zo,...,Zx) is a K-rational expression of degree §
and go(y),- - -, gn(y) are n expressions in variables y = (yo, - ..,Ym) of degree
g, then the composite f(go,.. -, gn) is obviously a rational expression in y of
degree 4.

If f is a well-formed expression of degree ¢, and m € M™*! belongs to
dom f, then bmb € dom f for any b € G(M), and f(bmb) = b f(m)b°.

Definition 2.6 If f and g are two well-formed homogeneous expressions in
(n + 1) variables, each with nonempty domain of definition in some M™*!,
we say that f and g are equivalent (and write f = g) if for every admissible
triple (K, A, M) and for every element m € dom f Ndomg C M"*!, the
equality f(m) = g(m) holds. A homogeneous K-rational function is defined
as an equivalence class of well-formed homogeneous K-rational expressions
f(xo,...,T,) with a nonempty domain of definition in some M™*!; the set of
these is denoted by Rat(n+1, K). Note that nonzero homogeneous K-rational
functions fall into two sets according to their degree.
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Remark 2.7 We have the following identities in two variables x, y:

(z™H™! = =z, (z7lyz™H! = zylz,
(z7l—y™H?! = z@z-zy2) 2
ylr = z-(' - (z—-9y) )7, (2.1)
ziz—zy'2)'z = z-z(z-9y) & (2.2)
(z7'=y™! = z-2(z-y) . (2.3)

See Mal'tsev [16], Chap. 2, 4.3 for (2.1); (2.3) follows from (2.1) on substitut-
ing y — = — y, and (2.2) is similar.

Definition 2.7 A well-formed K-rational map from projective n-space to
projective p-space is given by a (p + 1)-tuple of K-rational functions of the
same degree in variables (zo, ..., Z,):

F(x) = (fo(x) : -+ ¢ fp(x)); (2.4)

o~

or f:ag=fo(To,..,Tn),...,Zp = fp(Zo,...,Zn).

Two (p + 1)-tuples give the same map if they are equivalent under the equi-
valence relation generated by the following primitive relation: another (p+1)-
tuple (go(x) : «-- : gp(x)) is equivalent to (2.4) if there exists a K-rational
function h(x) with deg(h) = —deg(g:;) and with nonempty domain of in-
vertibility, such that we have equivalences (in the sense of Definition 2.6)
fi=hgh foreach 0 < i < p.

The identiﬁy map is the transformation given by =g = z, ..., ) = Tn.

The map f(x) (2.4) induces a family of partially defined maps S,(M) —
S, (M), one for every admissible triple (K, A, M); it follows from Remark 2.6
that these maps are well defined. The domain of definition of a (p + 1)-tuple
(2.4) consisting of rational expressions f; is

{m|m € dom f;, for 0 < i < p},

o~

and on it f(m) defines a point of S,(M) in the sense of Definition 2.3.

A well-formed K-birational transformation of projective n-space is a well-
formed rational map F of this space to itself such that there is an inverse
map G with the property that both composites F o G and G o F are equal
(more precisely, equivalent) to the identity map. We call such a map F a uni-
versal Cremona transformation; the group of all these is called the universal
Cremona group, and is denoted UCr(n, K).

A partially defined map f: Sp(M) — S,(M) with a nonempty domain of
definition, where M is the third component of an admissible triple (K, A, M),
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is a Cremona transformation if there is an element F € UCr(n, K) inducing f.
We identify two such maps if they coincide on some nonempty intersection of
the domains of definition of some well-formed representatives for both maps.
The group of these maps will be denoted by Cr(n, M).

Thus the universal Cremona group UCr(n, K) is endowed with a family
of epimorphisms

(n, M): UCr(n, K) — Cr(n, M). (2.5)

Our immediate goal is to construct (for the case of an algebraically closed
ground field K) a section (2, K) of the epimorphism II(2, K).

Remark 2.8 If A is a finite dimensional associative algebra with involution
over an algebraically closed field K and (K, A, M) an admissible triple such
that the set G(M) generates a semisimple algebraic subgroup G of G(A),
then, at least birationally, one may view S,(K, A, M) as a geometric quo-
tient of M™*! with respect to the two-sided diagonal action of G. Thus a
generic element of S,,(K, A, M) may be viewed as a generic point of some al-
gebraic variety over K; and moreover, we may view the transformations of the
Sn(K, A, M) induced by elements UCr(n, K) as birational transformations of
the variety.

2.2 An action of the Cremona group of the plane on
the 2-spaces Sy(K, A, M)

Let A be a K-algebra over an algebraically closed field K and (K, A, M)
an admissible triple. The collineation group P = PGL(3, K) acts on the
set So(K, A, M). Our goal is to extend the action to the whole Cremona
group (see the Introduction), making it act on S(K, A, M) by birational
transformations. The group Cr(2, M) acts on So(K, A, M) and, according
to equation (2.5) (see (2.6) below), we have the epimorphism II(2, M) of
the universal Cremona group UCr(2, K) onto Cr(2, M), hence this universal
group acts on Sz(M). A special case of (2.5) is

I(2,K): UCr(2,K) — Cr(2, K). (2.6)
If the homomorphism (2.6) admits a section
¥(2,K): Cr(2,K) — UCr(2,K), (2.7

(of course, by definition, so that the composite I1(2, K)oX(2, K) is the identity
of Cr(2, K)), then this section provides the required extension.
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In the rest of this section, our plan is as follows. First, we already have a
natural inclusion

Yp: P — UCr(2, K). (2.8)

of the collineation group P into the universal Cremona group.

Next, we find three universal birational maps Sy, S1, S2 € UCr(2, K) that
map to the quadratic transformations so, s1, 2 under II(2, K). Finally, we
check that all the relations mentioned in Theorem 1.3 hold in UCr(2, K), or
more precisely, the relations obtained from those by substituting Sa, S, 52
respectively for sq, 51, 9.

Let x = (zo : 7; : o). We define the effect of the action on x of the
quadratic maps Sy, 51, S2 (compare (1.4), (1.6), (1.8)) in the following natural
way:

So(x) = (zg':ay!:a3h),
Si(x) = (;izglm iz x0),
Sa(x) = (zo:2: 125 2 — 3).
Note that, to be correct, we should perhaps write “=” instead of “=" in

all the verifications below, but we neglect to do it.

2.2.1 Verifying the relations (1.14)

These relations hold because the natural inclusion (2.8) of the collineation
group of the plane into the universal Cremona group is a homomorphism.
2.2.2 Verifying the relations (1.18)

If G is the collineation G(x) = (tox; : t1z; : tazx) (more precisely, the image
of the collineation (1.16) under the inclusion (2.8)), then

GSo(x) = (toz; ' : t1z;! s toxih),  SoGSo(x) = (tg'z: : t7'x; : 7 @),
that is, SoGSo = G, where G = Zp(g). Thus (1.18) is satisfied here.

2.2.3 Verifying the relations (1.21)

Set G = £p(g), where g is the collineation (1.19) and G = Zp(g)), where §
is (1.20); then
GSl(x) = (tozlitalitl hxy taze + Tito),
SIGSI.(x) (tlit] (to:tlital:tl)_ltl:tl :hixy c taze + T:to)
= (t%talito ttolizy : tozo + Tito) = @’_(x)

Thus (1.21) is satisfied here.
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2.2.4 Verifying the relations (1.24)

Similarly, set G = Zp(g), where g is the collineation (1.22), and G = Zp(g),
where g is (1.23); then
GSy(x) = (zo:t1m1: t2(zlzalzl — x3) + rZ1 + ST0),
S$2GSy(x) = (mo:try: —t*(z1xy iz — 29) — T21 — ST + txy 25 tTy)
= (zq:tx; : t?zy — ) — 5T0) = G(X).

Thus (1.24) is satisfied here.

2.2.5 Verifying the relation (1.27)
Let Hy = Zp(hq), where hg is the collineation (1.28). We have to check that
SoHoSo(x) = HoSoHo(x).

First, on the left-hand side,
So(x) = (zg':z7' 23,
HySo(x) = (zg':z5t — a7t izt — 231,
SoHoSo(x) = (zo: (zg' —z7h)™ i (25! — z3h) ™).
Similarly, on the right-hand side,
SoHo(x) = (zal :(zo — z)7t: (zo — )Y,
HySoHy(x) (zgt izt — (w0 — 1) 1 25t — (z0 — z) ™)

= (xo: o — Zo(To — £1) " x0 : To — To(To — T2) ' T0).

Thus the required relation follows from the identity (2.3).

2.2.6 Verifying the relation (1.29)
Let Go = Lp(go), where gq is the collineation (1.10). We have to check that
Sl (X) = GoSoGoSoGo(X).

We build the following pyramid of equivalences:

Go(x) = (z1—2o:121:22),

SoGo(x) = ((z1—z0)™ ' : 2yt 1 23Y),
GoSoGo(X) (.’L‘l—l - (fL‘l - l‘o)—l . .’L‘l—l . .’L‘;l),
SoGoSoGo(X) = ((.’L‘l—l - (fL‘l fand l‘o)_l)_l 3 fl,‘z),
GQSQGQSQGQ(X) = (fL‘l - (.’L‘l—l b (fL‘l - l‘o)—l)-‘l o 4 fL‘z).

By virtue of the identity (2.1), the first component of the last triple coincides
with z,zy 1z,. Hence the required relation is established.
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2.2.7 Verifying the relation (1.30)

Let G1 = Xp(g1), where g, is the collineation (1.12). We have to check that
Sa(x) = 51G15:1(x).

This is easy; indeed,

S1(x) = (mzglzy:zy: T0),

G151 (x)

SlGlsl(X) = (Il(l‘lil,‘alil,‘l)—ll‘l A 1‘11‘611‘1 - 1‘2)
= (To:T): 31T T1 — Tg) = Sa(X).

I
(17511 : 71 ¢ T1TG T1 — Ta),

2.2.8 Verifying the relation (1.31)

Let F' = Xp(f), where f is the collineation of (1.31). We have to check that
So(x) = FS1FS1(x).

As before, this is easy; indeed,

Si(x) = (zlzalxl 1Tt To),
FSi(x) = (z9:71: 7175 m1),
SIFS(x) = (zixy'm iz ;xgtim) = (x50 27t 2,

FSiFS\(x) = (xp':z':z5Y).

2.2.9 Verifying the relation (1.32)

Let H; = Tp(h;), where hy is the collineation participating in (1.32). We
have to check that

SIHISI(x) = HISIHl(x).
First, on the left-hand side,

Si1(x) = (zizglmi: T x9),
H151(x) = (21— 713571 1 71 ¢ T2),
S1H 81(x) = (z1(x1 — 3175 1) " 21 2 71 ¢ T9)-

Next, on the right-hand side,

Hi(x) = (z1—-x0:71:12),
SlHl(X) = (1‘1(.’1:1 — 1‘0)_1.’1,‘1 i A .’L‘2),
H\$1H\(x) = (x1—z1(x1 — o) 21 : 21 : T2).

Thus the required relation now follows from the identity (2.2).
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2.2.10 Verifying the relation (1.33)

Let p; be the colhneatlon of 1.2.12, and P; = Xp(p,) its image; as in (1.33),
writet' =1—1 + and t" = _t Then

Sa(x) = (xo:71:m175 71 — T2),
P,S5(x) (zo : —txy : t{z125 11 — T2)),
SyP.Sy(x) = (mo: —txy: (8 —t) (2155 T1) + tz2),
PySyPSy(x) = (zo: (t— )z : (t— 1) (zi25 ) + (¢ — 1)x2),
SyPy S PiS3(x) = (zo: (t— Dzy: ~(t = D)x2),
Py Sy Py Sy P, S)(x) (zo : z1: x9).

All our verifications are now completed. Q.E.D.

3 Conics, cubics and quartics

3.1 Left and right actions of the Cremona group of the
plane on the space of plane conics

Let A = Maty(K) be the 2 X 2 matrix algebra over an algebraically closed
field K of characteristic # 2, with involution given by transposition * = T;
thus A* is the set of symmetric matrices. We write D(P, Q) for the mixed
determinant of two 2 x 2-matrices P, Q; in other words, if

pP= (Pu P12> . Q= (1111 ‘112) ,
Pa p2 g1 q22

(P9 =3 ( ).

The spherical 2-space S3(A) consists of triples (mq, m;,my) of symmetric
matrices m; € A¥, such that some K-linear combination Agmg+ Aymy + Aamy
is invertible, modulo the equivalence relation: (mg, my, ma) ~ (ng, ny,na) if
n; = Cm;CT for some invertible matrix C € A. Let m = (mg : m; : ma)
denote the equivalence class of (mg, m1, m2). The collineation group P acts
(on the left) on SF(A). The P-anti-equivariant map

A: SF(Maty(K)) — Ps(K) = P(Kug, uy, us)2)

(compare Definition 2.4) sends each triple m = (mq : m; : m2) to the ternary
quadratic form

then

Pu Q12
P21 g22

qu P12
g1 P22

A(m)(ug, ug, ug) = det(ugmg + uymy + ugmy) = Z aj(m)u;u;,
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considered up to proportionality; here a;;(m) = D(m;,m;). The Cremona
group of the plane acts (on the left) on S (A). It is possible to define a
natural (right) action of this group on the space of conics in such a way that
A is a Cr(2, K)-anti-equivariant map. Indeed, we can use the identities

det(P~Y) = (det(P))~!, D(P,P)=det(P),

D(P™,Q™) = det(DlgilSt)(Q)’

R

D(QPQ,P) = 2D(P,Q)*det(P))™ ~ dei(Q),
borio.R) - DPQDQR) - DRR)Q)

det(P)
For sg, we get
ai;(So(m)) = a;;(m)(a;;(m)a,;(m))™" for 0 <4,5 <2

to write down explicit formulas for the actions of the three quadratic trans-
formations sg, s1, 83 on conics. That is, in other expressions, the right action
of the standard quadratic transformation on the space of plane conics is de-
scribed by the formulas

af)o j 11022, a:u i‘ 22000, a:22 j QApoi1, (3'0)
Similarly, we get the following formulas for s; and s;:
ago(S1(m)) = (ago(m))~(an(m))?, a1 (Si(m)) = an(m),
a22(51(m)) = agg(m), am(Sl(m ) = a12{INn), (31)
ao1(S1(m)) = ag1(m)ay; (m)(ag(m))~,
ao2(S1(m)) = (aoo(m)) ™ (2a01(m)a1z(m) — agz(m)aysi(m))
and
ago(S2(m)) = ag(m), an(S2(m)) = azz(m), ae:(S2(m)) = ag:(m),
a12(S2(m)) = an(m)ag: (m)((age(m))™! — a19(m),
a02(S2(m)) = 2(ao1(m))*(ago(m)) ™! — agz(m) — as1(m), (3.2)
a92(S2(m)) = age(m) + (ago(m))~*((a11(m))?

+ 2a2(m)ay; (m) — 4ag (m)azz(m)).
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An alternative way of writing the action of S; is as follows:

I — 2 ’ — I —
Qgp = A7) ay; = anaoo, Qg = 422000, (3.1a)
' _ r r '
@)y = Q12Q00, Gy = 2801012 — Qpad11, ag; = Gp1Q1),
and similarly for the action of Ss:
1 a2 [ - !
oo = Qg a1 = @11Q00, gy = Q01Q00,
! ! 2
@)y = G11G0) — G12800, gy = 2a3; — (o2 + a11)aoo, (3.2a)

- 2
Qg9 = Q22000 + any + 2a02a11 - 4001@12.

All the special relations (where, of course, we replace each collineation g
by its transpose g7, and reverse the order of terms in products) are satisfied
here. ’

If we want a left action of the Cremona group of the plane on the space
of plane conics, then we must pass to the dual conic. Let (A;;)o<ij<2 be the
adjoint matrix of (a;;); then the left action of s is given by the formulas

a;j = a,-,-ajinj (30b)

The left action of s; is defined by

1 42 1 _ 42

ago = agoAoo, ay, = a}, Ay — 400201240,
I 2 I —

Agp = a11A22, a9 = am a11Ae2 — a11012A22, (3-1b)
! -

Qgg = —agoa11 Aoz, ag) = agoa12402 — G001 Ago.

The left action of s, is defined by

' 2 2
ago = agoAoo — 2000811 Aoz + a7, Anz,

ro_ 2 2 ro_ 2
ayy, = ageAn + 4agan Az + 4ag, Az, ay, = aggAa, (3.2b)
[ :
ag; = agoAor + 2a00a01402 — Goo@11A12 — 2001011 A2,

agy = —agvoz + agoanAss, aj = —a%oAu — 2a00a01 A2z
More precisely, if a matrix g € PGL(3, K) = P, viewed up to scalar multiples,

acts on the space of symmetric 3 x 3 matrices (also viewed up to scalar
multiples)

a = (ai;) € Ps(K) =P(S*(W™))
according to the rule

g9(a) = (g7)Ta(g™),
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and the quadratic transformations sg, s1, S2 act on P5(K ) according to for-
mulas (3.0b), (3.1b), (3.2b) respectively, then we have a well-defined (left)
action of Cr(2, K) on the space of plane conics.

Note that our good luck in the case of conics is based on the fact that the
map A is a birational isomorphism (for some analogs of this fact see below,
3.2.5, Theorem 3.3 and 3.5, formulas (3.39)-(3.40)).

3.2 Left and right actions of the Cremona group of the
plane on the space of plane cubics

Now let A = Mat3(K) be the 3 X 3 matrix algebra over an algebraically closed
field K of characteristic # 2,3, with the involution given by transposition
* =T, thus A* is again the set of symmetric 3 x 3 matrices. Let D(P,Q, R)
denote the mixed determinant of three 3 x 3 matrices; that is, if

Pu D2 P13 q1 G2 Qi3 Ta Ti2 T3
P=|pn P2 P3|, @=|a G2 @s|, R=|ra 72 rs],
P31 P32 P33 g31 432 433 T31 T32 T33

then 6D(P, @, R) equals

Pu qi12 T3 Pun T2 Qi3 qu1 P12 T13
D21 Qo2 Tos|+ |P21 To2 Qo3|+ (@21 P22 Tos
P31 qg32 T33 P31 T2 (G33 431 P32 733

qi1 T12 P13 ™M1 P2 Qi3 ™ 12 D3
+ 1921 Tez Pos| + |71 D22 Qosj+ [T21 Qo2 DPos|.
g3 T32 P33 T31 P32 433 T31 432 P33

The spherical 2-space S (A4) consists of triples of matrices (mo, m1, my) in
A* for which some K-linear combination A\gmg + A\ym; + Aoy is invertible,
and (mg, my, mg) ~ (np, 11, n2) if there exists an invertible matrix C' € A such
that n; = Cm;CT. We write m = (mp : m; : my,) for the equivalence class.
The collineation group P acts (on the left) on S§ (4). The P-anti-equivariant
map (see Definition 2.4)

A S;(Matg(K)) — Pg(K) = ]P’(K[uo, Uy, 'LL2]3)
associates with each triple m = (mg : m; : my) the ternary cubic form

A(m)(ug, uy, up) = det(uomo + uymy + ugms) = Zaijk(m)uiujuk
if

(up to proportionality), where a;jx(m) = D(m;, m;,mi). The cubic curve
A(m)(ug, u1,uz) = 0 inherits an additional structure from the matrix triple
m, namely, an even theta characteristic, that is, a nonzero 2-torsion point;
we now treat these relations more explicitly.
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3.2.1 Invariants, covariants, contravariants and 2-torsion of plane
cubic curves

We take the three variables xg, z1, 22 to be homogeneous coordinates on Pa,
and normalize the coefficients a;ji of z;z;zi in a cubic form F as follows:
F= aoooilig + am:v?{ + (12221:3 + 6ag12ToT122
+ 3ao01 221 + 3a002zizs + 3ano:vo:vf (38.3)
+ 3a1122225 + 34530207 + 3az2T1 22

Let ug,u1,us be dual homogeneous coordinates on the projective plane P,.
The Hessian form He(F) of the cubic (3.3) is defined by

He(F) = 31—6 det(HE(F)),
where HE(F) is the Hessian matrix

([ @F &F  &F
Oz}  Ozgdx; Oxo0zy
HE(F)= | O°F  &F &F | (3.4)
01,09 013 011019
OF &F  &F
Kazg&vo 02201, ox? }

Note that our Hessian form differs slightly from that of Salmon’s book [16]
or Dolgachev and Kanev [8] (ours is multiplied by 6). Normalized coefficients
by monomials z;2;zi of the Hessian are written down in [16], N° 218. The
Cayley form Ca(F) of F is
Gooo G110 G220 Go12 Goo2 Qoo
Qo1 G111 G221 4n2 Qo2 Qo1
Ggo2 G112 G222 G122 G022 Qo012
2’LLO 0 0 0 U U
0 2’LL1 0 Uo 0 U
0 0 2'LL2 (73] U 0

Ca(F) =3 x

There is a well-defined natural scalar product (or convolution) (F,G) of two
ternary forms F(xq, Z1,z2) and G(uo, U1, Uz) of the same degree in dual vari-
ables. For example, if F and G are ternary cubic forms (where F is (3.3),
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and G has normalized coefficients by;i), then

(F, G) = aooobooo + a1116111 + a222b222 + 6a012b012
+ 3ac01boo1 + 3acozbooz + 3a110b110 (3.5)
+ 3a112b112 + 3ag20ba20 + 3ag01b201.

The Aronhold invariants S = S(F),T = T(F) and R = R(F) of a cubic form
F are defined by

S(F) = —(F,Ca(F)), T(F)=—(He(F),Ca(F)), R(F)=T(F)’-S(F)’

(compare [16], N°s 220-221). It is convenient to use the following contravari-

ant cubic form
D(F) = %(T(F) Ca(F) — Ca(He(F))). (3.6)

The operation D is an analog of passing to the dual of a quadratic form.
Indeed,

D(D(F)) = —32R(F)5S(F)?F, (3.7)

or in other words, D iterated twice yields the initial cubic form (up to a
factor). We may consider D as a “birational null-correlation”, because the
contravariant D(F) defines a hyperplane in the space of cubic curves, and F
belongs to this hyperplane: (F, D(F)) = 0, where (, ) is the scalar product
(3.5). The operation D interchanges the Hessian and the Cayley forms up to
a factor, in the sense that

He(D(F)) = 2R(F)? Ca(F)
and Ca(D(F)) = —4R(F)*He(F).

We refer to the pencil of cubic forms

(3.8)

uF(xo, 21, 22) + v He(F)(z, 71, Z2),

as the Hessian pencil (an alternative term syzygetic pencil is due to L. Cre-
mona), and

u Ca(F)(uo, u1, u2) + vD(F)(uo, u1,uz)

as the Cayley pencil. The Hessian operation preserves both these pencils,
giving rise to the following actions (compare {16], N° 225). On the Hessian
pencil:

He(uF +vHe(F)) = 3v (u2S + 2uvT + v2S2) -F (3.9)
+ (u3 - 3Suv® — 2Tv3) - He(F),
in particular He(He(F)) = 3S2F — 2T He(F). (3.10)
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(Here and below, we write S = S(F),T = T(F), R = R(F).) On the Cayley
pencil:

He(u Ca(F) + vD(F)) = 6u (u2 — 2Tuv + sz) - D(F) (3.11)
+ 2(2Tu3 —~ 3Ru’v + R2v3) - Ca(F),
in particular He(Ca(F)) = 6T(F) Ca(F) — 2 Ca(He(F)). (3.12)
The Cayley operation takes the Hessian pencil into the Cayley pencil; namely,
S(F) Ca(uF + v He(F)) = 3v (u2 _ S(F)vﬁ) . D(F)
+ (S(F)u3 + 3T (F)u?v + 38(F)2uv? + T(F)S(F)v“) . Ca(F);
The operation D acts in a similar way. Furthermore,

Ca(u Ca(F) + vD(F)) = 125(1?)%(1%2 - uﬂ) F
+ 4(T(F)u3 — 3R(F)u?v + 3R(F)T(F)uv? — R(F)2v3) -He(F), (3.13)
and
D(uCa(F) + vD(F)) = 165 R®(u, v)*[2uS He(F) — (Tu + 2Rv) F],
where
®(u,v) = u* — 8T(F)uv + 6R(F)uv? — v*R(F)%.
In particular,
D(Ca(F)) = 288R(F)S(F)}(T(F)F — S(F)He(F)).  (3.14)

Evaluating the Aronhold operations S(-), T(-), and R(:) on our two pencils
gives the following: on the Hessian pencil,

S(uF +vHe(F)) = u'S + 40T + 6u*S?
+ 4uv®ST +0*(4T? - 35%),  (3.15)
in particular S(He(F)) = 4T% - 35° = T? + 3R. (3.16)
Also,
T(uF + vHe(F)) = u®T + 6u5vS? + 15u*?ST

+ 20630372 + 150204 S2T (3.17)

+ 6uv®(38°% — 2T%)S + v8(98® — 8T?)T,
in particular T(He(F)) = (9S% — 8T%)T = T° — 9RT. (3.18)
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Further, (3.15) and (3.17) give

R(uF + vHe(F)) = (u* - 6Su’v? — 8Tuv® — 35%*)°R,
in particular R(He(F)) = — 27S°R(F).

On the Cayley pencil, we get
S(uCa(F) + vD(F)) = 4 x ((4T2 — 3R)u* — 4RTu
+ 6 RT?uv® — 4R*Tuv® + Rsv), (3.19)
in particular, S(Ca(F)) = 4(4T?—-3R) and S(D(F)) = 4R(F)*.
Also,

T(u Ca(F) + vD(F)) = 8 x (—-T(9R — 8T?)u® + 6R(3R — 2T?)uv
— 15R?Tutv? + 20R*T%u0® — 15R°*Tuv* + 6 RYu® — TR4v6),

in particular

T(Ca(F)) = 8T(8T — 9R) and T(D(F)) = —8R(F)'T(F).  (3.20)
Finally,

R(Ca(F)) = (-128(F)*(T(F)? - S(F)?)* = —12°S(F)*R(F?,

R(D(F)) = 64R(F)*S(F)*.

3.2.2 The space of marked cubics

An even theta characteristic of a nonsingular plane cubic curve is a nonzero
2-torsion point on the Jacobian curve of this cubic. The right parameter
space for marked cubics (that is, cubics with a marked 2-torsion point) is the
weighted projective space P(11%;2) with coordinates

(F;8) = (a0, @111, @222, @oo1, G002, G110, G112, 3220, G221, Go12; ).

A similar statement holds for the spherical 2-space S§(Mats(K)), compare
Theorem 3.3 below.

Definition 3.1 The space of marked cubics is the hypersurface V C P(119;2)
defined by the equation

8® — 3S(F)6 — 2T(F) = 0. (3.21)



Marat Gizatullin 141

Remark 3.1 The affine equation
3
5y2 + 2% —35(F)z —2T(F) =0 (3.22)

defines the Jacobian curve of the generic cubic curve F = 0, where F is
the form (3.3); hence a 2-torsion point of the Jacobian corresponds to a
zero of the left-hand side of (3.22) of the form (z,0); this justifies the above
definition. Here € is an “irrational invariant” of a ternary cubic form, and
its degree equals 2. The fact that 6 is invariant ensures that the action
of P on the space of cubic forms extends to V. A point of V is a cubic
curve with a marked 2-torsion point. The hypersurface V is birationally
equivalent to the projective space of bare (unmarked) plane cubics (compare
Dolgachev and Kanev [8], who attribute this result to G. Salmon [16]). We
give two constructive proofs of the Salmon—Dolgachev—Kanev theorem (see
Theorem 3.1, Claims (A) and (B) below).

Example 3.1 Let F be a generic cubic form and He(F) its Hessian; then
twice the value of the Aronhold T-invariant of F' defines a 2-torsion point of
He(F'). That is, § = 2T(F') is a root of the equation

6® — 3S(He(F))8 — 2T (He(F)) = 0.
This follows from (3.18) and (3.16). Hence we get a map
he: Py —» V defined by he(F) = (He(F); 2T(F)) (3.23)

from the space Py of ternary cubic forms to the space V' of cubics with a
marked 2-torsion point.

Example 3.2 Let F be a generic cubic form and Ca(F) its Cayley form;
then —4T(F) defines a 2-torsion point of Ca(F). That is, § = —4T(F) is a
root of the equation

¢* — 3S(Ca(F))§ — 2T(Ca(F)) = 0.
This follows from (3.20) and (3.19). Hence we get a map
ca: Py — V defined by ca(F) = (Ca(F); —4T(F)) (3:24)

from the space Py of ternary cubic forms to the space V of cubics with a
marked 2-torsion point.

The next theorem shows that each of (3.23) and (3.24) is a birational
equivalence.
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Theorem 3.1 (A) The map g: V — Py defined by
g((F;0)) = 0F + He(F) (3.25)
is a birational inverse of the map he of (3.23).
(B) The map d: V — Py defined by
d((F;0)) = R(F) Ca(F) + (6S(F) + T(F))D(F)

is a birational inverse of the map ca of (3.24).

Proof of (A) This follows from (3.9), (3.10) and (3.25):
g(he(F)) = g((He(F); 2T(F))) = 2T(F) He(F) + He(He(F)) = 35*(F)F,
hence g o he = idp,. The right hand side of (3.17) equals:

g(S’u2 + 2Tuv + S*?)%uv + T(u? - 3Sww? — 2Tv%)? +

+ g(u3 — 3Swv? — 2Tv%)((Su + Tv)? + 3Rv?).

Using this, together with (3.15), (3.17), (3.23), (3.25), we get

he(g((F';0))) = he(6F + He(F))
= (He(eF + He(F)); 2T(0F + He(F))
= (3(5(1?)(92 + 2T(F)0 + S(F))F; 9(S(F)6* + T(F)8 + S(F)2)29),

This point of P(1'%2) coincides with (F;8), hence heog = idy.

Proof of (B) Substituting from (3.14), (3.20), (3.19) gives

d(ca(F)) = d((Ca(F); -4T(F)))
R(Ca(F)) Ca(Ca(F)) + (T(Ca(F)) — 4T (F)S(Ca(F)))D(Ca(F))
—128R(F)2S(F)2S(Ca(F))F,

that is, d(ca(F)) is proportional to F’, hence d o ca = idp,.

To study the inverse composite ca od, and for some further comments on
the theorem (Remark 3.2), we need an additional series of identities.
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Lemma 3.1 Suppose that 0 satisfies (3.21), and set

7 = S(F)§ + T(F). (3.26)
Then the coefficient of He(F') in (8.13) vanishes at u = R(F),v=":
7° — 3T(F)7r® + 3R(F)r — T(F)R(F) = 0. (3.27)
Furthermore,
T(RCa(F)+7D(F)) = T2R*S*(-9T7* + 8RT — 3TR),
(2 — R)%0 = —25%(-9T7% + 8RT — 3TR),  (3.28)
—4T(RCa(F) + 7D(F)) = (12R*5%*(7® — R))%.
Moreover, if we set
A(T) = T(F)7* — 2R(F)T + T(F)R(F), (3.29)
then
A(1)® = §%(9T7? — 8RT — 3TR)T?, (3.30)
He(R Ca(F) + 7D(F)) = 6 R®*A(7)r~' (7 Ca(F) + D(F)). (3.31)

These identities can be checked directly, but we omit the details.

Proof of (B), continued Applying (3.14), (3.27) and (3.28) yields:
ca(d(F)) = Ca(R Ca(F) + TD(F); —4T(Ca(R Ca(F) + 7D(F)))

= (12S2R2(7‘2 — R)F; (12S2R*)2(r% — R)20)).

This point of P(1!%;2) coincides with (F;6), hence caod = id.

Remark 3.2 Comparing the two assertions (A) and (B) gives new infor-
mation concerning two birational transformations: (1) the transformation
D: Py — Py of (3.6) of the projective space of plane cubics, and (2) an in-
volutive transformation E: V — V described below of the space of marked
cubics.

First, D equals the composite g o ca (and the composite d o he): for

g(ca(F)) = g(Ca(F); —4T(F)) = He(Ca(F)) — 4T(F) Ca(F) = 6D(F),

by (3.12) and (3.6). Our second map F is the composite he od (which is equal
to caog). We claim that

E(F;6) = ((05 +T) Ca(F) + D(F); —4S%(T6" + 25%0 + TS)),
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or in terms of the notation (3.26), (3.29),
E(F;0) = (1t Ca(F) + D(F); —4A(7)).
For, applying (3.28), (3.30), (3.11), (3.31), we get

he(d(F)) = he (R Ca(F) + TD(F); 2T(R Ca(F) + TD(F))
= (sR2A(T)T~1(T Ca(F) + D(F); —4(sR2A(T)T-1)2A(T))
= (T Ca(F) + D(F); -4A(T)).

3.2.3 A birational transformation of the space of marked cubics

We describe a birational transformation Xy of the variety V' and of the ambient
weighted projective space P(11%;2). This transformation is an analog of the
action of the standard quadratic transformation on the space of conics. It is
convenient to make a coordinate change (F;8) — (F;n) in P(11%; 2), replacing
the final coordinate @ by

1
n==-70+2P), (sothatf=~dn-2P),
where P =a},—G, and G = a1100220 + 60010221 + Goo20112-

In the new variables, the hypersurface V C P(11°;2) of (3.21) is now defined
by the equation:

3203 4 48Pn* + 6(4P% — S)n+ T + 4P* — 3SP = 0. (3.32)

We introduce the monomial birational transformation o of P(1!%;2),
given by (a;n) — (a*,n*), where:

aje = G111Q222, @Y} = GopoG222, G99 = G000G111,

ago1 = G1108222,  Ggge = G2208111, G119 = G001G222, (3.33)
ajyg = 2210000, 399 = G002G111, a3y, = 1120000,

agie =1 n* = Goo@111a2220012-

Theorem 3.2 (A) The map L, is an involutive birational transformation
of P(119;2).

(B) It preserves the hypersurface V.
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Proof It is obvious that Xy is an involution, because on double application
of 2, each weight 1 coordinate is multiplied by

M = appoa111a0222, (3.34)

and the final weight 2 coordinate 7 is multiplied by M?2.

Let A = Klaooo, @111, @222, Goo1, G002, @110, G112, 220, @221] be the polynomial
ring generated by all the coefficients of cubics except agis. The first nine
equations of (3.33) define an endomorphism * of A; write f* for the image of
f € A under *. Expanding the terms in the defining equation (3.32) of V in
powers of agys gives:

4P _ S = 4Bagi + 4C,
T + 4P® — 3SP = 32Ma3,, — 48G* a2, + 24Faq; + D,

where M, B,C, D, E € A (here M is the multiplier spelt out in (3.34)),

M* = M2, B*=MB, D* = M?D,

(3.35)
C*=ME, E*=MC, G"=M%3.

We can rewrite (3.32) as

32(n® + Ma3,,) + 48(nao1z)* — 48(Gn? + G*ad;,)
+ 24Bna012 + 24(07) + anu) +D=0. (336)
Using this, we see that applying formulas (3.33) defining Ty (see especially

the last two formulas of (3.33) and (3.35)) to the left hand side of (3.32) or
(3.36) multiplies it by M2. Q.E.D.

3.2.4 A birational map of the spherical space of symmetric 3 x 3
matrices onto the space V of marked cubics

We write 7 for the adjoint matrix of a symmetric 3 x 3-matrix m and D(,-,-)
for the mixed discriminant of three symmetric 3 x 3 matrices. For a triple
m = (mg, my, my), we define a ternary cubic by

Fm = ﬁdet(l‘omo +zymy + fEQmQ),
and a number 8(m) by

g(m) = 2(2D(ﬁ7'\0777/7'\1a 77/7'\2) - (D(mo, my, m?))2
-+ D(mo, m, ml)D(mo, my, mg) (337)
+ D(my, mo, mo) D(my, ma, ma) + D(mq, mg, mg) D(my, mq,my)).
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Theorem 3.3 For a triple m = (mg : my : my) € S§ (Mats(K)), the point
(Fin; 6(m)) belongs to V, and

a: S§(Matz(K)) = V C P(1)%2) given by a(m) = (Fp;8(m))  (3.38)
is a well-defined birational map, having the inverse
B: V — S (Mats(K)), given by B(F;8) = (mg : my : my),

where xomo+x1my+x9me = OHE(F)+HE(He(F)); see (8.4) for the Hessian
matriz HE(F).

The map « is P-anti-equivariant, and has the following compatibility with
the action of the standard quadratic transformation

Zo(a(m)) = a(So(m)).

Remark 3.3 Formula (3.37) is borrowed from the end of Salmon, Conic
sections [15]. Salmon gives a different formula for #(m), which he attributes
to Burnside. Namely, write [-,,-] for the determinant made up of three
ternary linear forms, and

AOO AOI A02
AIO Al 1 A12
A20 A21 A22

det(zomo + T3y + Tame) =

where A;; = A;;(%o,z1,%2) are linear forms and A;; = Aj; for 4,5 = 0,1,2.
Then

0(m) = 2 x (—8[Ao1, A12, Az0)? + [Aoo, A11, Ago)?
+ 4[Aq1, Aro, Aoz)[Aoo, A1, Aze) + 4[Aco, An1, A12)[Aoo, A22, Ara]
+ 4[A11, Ag, Ac)[A11, Aoo, Ac2) + 4[A22, Ao, Am)[A22, A1, An)
+ 8[A11, Aoz, Ao1)[Aa2, Aoz, Ao + 8[Aoo, A2, Aro][Ag2, A2, Alo)
+ 8[Aoo, A21, A20][A11, A21, A2o] — 8[Aoo, Aoz, Aar][An1, A2z, A
— 8[A11, Aro, A12][As2, Aoo, Azo] — 8[Ass, Ao, A12][Aoo, Anr, Aar))-

Salmon [15] also sketches a proof that o is well defined.

Proof of Theorem 3.3 We introduce some notation. Let m and m' be
two symmetric 3 x 3-matrices and [m, m’] their mixed adjoint matrix, that is,

——— e, ——— ———
(um +vm) = ¥ + w[m, '] + v®m/, in particular [m,m] = 2.

For six ternary quadratic forms A, B,C,D,E F (or the corresponding
symmetric matrices), we write [4, B,C, D, E, F] for the 6 x 6 determinant
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whose columns are these forms, written out as normalized coefficients in the
order 00,11,22,12,02,01. Salmon’s (or Burnside’s) second invariant M =
M(m) is

M= [[mOa mU], [ml’ ml], [m2, m2]; [ml’ m2], [mO, m2], [mO, ml]] .

The Aronhold invariants of the above symmetric determinant F' = F},, are
the following expressions (see Conic sections, [15], loc. cit.)

S(F)=6>—24M, T(F)=6°>—360M, R(F)=432M>(32M —¢?),

where § = 8(m) and M = M(m). Hence (F;6) satisfies (3.21) and belongs
to V C P(1',2). Thus the map a is well defined. Further, if (F;0) € V,
and if we identify m and the corresponding linear form with their matrix
coefficients, then

o(B(F;8)) = o(fHE(F) + HE(He(F)))
= (He(§F + He(F)); 2T(6F + He(F)) = (F;6)

by the proof of Theorem 3.1, (A). Because they map between varieties of
the same dimension, it is now obvious that a and 3 are birational. That «a
is compatible with the standard quadratic transformation follows from the
observation that the mixed determinant of adjoint matrices in formula (3.37)
corresponds to the 1 of Theorem 3.1 and from the behaviour of mixed deter-
minants of the third order when the matrices involved are replaced by their
inverses (or adjoints). Q.E.D.

3.2.5 An action of the Cremona group on the space of cubics

Consider the following two composite maps from the space of plane cubics to
the spherical 2-space over 3 X 3-matrices:

P(S}(W*)) 2% v £, §F(Maty(K)),

P(S3(W*)) =2 vV 25 §f(Mats(K)).
Each of these maps leads to an action of the Cremona group on the space of
plane cubics, the first on the right, the second on the left. If C is a plane

cubic defined by a form F, and g € Cr(2,K) (or g € UCr(2, K)), then we
may define

9(C) = (Bohe)(g((Bohe)(F))) or g(C)=(Boca)(g((8oca)(F))).



148 Tensor representations of Cr(2, K)

3.3 An action of the Cremona group of the plane on
the space of quartics

Let K be an algebraically closed field of characteristic zero. Every ordered
triple of symmetric 4 x 4-matrices mg, m;, mo € Mat] (K) defines a net of
quadrics zoMp + 21 M) + 2 M, = 0 in P3; here M; is a quaternary quadratic
form with matrix m;, and the x; are parameters in the net. GL(4, K)-
equivalence classes of stable nets correspond one-to-one to points m = (my :
my : my) € SF(Maty(K)). The discriminant curve C(m) of such a point
is well defined and also has degree 4. This curve has a marked even theta
characteristic #(m) (at least, provided that it is nonsingular, see [3]). Thus a
point of spherical 2-space defines a point of the variety M3 of plane quartics
with a marked even theta characteristic. By results of Barth [3], the map

v: 8§ (Maty(K)) —» My*  given by m — (C(m);6(m)) (3.39)

is one-to-one on some open subset, and hence birational.

Moreover, every ternary quartic F € S*(W*) defines a pair (S(F);8(F)),
where S(F) is the Clebsch covariant of degree 4 for F, and 0(F) is an even
theta characteristic of the plane quartic S whose equation is S(F) = 0 (at
least, provided that F is weakly nondegenerate, see [8] for details). This map

Sc: P(S*(W*)) — M¥ given by F — (S(F);0(F)) (3.40)

is the Scorza map. By a theorem of Scorza (see (8], 7.8), Sc is a P-equivariant
birational isomorphism. Thus, we get the following possibility to define a
(right) action of the Cremona group on the space of plane quartics: if F €
P(S*(W*)), and g € Cr(2, K) (or g € UCr(2, K)), then we may define

9(F) = Sc™ (v(g(v~" (Sc(F)))))-
Remark 3.4 Let X C S§(A) be the subset defined by the equations
det(m;mymi — mpm;m;) = 0,

where (i, j, k) is an arbitrary permutation of (0, 1, 2). Equivalently, X is the
subvariety whose generic point x = (o : ; : x2) satisfies the equations

det(xixjflxk - xkx;lxi) =0.

In other words, Barth’s commutators (see [3]) for x have rank < 2.

The variety X is preserved by collineations and the standard quadratic
transformation; this is clear for collineations. As for the standard quadratic
transformation, Sy substitutes x; — z; 1 and

det(z; ' z;z;! Yea7t) = det(z; ) (zja7 e — mizy tzy)z )

= (det(z;)) "2 det(x;z z; — zizy 'x5).

- Ty
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Therefore the action of the Cremona group we have just constructed on the
space of quartics with an even theta characteristic extends Artamkin’s action
(see the Introduction) on the space of special marked quartics corresponding
to certain vector bundles.
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Hilbert schemes and simple singularities
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Abstract

The first half of this article is expository; it contains a brief survey
of the famous ADE classification, and how it applies to six kinds of
objects, some old and some relatively new. The second half is a re-
search article, discussing the two dimensional McKay correspondence
from the new point of view of Hilbert schemes.
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0 Introduction

There is a whole series of apparently unrelated phenomena that are governed
by the so-called ADE Dynkin diagram scheme. It is widely believed that,
despite the diverse nature of the objects concerned, there must be some hid-

den reasons for these coincidences. The ADE Dynkin diagrams provide a
classification of the following types of objects (among others):

(a) simple singularities (rational double points) of complex surfaces (Du
Val, Artin, Brieskorn),

(b) finite subgroups of SL(2,C),
(c) simple Lie groups and simple Lie algebras (Elie Cartan, Dynkin),
(d) quivers of finite type ([Gabriel72]),

(e) modular invariant partition functions in two dimensions (Capelli, Itzyk-
son and Zuber [CIZ87)),

(f) pairs of von Neumann algebras of type II, ([Ocneanu88]).
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0.1

The present article consists of two halves, an expository part and a research
part. The expository part occupies the first six sections. In Sections 14,
we recall briefly the above ADE classifications. Sections 2-3 report in some
detail on the relatively new subjects of modular invariant partition functions
and type II; von Neumann algebras (II; factors). In Section 4 we recall the
two dimensional McKay correspondence. Section 5 summarizes some of the
missing links between the six objects and related problems. We would like to
say that while much is known about these, much remains unknown.

Next, in Section 6, we recall some basic facts about Hilbert schemes for use
in the research part, and give a quick review on three dimensional quotient
singularities in Section 7. Section 7 is not directly related to the rest of the
paper, but it provides motivation for further study in the same direction as
Sections 8-16. For instance, a natural three dimensional generalization of
the McKay correspondence, quite different from that of Theorem 7.2, can be
obtained by applying similar ideas. This direction is the subject of current
research and we simply mention [Reid97], [INkjm98] and [Nakamura98] as
available references for it.

In the second half of the article we discuss the two dimensional McKay
correspondence from a somewhat new point of view, namely by applying
the technique of Hilbert schemes. Any of the known explanations for the
classical McKay correspondence enables each irreducible component of the
exceptional set E to correspond naturally to an irreducible representation of
a finite subgroup G. In the present article we do a little more. In fact, to
any point of the exceptional set, we associate in a natural way a G-module,
irreducible or otherwise, whose equivalence class is constant along each irre-
ducible component of E. We discuss this in outline in Section 8, and in detail
in Sections 8~16. Some new progress and related problems are mentioned in
Section 17.

0.2

There are a number of excellent reports on the first four topics (a)—(d),
for example: Hazewinkel, Hesselink, Siersma and Veldkamp [HHSV77] and
[Slodowy95). See [Slodowy90] and [Gawedzki89] for the topic (¢). See also
[Ocneanu88), Goodman, de la Harpe and Jones [GHJ89], [Jones91] and Evans
and Kawahigashi [EK98], Section 11 for the last topic (f). The authors hope
that the reader will also study or at least have a glance at these reports.

We have in mind both specialists in algebraic geometry and nonspecialists
as readers of the expository part. Therefore we have tried to include elemen-
tary examples and algebraic calculations, though they are not completely
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self-contained.
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1 Simple singularities and ADE classification

1.1 Simple singularities (1)

We first recall the definition of simple singularities. A germ of a two dimen-
sional isolated hypersurface singularity is called a simple singularity if one of
the following equivalent conditions holds:

1. It is isomorphic to one of the following germs at the origin

Ay 2" 492 4+22=0 for n > 1,
D,: v v+zy*+22=0 forn >4,
Es: rt+y°+22=0,
E;: 2y+y*+22=0,
Ey: 8+y8+22=0.

2. It is isomorphic to a germ of a weighted homogeneous hypersurface of
(C3,0) of total weight one such that the sum of weights (w;, ws, ws) of
the variables is greater than one. The possible weights are (37,3, 3)s
85D b D, G D s G4,

3. It has a minimal resolution of singularities with exceptional set consist-
ing of smooth rational curves of selfintersection —2 intersecting transver-
sally.

4. Tt is a quotient of (C2,0) by a finite subgroup of SL(2, C) ([Klein]).

5. Its (semi-)universal deformation contains only finitely many distinct
isomorphism classes ([Arnold74]).
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1 1 1 1 1
A, e—e—e --- e—e (n vertices)
1 2 2 2ml
D, o—o—o - (n vertices)
1
2
Eg o—o—I—H
1 2 3 2 1

2 4 6 5 4 3 2
Figure 1: The Dynkin diagrams ADE

Many other characterizations of the singularities are given in [Durfee79).
The third characterization of a simple singularity classifies the exceptional set
explicitly. In fact, the dual graph of the exceptional set is one of the Dynkin
diagrams of simply connected complex Lie groups shown in Figure 1.

1.2 Simple singularities (2)

Let (S, 0) be a germ of simple singularities, 7: X — § its minimal resolution,
E := 771(0)rea and E; for 1 < i < 7 the irreducible components of E. It
is known that E; ~ P! and (E?)x = —2. Let Irr E be the set {E;;1 < i <
r}. We see that Hy = Hasing(S) := Hao(X,Z) = @,;<, Z|E:]. Then H,
has a negative definite intersection pairing ( , )sivg: Hz X Ho — Z. Since
(EiEj)sing = 0 or 1 for ¢ # j, the pairing ( , )sing can be expressed by a
finite graph with simple edges. We rephrase this as follows: we associate a
vertex v(E’) to any irreducible component E’ of E, and join two vertices v(E')
and v(E") if and only if (E'E")sing = 1. Thus we have a finite graph with
simple edges, from which in turn the bilinear form ( , )sivg can be recovered
in the obvious manner. We call this graph the dual graph of E, and denote
it by F(E) or FSING(S)- Let H? = SZING(S) = HZ(X, Z)

There exists a unique divisor Ejg,q4, called the fundamental cycle of X,
which is the minimal nonzero effective divisor such that EqnqF; < 0 for all
i. Let Fppq := Z;l mSNCE; and Ey := — Egyng. For the simple singularities
we have EoE; = 0 or 1 for any E; € Irr E, except for the case A,, when
EyE, = 2. Therefore we can draw a new graph I'sing by adding the vertex
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v(Eo) to I'sing(S). By a little abuse of notation we denote Irr E U { Ey} by
Irr, E.

For instance let us consider the D case. Then E = 37 | E; with E? = —2
and

—Fy = Epypa = F1+2E3 4+ 2F3 + E4 + Es.

Then EoEy = E\Ey = F3F3 = F3FEy = E3FE5 = 1, and all other E;E; = 0.
Hence (m$ING, ... mSING) = (1,2,2,1,1), as indicated in Figure 2.

2 201 . le2 201

D5 D5
1 1 1 1
Figure 2: The Dynkin diagrams Ds and 55

There are various ways of computing E. We do it starting from the fact
that Ds is the quotient singularity of A2 by the binary dihedral group D; of
order 12. The binary dihedral group G := Dj is generated by ¢ and 7:

a_sO T_Ol
T\0 1) T T \-1 0/

where € := €?™V=1/6_ We have 08 = 7t = 1, 03 = 72 and 767! = ¢~!. The
ring of G-invariants in C[z,y] is generated by three elements F' := 18 + ¢/6,
H := zy(z® — ¢°) and I := 2%y The quotient A%/G is isomorphic to the
hypersurface 414 + H2 — [F? = 0. Since G has a normal subgroup N := (o)
of order 6, we first take the quotient A%2/N and its minimal resolution Xy.

Since P := 2% @ := ¢® and R := zy are N-invariants, A?2/N is the
hypersurface PQ = R®. Hence Xy has an exceptional set consisting of a
chain of 5 smooth rational curves Cj + --- + Cs. The action of 7 on A?
induces an action on Xy, which maps C; into Cs_;, so in particular takes C3
to itself. The action of 7 on Xy has exactly two fixed points p4 and p_ on
Cs, which give rise to all the singularities of X/ (7).

The images of py give smooth rational curves E4 and E5 on the minimal
resolution X of A?/G by resolving the singularities of X/ () at px. Thus on
X we have the images E; of C; for i = 1,2,3 and two new rational curves F,
and Fs. This gives the exceptional set E of X. We see easily that (E;)3ng =
—2. The intersection pairing ( , )sing is expressed with respect to the basis
E; for 0 < i < 5 as a 6 x 6 symmetric matrix with diagonal entries equal to
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—2. We write it down multiplied by —1 for convenience:

2 0 -1 0 0 O
6 2 -1 0 0 O
-1 -1 2 -1 0 O
6 0 -1 2 -1 -1
6 0 0 -1 2 0
0 0 0 -1 0 2

Let v; := v(E;) for 0 < i < 5. Then we obtain the Dyjlkin diagram
Dy from v; for 1 < ¢ € 5 and the extended Dynkin diagram Dy from v; for
0 < i< 5, as in Figure 2.

1.3 Simple singularities and simple Lie algebras (1)

Let & be a simply laced simple Lie algebra and £ a Cartan subalgebra of &.
We fix a lexicographical order of the roots of £ and let A (respectively A,
Asimple) be the set of roots (respectively, positive roots, positive simple roots)
of & with respect to 7. (See [Bourbaki| for more details.) Let r be the rank
of & (= dim$H) and Asimple = {0;;1 < i <7},

Let @ be the root lattice, namely the lattice spanned by A over Z endowed
with the Cartan—Killing form ( , )i and P := Homgz(Q, Z) the dual lattice
of @ (the weight lattice):

Q:=@Za= @ Zo.

a€A aEAgimple

The Cartan—Killing form ( , )uig with respect to the basis Agimple iS a
positive definite integral symmetric bilinear form with (o, a) =2 for all o €
Agimple- Since (o, B)Lie = 0 or —1 for o # B € Agimple, We can express the
bilinear form by a finite graph with simple edges I'iig as we did for the dual
graph of the set of exceptional curves of simple singularities.

There is a maximal root in A with respect to the given order, called the
highest root of A. (This name is justified by the fact that it is the highest
root of the adjoint representation of &. See Table 1.) Let the highest root
be 0 := Qhighest = 2 301 mi*Eq;. Then (ag,3) = 0 or —1 for any 3 € Agimple
(expect for the case A1, when (ag, 8) = 2), so that we can draw a new graph
I'ie(®) (called the extended Dynkin diagram of ) by adding the vertex aq
to FLIE(®)

Let us consider the Dy case as an example. The Lie algebra & := &(Ds)
is given by 0(10) := {X € Mo(C);’X + X = 0}. Its Cartan subalgebra
is spanned by H; := E;;35 — Eiys5; for 1 < 4 < 5 where E;; is the matrix
with (4, j)th entry equal to 1 and 0 elsewhere. We define ¢; € Home($, C) by
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Type | 7 | (mo) | ma, M2, M3, ..., Mr_y; M,
A, |n] 1 L1,...,1,1

D, |n| 1 1,2,2,...,2,1,1

Es | 6] 1 1,2,3,2,1;2

E: | 7] 1 1,2,4,3,2,1;2

Ey 8 1 2,4,6,5,4,3,2;3

Table 1: Multiplicities of the highest root

gi(H) =1t for all H = Zle t;H; € H. Then we can choose simple roots ¢
with order a; > ap > - - > ag as follows:

Q=6 — €1, Qgi=¢e4+es for1<i<4.

The highest root g is £; + &2 = o1 + 202 + 203 + a4 + as. For each o;
we define an element H; € $ by o;(H) = —3 Tr(H;H) for all H € . We see

that fI, =H,— H;,, for 1 <i <4, and ﬁs = H; + Hs. We define (o;, o) :=

ai(flj) = o;(H;). Then we have (@, o5) = —(E,Ej) for 0 < i <j <5
El the notati(?vn of 1.1-1.2. This shows that PSING(DS) = PLIE(Qf(Ds)) and
Tsing(Ds) = TLie(S(Ds)).

We note that P = 3o Ze; and Q = 35, Zay;.

The first theorem to mention is the following:

Theorem 1.4 Let S be a simple singularity and Lie(S) a simple Lie algebra
of the same type as S. Then there is an isomorphism

i: Hing(S) = P(Lie(S))
such that
1. i(Hasing(S)) = Q(Lie(S));
2. i(Irr(E(S))) = Asimple(Lie(S));
3. i(Etuna(S)) = —anighests(Lie(S));
4- (, )sme = —i*(, Jue;

5. Tsing(S) = Tue(Lie(S)) and Tsivg(S) = Tur(Lie(S)).
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1.5 Simple singularities and simple Lie algebras (2)

There are two kinds of similar constructions of simple singularities from simple
Lie algebras: first of all, the Grothendieck-Brieskorn-Springer construction
and second, the Knop construction. Good references for this topic are for
instance [Slodowy80], [Slodowy95] and [Knop87].

1.6 Finite reflection groups and Coxeter exponents

Let V be a vector space over R endowed with a positive definite bilinear form
(,)- A linear automorphism s of V is called a reflection if there is a vector
o € V and a hyperplane H, orthogonal to & such that s(a) = —a, and the
restriction of s to H, is trivial: sl = idyg,. There is a simple formula

2(v, oz)a
(,a)

s(v)=v—

1)

A finite group generated by reflections is called a finite reflection group.
For instance, let ¢ be the root lattice of a simple Lie algebra & over C,
(, )ue its Cartan-Killing form, and set V = @Q ® C. For any simple root
0; € Agimple, We define a reflection s; := s,, of V' by the formula (1). The
group W generated by all reflections s, for a € Agnple is finite, and is called
the Weyl group of &. The Weyl group W acts on the polynomial ring C[V*|
generated by V* := Homg(V, Z), the dual of V.

The product s = [];_; s; of reflections for all the simple roots is called
a Cozeter element of W. All s defined in this way for different choices of
lexicographical order of the roots are conjugate in W. Therefore the order
of s in W is uniquely determined, and we denote it by » and we call it the
Cozeter number of &.

Theorem 1.7 ([Chevalley55]) Let W be the Weyl group of a simple Lie

algebra & over C, and r the rank of &. Then

1. The invariant ring C[V*]W 1s generated by r algebraically independent
homogeneous polynomials fi, fa,..., f-. We order the f; so that deg f;
s monotonically increasing.

2. For any choice of the generators f; as above, the sequence of degrees
(deg fi,...,deg f;) is uniquely determined.

Definition 1.8 We define the Cozeter exponents e; by e; := deg fi — 1 for
1<i<r.

Theorem 1.9 Let & be a simple Lie algebra, h its Cozeter number, and e;
its Cozeter exponents. Then we have
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1. e;+er—;=h for all i;
2. W =TTyl +1).

For the proof, see [Humphreys90], Orlik and Terao [OT92] and [Bourbaki].

Let us look at the Dy case. From the root system given in 1.2-1.3 we see
easily that the Weyl group W (Ds) is a group of order 24 - 5! = 1920 fitting in
the exact sequences

1-—>W(D5)->G—1/i>Z/2Z->1
and
1-(Z/22)% - G5 S5 — 1.
The group G, and hence the Weyl group W (Ds) as a subgroup of G, acts
on C[H(Ds)*] ~ Clzy,...,zs] by
0" (i) = ETp(o) (1),

where 0 € G, ¢; = %1 and (o) = €1 ---€5. Write f; for the jth elementary
symmetric function of 5 variables. Then C[$(Ds)*]"(P%) is generated by
gi = fi(a?,...,22) for j = 1,2,3,4 and g5 := f5 = 71 -- - x5. It follows that
{deg g;} = (2,4,6,8,5) so that the Coxeter exponents are 1,3,5,7,4. Since
the Coxeter number h(Ds) equals 8, we have 8 = 1+ 7 =3+5 =4+ 4,
Moreover [W(Ds)| =1920=2-4-6-8-5.

Type | r €1,€2,€3,...,€r_1,6r h
A, |n 1,2,...,n—1,n n+1
D, |n]|1,35....2n-3,n—-1]| 2n -2
Es | 6 1,4,5,7,8,11 12
E, |7 1,5,7,9,11,13,17 18
Ey | 81(1,7,11,13,17,19,23,29 30

Table 2: Coxeter exponents and Coxeter numbers

1.10 Quivers (= oriented graphs) of finite type

Let I" be a connected oriented graph. It consists of a finite set of vertices and
(simple) oriented edges joining two vertices. Write v(T") and e(T") for the set
of vertices and edges of T'.

For an edge ¢, we define 8(£) = 3(£) — a(£), where o(€) and ((¢) are the
starting and end points of £.
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Definition 1.11 ([Gabriel72]) A representation V := {V4, ¢} of T is
a set of finite dimensional vector spaces V,, one for each a € v(T'), cou-
pled with a set of homomorphisms ¢;: Vi) — Vs, one for each £ € e(I').
We define the dimension vector of a representation V to be v = dimV :=
{dim V; @ € v(T)}.

Two representations V = {V,,,} and W = {W,,1,} are equivalent if
there are isomorphisms f,: V, — W, such that ¢ - foe) = fa(e) - ¢ for any
£ € e(I'). Two equivalent representations have the same dimension vector.

We say that [ is a quiver of finite type if there are only finitely many
equivalence classes of representations of I' for any fixed dimension vector.
This notion is independent of the choice of orientation of T'.

Theorem 1.12 ([Gabriel72]) Let T be a quiver of finite type. Then T' with
orientation forgotten is one of A,, D, and E,. Conversely, if I is one of
these types, it is a quiver of finite type.

Proof (Outline) Suppose that I is of finite type. Let v = (n4)acwo(r) be a
vector with positive integer coefficients n,. We choose and fix a representation
V := {V,, e} of T'. Hence n, = dimV,,. Then the set of representations of
[ is the set M := [],c r) Hom(Vaqy), V(). Let G := [oeyr) End(Va)- Then
G acts on M by

(pe) = (g80) - e - g;(ll)) for g, € End(V,,).

The set of equivalence classes of representations of I' with fixed dimV = v
is the quotient of M by the action of G. Since I is connected, the centre of
G consists of scalar matrices. Therefore dim M < dim G — 1 by assumption.
It follows that Y e Maip < Dgenr e — 1. Since this holds for any
Vv € (Z4)°*4®(), the bilinear form 35, ¢, T2 — X ee(r) Ta(e)Ta(e) IS positive
definite. It follows from the same argument as in the classification of simple
Lie algebras that the graph I is one of ADE. O

Theorem 1.13 ([Gabriel72]) Let I be a quiver of finite type. Then the
map V — dim 'V is a bijective correspondence between the set of equivalence
classes of indecomposable representations and the set of positive roots of the
root system corresponding to I'.

2 Conformal field theory

2.1 Background from physics

In the study of conformal field theories, systems fitting into an ADE classifi-
cation arise on considering field theories satisfying certain physically natural
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assumptions on a real two dimensional torus (periodic in one space and one
time direction).

We start by telling in very rough terms a story that physicists take for
granted. Suppose we are given an infinite dimensional vector space H and a
finite set of operators A; on H. The space H is supposed to be a realization
of various physical states. The operators A; are supposed to be selfadjoint in
so far as they correspond to actual physical operators or “observables”. In
this sense, the vector space H is required to have a Hermitian inner product,
namely, we require H to be unitary. Rather surprisingly, we will soon see
that the unitary assumption picks up mathematically interesting objects.

If we have a kind of Hamiltonian operator in the algebra A, the eigen-
value of the operator would be the energy of the (eigen)-state, and in general
any state is an infinite linear combination of eigenstates, like a Fourier series
expansion. The operators A; are supposed to correspond to physical observ-
ables such as the energy of particles in the system, and they correspond in
mathematical terms to irreducible representations of some algebra A on H,
where the system is said to admit A-symmetry.

The system {A, A;,H} is called a conformal field theory if the algebra A
contains a Virasoro algebra acting nontrivially on H.

The distribution of various energy levels is captured by the so-called par-
tition function of the system, which in mathematical terms is the generating
function of H weighted by the values of energy. If the system has space-time
symmetry, one proves by a physical argument that the partition function is
SL(2, Z)-invariant.

The problem is to determine all possible systems admitting space-time
symmetry; hence, as a first step, we consider the problem of classifying all
possible modular invariant partition functions, namely SL(2, Z)-invariant par-
tition functions in certain restricted situations. In the situations we are in-
terested in, the algebra A is either the affine Lie algebra A(ll) or the minimal
unitary series of Virasoro algebras with central charge ¢ = 1 —- 6/m{m + 1)
for m > 3. Although the minimal unitary series is more interesting, the par-
tition function for Agl) is easier to write down and more coherent to the ADE
classification. Therefore we limit ourselves to Agl). It is not known whether
the modular invariant partition functions in the subsequent table (Table 3)
are partition functions of some conformal field theory admitting space-time
symmetry.

We now rephrase all this in more mathematically rigorous terms.

Definition 2.2 Write

=8 =09 =6 )
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for the standard generators of slp(C). The Cartan—Killing form of sl,(C)
is given by (z,y)ue = Tr(zy). The affine Lie algebra A&l’ is an infinite
dimensional Lie algebra .A over C spanned by sl,(C) ® C[t, 7], together with
a central element ¢, subject to the relations

[x(m),y(n)] = [.’ZI, y](m + n) + m66m+n,0(x’ y)LIE and [c,a:(m)] =0,

for all m,n € Z; here t is an indeterminate, and we write z(m) := ¢ ® t™ for
z € sly (C)

Theorem 2.3 Let k be a positive integ(ler and s an integer with 0 < s < k.
We define an AP -module V (s, k) := All) -v(s, k) by

z(n)v(s,k) =0, e(0)v(s,k)=0 forzesh(C)andn >1,
h(0)v(s, k) = sv(s, k), cv(s, k) = kv(s,k).

Then V (s, k) is a unitary integrable irreducible Agl)-module having highest
weight vector v(s, k). Conversely, any unitary irreducible integrable highest
weight Agl)-module V is isomorphic to V (s, k) for some pair (s, k) as above.

By convention, we write v(s, k) as the ket |s, k). The integer k is called

the level of the Agl)-module V (s, k). By the Kac-Weyl character formula, we
have

Theorem 2.4 The character of Vs, k) is given by

Xs k(q, 0) — Z q(k+2)m2+(s+l)m(e\/—_la((k+2)m+§) _ e—\/—_lﬂ((k+2)m+§+l))/D’

meZl

where the denominator is D = (1 — e“/‘_la)cp(r)cp+(r)<p_ (1), and

ol@)=J[a-a"), e¢xla,0) =]]Q-eTq).

n>1 n>1

Although this may look different from the usual form of the Kac—-Weyl
formula, the above form of the character is adjusted to the expression used
by physicists to write down partition functions. In Kac’s notation ([Kac90],
Chapter 6 and p. 173) and the notation in 2.6

Xs,k = XL((k=s)Ao+sA1))

— ’I‘I'L((k—s)Ao+sA1 » (q(k+2)Loe\/—_1(k+2)9h(0)/2) .

We note that Lo = —d and ¢ = K in the notation of [Kac90], Chapters 6-7.
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Definition 2.5 The Virasoro algebra Vir. with central charge c is the infinite
dimensional Lie algebra over C generated by L, for n € Z and ¢, subject to
the following relations

C
[Lm, Ln] = (m - n)Lm+n + E 3

[Ln,c] =0 for all n,m.

(m - m)6m+n,03

There is a way of constructing L,, from the affine Lie algebra A(ll), called
the Segal-Sugawara construction:

1 1. .
L,= WD ";Z(:e(n —m)f(m): +:f(n —m)e(m): + 5:h(n — m)h(m).).

Here : : is the normal ordering defined by

z(m)y(n) if m <n,
:x(m)y(n): = < Hz(m)y(n) + y(n)z(m)) ifm=n,
y(n)z(m) ifm>n.
Then we infer the relations
1 3k

[Lm, Ln] = (m - n)Lm+n + m - m)6m+n,0’

T
[Lm,z(n)] = —nz(m+n) and [Lo,z(—n)] = nz(-n)

for all m,n € Z and z € sl,(C).

Thus given a system having A(ll) symmetry of level k, the system ad-
mits a Virasoro algebra Vir, symmetry with ¢ = 3k/(k + 2). Write v :=
z(—ny)z(—ny) - - - z(—np)|s, k); note that V(s, k) is spanned by vectors v of
this form for various n; > 0. The element Ly acts on v by

Lo(v) = {ﬁ(? +28)+(m+no+--- + n,,)}'u.

This shows that Lo behaves as if it measures the energy of the state v.

2.6 Modular invariant partition functions

Write A for the affine Lie algebra A(ll), and A* for its complex conjugate.
We fix the level k, and consider only unitary irreducible integrable A or A*-
modules of level k. We consider the following particular A ® A*-module:

H= @WQﬂV(f, k) ® (V(Z,’ k))*,

o
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where my p is the multiplicity of the copy V(¢,k) ® (V(¢,k))*.

This is what physicists call Hilbert spaces in such a situation, without
further qualifications. We only need to take the completion of H in order
to be mathematically rigorous. Mathematicians might guess why we have
to choose H as above. This is a special case of the factorization principle
widely accepted by physicists. Now Ly is supposed to play the same role as
the Hamiltonian operator of the system, and therefore the eigenvalues of Lo
should express the energies. For the (physical) theory it is always important
to know the energy level distribution inside the system. Thus it is important
to know the eigenvalues of Ly and to count the dimension of the eigenspaces,
in other words to determine the partition function Z of the system. The
partition function Z of the system (= the Agl)-module) H is defined by

Z(4,6,3,8) := Try ( q(k+2)Lo eV —1(k+2)8h(0)/2 q(k+2)l-,o e—\/—_l(k+2)0-ﬁ(0)/2)

*
= E Meer Xek Xet ke »
X

where ¢ = €2™V=17 with 7 in the upper half plane, and 8 is a real parameter;
when 7 is purely imaginary, —i7 equals the ratio of sizes of time and one
dimensional space. For more details see [Cardy88] and [EY89).

In this situation, the physicists assume

1. mo,0 = 1;
2. Z(q,0,q,0) is SL(2, Z)-invariant.

Condition (1) means that the system has a unique state of lowest energy,
usually called the vacuum. This is one of the principles that physicists take for
granted. We therefore follow the physicists’ tradition, doing as the Romans
do. Next, (2) is the condition of discrete space-time symmetry. It means
that Z is invariant under the transformations 7 — —1/7 and 6 — 6 + 1.
See [Cardy86] and [Cardy88] for more details. These assumptions have very
surprising consequences.

Theorem 2.7 Modular invariant partition functions are classified as in Ta-
ble 3. We write the partition function Z = 3 aixix; in terms of Agl)-
characters. Then the indices i with nonzero a; are Cozeter exponents of the
Lie algebra of the same type. Moreover the value k+2 is equal to the Cozeter
number.

For example, for k = 6 there are two modular invariant partition functions:

Z(A7) = bal® + Ixal® + -+ + Ixsl* + xal?,

Z(Ds) =Y [xar-1l* + (xaxs + x3x6) + |xal’,
A
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Type | k+2 | partition function Z(q, 6, g,0)

An n+1 | 35 bal

Do, 4r -2 Zf\:l [x2r—1 + Xar+1-2x% + 2|x2r—1 |

Dy, 4r 2,2\;1 Ix2a-1]% + Zf\;ll(m,\)_mr—z\ + XaxXar—22) + |Xar|?
Eg 12 Ix1 + x71? + Ixa + xsl® + [xs + xul?

E, 18 Ix1 + x17[% + |xs + xasl® + [x7 + xan?

+Ixol? + (xs + Xx15)Xo + Xo(X3 + Xus)

Eg 30 Ixa + X1 + xae + X0l + [x7 + X13 + xa7 + X23/?

Table 3: Modular invariant partition functions

where A; (respectively Ds) has Coxeter exponents {1,2,...,6,7} (respec-
tively {1,3,5,7,4}). Note that the indices 2,6 are not among the Coxeter
exponents of Ds. For k = 10, there are three types of modular invariant
partition functions Z (A1), Z(Dy7) and Z(Es).

For more details, see Capelli, Itzykson and Zuber [CIZ87], Kato [Kato87),
Gepner and Witten [GW86] and Kac and Wakimoto [KW88]. Compare also
[Slodowy90]. Pasquier [Pasquier87a] and [Pasquier87b] used Dynkin diagrams
to construct some lattice models and rediscovered a series of associative al-
gebras (called the Temperly-Lieb algebras) which are expected to appear as
some algebra of operators on the Hilbert space in the continuum limit of the
models. See also Section 3.4 and [GHJ89], p. 87, p. 259. Although the relation
of the models with modular invariant partition functions remains obscure, the
partition function of Pasquier’s model is expected to coincide in some sense
with those classified in Table 3. See [Zuber90]. The connection of CFT with
graphs is studied by Petkova and Zuber [PZ96].

2.8 N = 2 superconformal field theories

There are other series of conformal field theories — the N = 2 superconformal

field theories or {induced) topological conformal field theories, which are more

intimately related to the theory of ADE singularities. However, these are a

priori close to the theory of singularities. See Blok and Varchenko [BV92].
The following result might be worth mentioning here.

Theorem 2.9 Suppose that there exists an irreducible unitary Vir.-module,
namely an irreducible Vir.-module admitting a Vir.-invariant Hermitian inner
product. Thenc>1 orc=1—6/m(m + 1) for somem € Z,m > 3.
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2.10 The minimal unitary series

Virasoro algebras of the second type are called the minimal ¢ < 1 unitary se-
ries of Virasoro algebras. They attract attention because of their exceptional
characters. There is a series of von Neumann algebras with indices equal to
similar values 4 cos?(w/h) for h = 3,4,..., where h is the Coxeter number in
a suitable interpretation. Conjecturally, the minimal unitary ¢ < 1 series of
CFTs are deeply related to the class of subfactors which will be introduced in
Section 3. Much is already known about this topic. See [GHJ89], [Jones91],
[EK98].

3 Von Neumann algebras

3.1 Factors and subfactors

We give a brief explanation of von Neumann algebras, II; factors of finite
type, and subfactors. The reader is invited to refer, for instance, to [GHJ89),
[Jones91], [EK98]. Let H be a Hilbert space over C and B(H) the space of
all bounded C-linear operators on H endowed with an operator seminorm
in some suitable sense. A von Neumann algebra M is by definition a closed
subalgebra of B(H) containing the identity and stable under conjugation
z — z*. This is equivalent to saying that M is *-stable and is equal to its
bicommutant. This is von Neumann’s bicommutant theorem. See [Jones91],
p- 2. The commutant of a subset S of B(H) is by definition the centralizer
of S in B(H). The bicommutant of M is the commutant of the commutant
of M. If M is a x-stable subset of B(H), then the bicommutant of M is the
smallest von Neumann algebra containing M.

A factor is defined to be a von Neumann algebra M with centre Zy
consisting only of constant multiples of the identity. Let M be a factor. A
factor N is called a subfactor of M if it is a closed x-stable C-subalgebra of M.
A II, factor is by definition an infinite dimensional factor M which admits a
C-linear map tr: M — C (called the normalized trace) such that

1. tr(id) =1,
2. tr(zy) = tr{yz) forallz,ye M,
3. tr(z*z) >0 forall0#z € M.

We note that the above normalized trace is unique. Let L2(M) be the
Hilbert space obtained by completing M with respect to the inner product
(z | y) := tr(z*y) for z,y € M. The normalized trace induces a trace (not
necessarily normalized) Trps on the commutant M’ of M in B(H), called the
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natural trace. If H = L*(M), then Trpp(JzJ) = try(z) for all z € M where
J is the extension to L2(M) of the conjugation J(z) = 2* of M.

A finite factor M is either a II, factor or B(H) for a finite dimensional
Hilbert space H. Let M be a finite factor, and N a subfactor of M. Then the
Jones index [M : N| is defined to be dimy L?*(M) := Try(idz2(pr)), where N’
is the commutant of N. In general [M : N] € [1, 00| is a (possibly irrational)
positive number.

For instance, M = End¢(W) is a factor (a simple algebra) for any finite
dimensional C-vector space W. If N = End¢(V) is a subfactor of M, then
we have a representation of N = End¢(V) on W, in other words, W is an
Endc(V)-module. We recall that

1. any Endc(V)-module is completely reducible, and

2. V is a unique nontrivial irreducible Endc(V)-module up to isomor-
phism.

Therefore W ~ V ®c U for some C-vector space U. Hence dim¢ W is divisible
by dim¢ V. Since M is complete with respect to the inner product, we have
[M : N] = dimy L*(M) = dimy M = (dim¢ M)(dim¢ N)~! = (dimc U)?, a
square integer. See [GHJ89], p. 38.

The importance of the index [M : N] is explained by the following result:

Theorem 3.2 ([GHJ89], p. 138) Suppose that M is a finite factor, and
let H and H' be M-modules which are separable Hilbert spaces. Then

1. dimy H = dimys H' if and only if H and H' are isomorphic as M-
modules.

2. dimy H =1 if and only if H = L*(M).
3. dimys H is finite if and only if Endp(H) is a finite factor.

Theorem 3.3 ([GHJ89], p. 186) Suppose that N C M is a pair of I
factors whose principal graph is finite.

1. If [M : N] < 4 then [M : N] = 4cos*(n/h) for some integer h > 3.

2. If [M : N] = 4cos®(n/h) < 4, the principal graph of the pair N C M
is one of the Dynkin diagrams A,, D, and E, with Cozeter number h.
(Only Ay, Dsy, Eg and Eg can appear, see [Izumi91], p. 972. This was
proved independently by Kawahigashi and Izums.)

8. If [M : N] = 4 then the principal graph of the pair N C M is one of
the extended Dynkin diagrams A,,, D, and E,,.
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4. Conversely for any value )\ = 4 or 4 cos?(r/h), there exists a pair of I
factors N C M with [M : N] = A\

See (GHJ89), [Jones91], p. 35. See [GHJI89), p. 186 for principal graphs. See
also 3.8-3.10 where to each tower of finite dimensional semisimple algebras we
associate a finite graph I" analogous to a principal graph for a pair of factors.
This will help us to guess the principal graphs for factors.

3.4 The fundamental construction and Temperly-Lieb
algebras

Why do the constants 4 cos?(w/h) appear? Let us explain this briefly.
Given a pair of finite II; factors N C M with 3 := [M : N] < oo, there
exists a tower of finite II; factors M; for k =0,1,2,... such that

1. M\y=N, M, =M,

2. for any k > 1, the algebra My, := Endy,_, M; is obtained from M;
by taking the von Neumann algebra of operators on L?(M}) generated
by M, and an orthogonal projection e;: L2(M;) — L?(Mj_,), where
M, is viewed as a subalgebra of M}, under right multiplication.

By Theorem 3.2, (3), M4, is a finite II; factor. The sequence {ex }x=12,..

of projections on My := |J;o My satisfies the relations

2 __ *
€; = ¢, €; = ¢,

e; = feeje; for |i—j| =1,
eiej =eje; for |i—j|>2.

We define Agy, to be the C-algebra generated by 1,e,...,e,_; subject
to the above relations, and Az := (Jio, Agk- The algebra Az is called the
Temperly-Lieb algebra. Compare also [GHJ89], p. 259.

Thus given a pair of II; factors, the fundamental construction gives rise
to a unitary representation of the Temperly-Lieb algebra. However, the con-
dition that the representation is unitary restricts the possible values of 3, as
Theorem 3.5 shows.

Theorem 3.3, (1) follows from the following result

Theorem 3.5 ([WenzI87]) Suppose given an infinite sequence {ej}i=12,..
of projections on a complex Hilbert space satisfying the following relations:
el=¢;, e =e¢,
e; = fe;eje; for li-jl=1,
e.e; =eje;  for |i—j|>2.

Ifey #0, then 8> 4 or 8 = 4cos?(r /L) for an integer £ > 3.
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Proof We give an idea of the proof of Theorem 3.5. Suppose we are given a
homomorphism ¢: Ag — B(H) for some Hilbert space H, that is, a unitary
representation of Az. For simplicity we identify ¢(z) with = for z € Ag.

First we see that 0 < ele; = e? = e, = Bejeze; = B(eze1)*(eze1). Hence
B > 0. If 8= 0 then e; = 0, contradicting the assumption. Hence § > 0.

Next we assume 0 < 8 < 1 to derive a contradiction by using Ags. Let
82 :== 1 —e;. Then the assumptions of Theorem 3.5 imply 83 = &;, 62 = Js.
Hence

0 < (82€20)" (82€202) = (d2€202)° = (1 — B7")(82€282) < 0,

because 82205 = (€282)*(e202) > 0. Thus exd; = 0. It follows that e; = eje;,
and ez = €2 = eze1ey = B ley, 50 that ea = 0. Therefore e; = fBejeze; = 0,
contradicting the assumption. If 4 cos?(n/¢) < 8 < 4cos*(n/(£+1)), then we
derive a contradiction by using Ag¢4,. See [GHI89)], pp. 272-273. O

3.6 Bipartite graphs

A bipartite graph T with multiple edges is a (finite, connected) graph with
black and white vertices and multiple edges such that any edge connects a
white and black vertex, starting from a white one (see, for example, Figure 3).
If any edge is simple, thén I' is an oriented graph (a quiver) in the sense of
Section 1. Let I be a connected bipartite finite graph with multiple oriented
edges. Let w(I") (respectively b(I')) be the number of white (respectively
black) vertices of I'. We define the adjacency matriz A := A(T) of size b(T") x
w(T) by

Abw=

'y

m(e) if there exists e such that de = b — w;
0 otherwise,

where m(e) is the multiplicity of the edge e.
We define the norm ||T'|| as follows,

|1 X || = max{|| X z|lguow; l|zllever < 1};

ien= 1@ = (yiy )]

where X is a matrix,  a vector and | ||gucL the Euclidean norm. We note
that when X is a square matrix, || X|| is the maximum of the absolute values
of eigenvalues of X.

Lemma 3.7 Assume I is a connected finite graph with multiple edges. Then
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- N

Figure 3: The Dynkin diagram Djy as a bipartite graph

1. if |T)| < 2 and if T has a multiple edge, ||T|| =2 and T' = A,.

2. IT|| < 2 if and only if T is one of the Dynkin diagrams A, D,E. In
this case ||T'|| = 2cos(w/h), where h is the Cozeter number of T.

3. |IC|| = 2 if and only if T is one of the extended Dynkin diagrams
A D,E.

Lemma 3.7 is easy to prove. For instance, if there is a row or column
vector of I' with norm a, then ||T|| > a. See also [GHJ89], p. 19.

3.8 The tower of semisimple algebras

Why is Theorem 3.3, (2) true? The interested reader is invited to see [GHJ89).
Here we explain it in a much simpler situation.

Recall that a matrix algebra of finite rank is a finite factor by definition.
This is an elementary analogue of a finite II) factor with a finite dimensional
Hilbert space. So let us see what happens if we consider the fundamental
construction for a pair N C M of (sums of) matrix algebras. We call N and
M (a pair of) semisimple algebras (over C).

Let I" be a connected bipartite graph with multiple edges, v(I") and e(T)
its set of vertices and edges. Let W(w) be a C-vector space for a white vertex
w. Let W(b,w) be a C-vector space for an edge e with de = b — w and
V(b)) = Poemp—w W(b,w) ® W(w) for a black vertex b, where the sum runs
over all edges of I" ending at b. Set

P Ende(W(w)),

w:white

M := P Endc(V(®)

b:black

=P €& Endc(W(b w))®Endc(W(w)).

b:black 8e=b—w

N:

Now let wo: N — M be the homomorphism defined by

wo = @ Yo, Pop = @ idw pw) ® idEndWw (w))»
b

de=b—w
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where idw ) is the identity homomorphism of W(b,w). This is a repre-
sentation of the oriented graph I' in the sense of Definition 1.11 if m(e) =
dim W(b,w) < 1 for any edge e.

We set A(M, N) := A(T") and call it the inclusion matriz of M in N.

Let us consider a tower of semisimple algebras arising from the funda-
mental construction for the pair N C M. We define My = N, M; = M and
Mi41 := Endp,_, (M3) inductively.

Let M> = Endy M, ¢, the monomorphism of M; into M, by right multi-
plication. Let V (b, w) = Endc(W (b, w)). Then we see that

EndyM = P U(w),

w:white

U(w) := EB Endw ,)(V (b))

Oe=b~-w
= @ Endc(V(b,w)) ® Endc(W(w)),
Oe=b—w
P = @‘Pl,‘u» PrLw = @ right mult.v¢w) ® idEadW (w))-
w Oe=b—w

The construction shows that the graph I" describes the inclusion of M.
into M}, by interchanging the roles of white and black vertices, and reversing
the orientation of edges at each step. We see A(Mary1, Max) = A(M, N)},

We set [M : N] := limy_oo(dim M/ dim My)"/*. (This is one of the
equivalent definitions of the Jones index [M : N|.) We compute this in the
simplest case when I is a connected graph with two vertices and a single edge
e. Let m(e) be the multiplicity of e, and de = b — w. Then we see that

M, = N = Ende(W (w)),
M, = M = Endc(V (b)) =~ Endc(W(b, w)) ® Mo,
M; = Endc(Endc(W (b, w))) ® Endc(W(w)),
~ Endc(W (b, w)) ® Endc(V (b)) ~ Endc(W (b, w)) ® M.

Hence we see that dim¢ My/Mj—1 = dim¢ Endc(W (b, w)) = dimc(M/N). It
follows readily that [M : N] = dimc(M/N), as was remarked in 3.1.
In this situation, the following result is proved.

Theorem 3.9 ((GHJ89], pp. 32-33) 1. The following are equivalent:

(a) there exists a row b(T)-vector s and B € C* with SAA* = s such
that every coordinate of s and sA is nonzero,

(b) there exist C-linear maps ex: My — My_1 such that e = ex, and



Y. Ito and I. Nakamura 173

(1) My is generated by My_, and ex,
(it) ex satisfies e; = Peieje; if |i — j| = 1 and eie; = eje; if
li—jl=2.

2. If one of the equivalent conditions in (1) holds, then
B = [AD)AD) = |AT))? = [M : N].

This is nontrivial, but is just linear algebra. By Theorem 3.9, we have a
situation similar to a pair of II; factors N C M as well as a Temperly-Lieb
algebra Ag.

From Lemma 3.7, we infer the following resuit.

Corollary 3.10 Let M\y = NCMy=MC --- C M, C--- be a tower of
semisimple algebras. We have a Temperly-Lieb algebra Ag from the tower if
and only if 6 =[M : N] and B > 4 or 3 = 4cos®(w/h) for h = 3,4,5,....
Moreover

1. if B =4cos®(w/h), then the graph T is one of A, D, E;
2. if B =4, then the graph T" is one of E, 5, E.

For a pair of II, factors N C M, we can always carry out the same
construction as for a pair of semisimple algebras, and we find the same graphs
(principal graphs), because the pair in fact satisfies the stronger restrictions
of (infinite dimensional) II, factors. As a consequence, the cases Doqq and Ey
are excluded.

4 Two dimensional McKay correspondence

4.1 Finite subgroups of SL(2,C)

Up to conjugacy, any finite subgroup of SL(2,C) is one of the subgroups
listed in Table 4; see [Klein]. The triple (d,, dz, d3) specifies the degrees of
the generators of the G-invariant polynomial ring (compare Section 11).

4.2 McKay’s observation

As we mentioned in Section 1, any simple singularity is a quotient singular-
ity by a finite subgroup G of SL(2,C), and so has a corresponding Dynkin
diagram. McKay [McKay80] showed how one can recover the same graph
purely in terms of the representation theory of G, without passing through
the geometry of A2/G.
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Type | G name order h (d1,da,ds)
An | Zny | cyclic n+1 n+1 (2,n+1,n+1)
D, | D,_; | binary dihedral dn—-2)[2n—2 | (4,2n —4,2n — 2)
Es |T binary tetrahedral 24 12 (6,8,12)
E;, |0 binary octahedral 48 18 (8,12,18)
Eg |1 binary icosahedral 120 30 (12,20, 30)

Table 4: Finite subgroups of SL(2,C)

To be more precise, let G be a finite subgroup of SL(2, C). Clearly, G has
a two dimensional representation, which maps G injectively into SL(2,C);
we call this the natural representation pp.:. Let Irr, G, respectively Irr G, be
the set of all equivalence classes of irreducible representations, respectively
nontrivial ones. (Caution: note that this goes against the familiar notation
of group theory.) Thus by definition, Irr, G = Irr G U {po}, where py is the
one dimensional trivial representation. Any representation of G over C is
completely reducible, that is, it is a direct sum of irreducible representations
up to equivalence. Therefore for any p € Irr, G, we have

POPra= . Gpouf
pElr, G

where a, s are certain nonnegative integers. In our situation, we see that
a,, = 0 or 1 (except for the case A;, when a,, = 0 or 2).

Let us look at the example Ds, the case of a binary dihedral group G := D5
of order 12. The group G is generated by ¢ and 7:

o= (8 g(-)l> , T= (_01 (1)> where & = ¢?"V=1/8,

We note that Tr(c) = 1, Tr(7) = 0, hence in this case, the natural repre-
sentation is py in Table 5.

Definition 4.3 The graph fGRoup(G) is defined to be the graph consisting
of vertices v(p) for p € Irr, G, and simple edges connecting any pair of vertices
v(p) and v(p') with a,y = 1. We denote by ['group(G) the full subgraph

of Tgroupr(G) consisting of the vertices v(p) for p € Irr G and all the edges
between them.

For example, let us look at the Ds case. Let x; := Tr(p;) be the character
of p;. Then from Table 5 we see that

x2(9)x2(9) = xo0(g) + x1(g) + x3(g), forg=1,00rr.
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p | Trp| 1] o T
po| xo | 1] 1 1

|l x| 1|1 -1
p2 | x2 | 2] 1 0

pa | xs | 2| -1 0
pa | xa | 1| -1] V-1
ps | xs | 1] -1]—-v-1

Table 5: Character table of Ds

Hence Xx2x2 = Xo + X1 + x3- General representation theory says that an
irreducible representation of G is uniquely determined up to equivalence by
its character. Therefore p; ® p2 = po+ p1+ p3. Hence a,, ,, = 1 for  =0,1,3
and a,, ,, = 0 for j = 2,4,5. Similarly, we see that

XoX2 = X2, X1X2 = X2»
X3X2 = Xo + X1+ X4,
XsX2 = X3 and XsX2 = Xa-

In this way we obtain a graph — the extended Dynkin diagram Ds of Figure 4.
It is also interesting to note that the degrees of the characters deg p; = x;(1)
are equal to the multiplicities of the fundamental cycle we computed in Sec-
tion 1. This is true in the other cases. Namely the graph I'group(G) turns
out to be one of the Dynkin diagrams ADE, while fGROUp(G) is the corre-
sponding extended Dynkin diagram (see Figure 5). This is the observation of

[McKay80].
. Poep p3 @ P
Ds >—<
51 Ps

Figure 4: McKay correspondence for Ds

4.4 The Gonzalez-Sprinberg—Verdier construction

Let G be a finite subgroup of SL(2,C), X the minimal resolution of S :=
A%/G, and E the exceptional set. Gonzalez-Sprinberg and Verdier [GSV83]
constructed a locally free sheaf V, on X for any p € Irr G such that there
exists a unique E, € Irr F satisfying

deg(cl(V,,)|Ep) =1 and deg(e1(V,)j) =0for E' # E, E' € Irr E.

|
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Thus the map p — E, turns out to be a bijection from Irr G onto Irr E.
Their construction of V,, is essentially as follows [Knérrer85], p. 178. Let
p: G — GL(V(p)) be a nontrivial irreducible representation of G. Then the
associated free Op2-module V(p) := Ox2 Q¢ V (p) admits a canonical G-action
defined by g - (x,v) = (gz,gv). Let V(p)® be the Os-module consisting of
G-invariant sections in V(p). The (locally free) Ox-module V,, is defined as

V, := Ox ®og V(p)®/Ox-torsion.

Theorem 4.5 Let G be a finite subgroup of SL(2,C), S = A%/G, X the
minimal resolution of S and E the exceptional set. Then there is a bijection
j of Irr, G to Irr, E such that

1. j(po) = Eo =: E,, and j(p) = E, for p € It G,
2. deg(p) = mg.'¢ for all p € It, G;
3. apy = (E,, Ey)sing for p# p € It G.
In particular:
Corollary 4.6 Tcrour(G) = F'sina(A%/G) and Tarour(G) = Tsiva(A2/G).

See [McKay80] and [GSV83]. Using invariant theory, [Knérrer85) gave a
different proof of Theorem 4.5 based on the construction in [GSV83]. We dis-
cuss again the construction of [GSV83] from the viewpoint of Hilbert schemes
in Sections 8-16, and give there our own proof of Theorem 4.5.

5 Missing links and problems

5.1 Known links

We review briefly what is known about links between any pair of the objects
(a‘)_(f) - namely,

(a) simple singularities, (b) finite subgroups of SL(2, C),
(c) simple Lie algebras, (d) quivers, (e) CFT, (f) subfactors.

A very deep understanding of the link from (c) to (a) is provided by work of
Grothendieck, Brieskorn, Slodowy and Springer. See [Slodowy80]. However,
no intrinsic converse construction of simple Lie algebras starting from (a) is
known.

The link from (b) to (a) is on the one hand the obvious quotient singular-
ity construction, and on the other the very nontrivial McKay correspondence.
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The construction of [GSV83] gives an explanation for the McKay correspon-
dence. See also [Knorrer85] and Section 4. We will show a new way of
understanding the link (the McKay correspondence) in Sections 8-16. Quiv-
ers of finite type appear in the course of this, which provides a link from (b)
to (d) alongside the link from (b) to (a). This path has already been found
in [Kronheimer89] in a slightly different manner.

For a given pair of II; factors one can construct a tower of II; factors by
a certain procedure which specialists call mirror image transformations. In
order to have an ADE classification we had better look at the same tower
construction for a pair of semisimple algebras (semisimple algebras over C
are sums of matrix algebras). In the tower of semisimple algebras the initial
pair N C M is described as a representation of an ADE quiver, while the rest
of the tower is generated automatically from this. Therefore the link between
(d) and (f) is firmly established, though the subfactors are only possible with
the exception of Dydq and E7. The link between (e) and (f) does not seem to
be perfectly understood. See [EK98].

Infinite dimensional Heisenberg/Clifford algebras and their representa-
tions on Fock space enter the theory of Hilbert schemes. See [Nakajima96b],
[Grojnowski96] and Section 6. This strongly suggests as yet unrevealed rela-
tions between the theory of Hilbert schemes with modular invariant partitions
and II, (sub)factors.

The most desirable outcome would be a theory in which all six kinds of
objects (a)—(f) arise naturally in various forms from one and the same object,
for instance, from a finite subgroup of SL(2, C).

5.2 Problems

The following problems are worth further investigation.

1. What are the Coxeter exponents and the Coxeter number for a finite
subgroup of SL(2,C), and why? (It is known that the Coxeter number
equals the largest degree of the three homogeneous generators of the
G-invariant polynomial ring. But why?)

2. What are the multiplicities of the highest weight for (e) and (f)?

3. Why do indices other than Coxeter exponents appear in Table 3 of
Theorem 2.77

4. The link from (b) to (c)? Can we recover the Lie algebras?

5. The link from (a) to (c)? Can we recover the Lie algebras?

6. The links from (b) to (e) and (f)?
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7. Theorem 2.9 and Theorem 3.3 hint at an ADE classification of ¢ < 1
minimal unitary series. If so, what do they look like? What is the link
from (e) to (f) via this route?

6 Hilbert schemes of n points

6.1 Existence and projectivity

Let X be a projective scheme over C. The n-point Hilbert scheme Hilb’ is by
definition the universal scheme parametrizing all zero dimensional subschemes
Z C X such that h%(Z,0z) = dim(Oz) = n. A zero dimensional subscheme
Z € Hilb has a defining ideal I C Ox that fits in an exact sequence

0—-’[—-70)(—-?02—)0.
Thus, set theoretically,

Hilb% = {Z c X;dim(Oz) = n}
~ {I C Ox;I an ideal of Ox,dim(Ox/I) = n}.

See [Mumford], Lectures 3—4 or Grothendieck [FGA], Exposé 221 for an
explanation of Hilbert schemes and a general treatment of their universal
properties. A theorem of Grothendieck [FGA], Exposé 221 guarantees the
existence of Hilbert schemes in a fairly general context; we give an elementary
proof that Hilb% exists and is a projective scheme, following suggestions of
Y. Miyaoka and M. Reid.

Let Ox (1) be a very ample invertible sheaf on X defining an embedding
X — PV, and set Ox(m) := Ox(1)®™. We prove first that Hilb% for fixed
n can be viewed as a subscheme of the Grassmann variety of codimension n
vector subspaces of H(X, Ox(n)).

Lemma 6.2 Let Z C X C PV be a zero dimensional subschemes of degree
n. Then

(i) The restriction map rz: H*(Ox(m)) — Oz(m) ~ Oy is surjective for
anym>n—1;

(ii) IOx(m) is generated by its H® for any m > n.

Proof Write SuppZ = {R,,..., P}, and degp Z = n;, so that ) n; = n.
Now for each P;, the map

ri: HY(PN,0(m)) — Opn /m
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is surjective for any m > n; —1. Moreover, for k > n;, the kernel of r; contains
forms not vanishing at any given point ¢ # P;. This is obvious, because, if
P, is taken as the centre of inhomogeneous coordinates, then Opn /m; is just
the vector space of polynomials of degree < n;—1. Clearly Opny /mp — Ozp,
is also surjective.

The lemma now follows on taking the product of forms of degree > n;. O

Corollary 6.3 Let X be a projective scheme and Ox(1) a very ample line
bundle on X. Then Hilb™ X is a closed subscheme of the Grassmann variety
of codimension n subspaces of H(Ox(n)).

Proof It is not hard to see that a subspace V C H*(Ox(n)) of codimension
n generates a subsheaf Ox -V = I(n) C Ox(n) with dim(Ox/I) = n if
and only if the map V ® H*(Ox(1)) — H°(Ox(n + 1)) also has corank n.
(This is the condition that V is closed under multiplication by linear forms.)
This condition clearly defines a Zariski closed subscheme of the Grassmann
variety. The alternative proof of the corollary uses the standard flattening
stratifications of [Mumford], Lecture 8. O

The construction of Hilb™ X in Corollary 6.3 makes clear that X x Hilb™ X
has a sheaf of ideals I defining a 0-dimensional subscheme Z™ C X x Hilb™ X
satisfying the following universality property, a special case of a theorem of
Grothendieck [FGA], Exposé 221. We will use this theorem to determine the
precise structure of Hilb)G{ defined in Section 8.

Theorem 6.4 (existence and universality of Hilb%) Let X be a projec-
tive scheme and n any positive integer. Then there exists a projective scheme
Hilb% (possibly with finitely many irreducible components) and a universal
proper flat family wuny: Z™ — Hilb% of zero dimensional subschemes of X
such that:

1. any fibre of Tyniv belongs to HilbY;

2. Zp = Z? if and only if t = s, where ZP = w} (t) for t € Hilb;

3. given any flat family m: Y — S of zero dimensional subschemes of X
with length n, there ezists a unique morphism @: S — Hilb% such that
(Ya 77) = <P*(Z"‘, 7Tuniv)~

Let U be an open subscheme of X. Then Hilb{; is an open subscheme of
Hilb% consisting of the subschemes of X with support contained in U. We
call Hilby; the n-point Hilbert scheme of U.
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6.5 Hilbert—Chow morphism

Write S™(A?) for the nth symmetric product of the affine plane A2 This is
by definition the quotient of the products of n copies of A% by the natural
permutation action of the symmetric group S, on n letters. It is the set of
formal sums of n points, in other words, the set of unordered n-tuples of
points.

We call Hilb™(A?) the Hilbert scheme of n points in A%. It is a quasipro-
jective scheme of dimension 2n. Any Z € Hilb™(A?) is a zero dimensional
subscheme with h%(Z,0z) = dim(Oz) = n. Suppose that Z is reduced.
Then Z is a union of n distinct points. Since being reduced is an open and
generic condition, Hilb™(A?) contains a Zariski open subset consisting of for-
mal sums of n distinct points. This is why we call Hilb"(A?) the Hilbert
scheme of n points on A2

We have a natural morphism 7 from Hilb"(A?) onto S"(A?) defined by

7w Z Z dim(Oz,)p.

pESupp(Z)

We call = the Hilbert—-Chow morphism (of A?). Let D be the subset of
S"™(A?) consisting of formal sums of n points with at least two coincident
points. It is clear that = is the identity over S*(A?)\ D, hence is birational. If
n = 2 and if Z is nonreduced with Supp(Z) the origin, then Z is a subscheme
defined by the ideal

I=(az+by,2%,ay,9%), where (a,b)# (0,0).

Thus the set of these subschemes is P! parametrizing the ratios a : b. It follows
that Hilb?(A?) is the quotient by the symmetric group Sz of the blowup of
the nonsingular fourfold A? x A? along the diagonal A2. For all n there is a
relatively simple description, due to Barth, of Hilb}. as a scheme, in terms of
monads. See [0SS80] and [Nakajima96b], Chapter 2. We write some of these
down explicitly in Sections 12-16.

One of the most remarkable features of Hilb™(A?) is the following result.

Theorem 6.6 ([Fogarty68]) Hilb™(A?) is a smooth quasiprojective scheme,
and w: Hilb™(A?) — S™(A?) is a resolution of singularities of the symmetric
product.

A simpler proof of Theorem 6.6 is given in [Nakajima96b]. We note that
smoothness of Hilb™(A?) is peculiar to dim A? = 2. If k > 3, then a subscheme
Z C A* can be very complicated in general [Gottsche91]. See [larrobino77],
[Briangon77]. [Géttsche91], p. 60 writes that Hilb™(A¥) is known to be sin-
gular for k > 3 and n > 4, while it is smooth for any k if n = 3. Hilb™(AF) is
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connected for any n and k by [Fogarty68], while it is reducible, hence singular
for any k and any large n > k by [larrobino72].

Besides smoothness, Hilb™(A?) has various mysterious nice properties.
Among others, the following is relevant to our subsequent study of Hilb®(A2).

Theorem 6.7 ([Beauville83]) Hilb"(A?) admits a holomorphic symplectic
structure.

Proof See also [Fujiki83] for n = 2, and [Mukai84] for a more general case.
The sketch proof below, mostly taken from [Beauville83], shows that the
theorem also holds for Hilb™(S) if S is a smooth complex surface with a
nowhere vanishing holomorphic two form. Let w be a nowhere vanishing
closed holomorphic 2-form on S := A2, say dx A dy in terms of the linear
coordinates on S. The product S™ of n copies of S has the holomorphic 2-
form 9 := "7, p}(w), where p; is the ith projection. We show that 9 induces
a symplectic form on St := Hilb"™(S).

We write S = S™(S) for the nth symmetric product of 3, that is, by
definition, the quotient of the products of n copies of S by the natural per-
mutation action of the symmetric group S, on n letters. Let £: $* — ™
be the natural morphism. Let D, be the open subset of D consisting of all
O-cycles of the form 2x; + x5 + -- - + x,-1 with all the x; distinct. We set
™ .= 8™\ (D\ D,), S = 7=1(8™), §7 := £~1(S$™) and A, = e~}(D,).
Then A, is smooth and of codimension 2 in S™. Then by [Beauville83],
p. 766, SI™ is isomorphic to the quotient of the blowup of Bla,(S™) of S™
along A, b;f the sPrmmetric group S,. Hence we have a natural morphism
p: Blp(S™ ) — S5 We see easily that % induces a holomorphic 2-form ¢
on S&n], which extends to S because the codimension of the inverse image
of S\ St in St is greater than one.

Let F, be the inverse image of A, in Bla,( ,E")) Then the canonical
bundle of Bla,( i")) is E,, because that of S” is trivial. On the other hand,
it is the sum of the divisor p*(¢") and the ramification divisor R of p. Since
R = E, on By, (S™), we see that ()" is everywhere nonvanishing on S,
hence also on S!™ [Beauville83]. Thus ¢ is a nowhere degenerate 2-form, that
is, a holomorphic symplectic form on S. O

Definition 6.8 The infinite dimensional Heisenberg algebra s is by definition
the Lie algebra generated by p;, ¢; for ¢ > 1 and ¢, subject to the relations

[piyq5) = ¢bijs  [pi,p5) = @i, 5] = [pi, o] = [@i, ] = 0.

It is known that for any a € C*, the Lie algebra s has the canonical
commutation relations representation o, on the Fock space R := C[zy, za, ... ],



182 Hilbert schemes and simple singularities

that is, the ring of polynomials in infinitely many indeterminates z;; the
representation is defined by

o.(p;) = aa_x,-’ 0.() =i, 04(c) =a-idg.

We denote this s-module by R,. We also define a derivation dy of s by
[dOy Qz] = un [dpri] = _ipiy [d07 C] =0.
The following fact is important (see [Kac90}, pp. 162-163):

Theorem 6.9 An irreducible s-module with generator vy is isomorphic to R,
if pi(vo) = 0 for all i and c(vy) = avy for some a # 0. The character of R, is
given by

o0

Tra,(¢®) = [J(1 - )"

i=]

The vector vy in the above theorem is called a vacuum vector of V. We
quote one of the surprising results of [Nakajima96b].

Theorem 6.10 Let s be the infinite dimensional Heisenberg algebra. Then
the direct sum of all the cohomology groups @, ., H*(Hilb"(A2),C) is an
irreducible s-module with a = 1 whose vacuum vector vy is a generator of
H°(Hilb’(A?), C).

By Theorem 6.9, the above theorem gives in a sense the complete structure
of the s-module. However we should mention that its irreducibility follows
from comparison with the following Theorem 6.11.

[Nakajima96b] derives a similar conclusion when A? is replaced by a
smooth quasiprojective complex surface X. Then &, , H*(Hilb"(X),C) is
an infinite dimensional Heisenberg/Clifford algebra module. Its irreducibility
again follows from Theorem 6.11.

Cell decompositions of Hilb™(P?) and Hilb™(A?), and hence complete for-
mulas for the Betti numbers of Hilb™(P?) and Hilb™(A?), are known by Ellings-
rud and Strgmme [ES87]. The formulas for the Betti numbers of Hilb™(P?)
and Hilb™(A?) are written by [Gottsche91] more generally in the following
beautiful manner.

To state the theorem, we define the Poincaré polynomial p(X,z) of a
smooth complex variety X by p(X, 2) := Y 2, dim H*(X, Q)2*. Moreover we
define p(X, z,t) := 3.7, p(Hilb™(X), z)t" for a smooth complex surface X.
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Theorem 6.11 ([Gottsche91]) Let X be a smooth projective complex sur-
face. Then

O (1 + z2m—ltm)b1(x)(1 +z2m+ltm)bg(X)
p(X,2,t) = 11 (1 — 22m=2gm)bo(X) (] — 2mgm)ea(X) (] — z2m+t2gm)ha(X) °

where bi(S) 1s the ith Betti number of S.

7 Three dimensional quotient singularities

7.1 Classification of finite subgroups of SL(3,C)

Threefold Gorenstein quotient singularities have attracted the attention of
both mathematicians and physicists in connection with Calabi—Yau three-
folds, mirror symmetry and superstring theory. For a finite subgroup G of
GL(n,C), the quotient A™/G is Gorenstein if and only if G C SL(n,C); see
[Khinich76] and [Watanabe74].

Now we review the classification of finite subgroups of SL(3,C) from
the very classical works of [Blichfeldt17], and Miller, Blichfeldt and Dick-
son [MBD16]. In these works they nearly completed the classification of finite
subgroups of SL(3,C) up to conjugacy. Unfortunately, however, there were
two missing classes, which were supplemented later by Stephen S.-T. Yau and
Y. Yu [YY93], p. 2.

There is an obvious series of finite subgroups coming from subgroups of
GL(2,C). In fact, associating (detg)~! @ g to each g € GL(2,C), we have
a finite subgroup of SL(3,C) for any subgroup of GL(2,C). Including this
series, there are exactly four infinite series of finite subgroups of SL(3, C):

1. diagonal Abelian groups;

2. groups coming from finite subgroups in GL(2, C);
3. groups generated by (1) and T;

4. groups generated by (3) and Q.

Here
010 L {11 -
T=(00 1), Q=— (1 w w?}, wherew:=¢¥ /3
100 V=3l W ow

There are exactly eight sporadic classes, each of which contains a unique
finite subgroup up to conjugacy, of order 108, 216, 648, 60, 168, 180, 504 and
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1080 respectively. Only two finite simple groups appear: As (=~ PSL(2,F5))
of order 60, and PSL(2,F7) of order 168.

The subgroup PSL(2,F7) of SL(3,C) is the automorphism group of the
Klein quartic curve z3z, + z3z5 + 2370 = 0. On the other hand, Ajs is
realized as a subgroup of SL(3, C) as follows. Let G be the binary icosahedral
subgroup of SL(2,C) of order 120 (compare Section 16). This acts on the
space of polynomials of homogeneous degree two on A2, with +1 € G acting
trivially. Therefore this is an irreducible representation of G/{%1} (~ As)
of rank three. This realizes As as a finite subgroup of SL(3,C). Or, more
simply, As C SO(3) is the group of automorphisms of the icosahedron.

In the case of order 108, the quotient A3/G is a complete intersection
defined by two equations, while it is a hypersurface in the remaining seven
cases. The defining equations are completely known; in contrast with the
two dimensional case, they are not all weighted homogeneous. The weighted
homogeneous ones are the cases of order 108, 648, 60, 180 and 1080 [YY93].

All finite subgroups of GL(2, C) are known by Behnke and Riemenschnei-
der [BR95]. We note that in the easiest series (1) the quotients are torus em-
beddings. Therefore their smooth resolutions are constructed through torus
embeddings. See [Roan89).

Outstanding in this area is the following theorem, which generalizes the
two dimensional McKay correspondence to some extent.

Theorem 7.2 For any finite subgroup G of SL(3,C), there ezists a smooth
resolution X of the quotient A%/G such that the canonical bundle of X is triv-
ial (X is then called a crepant resolution of A®/G). For any such resolution
X, H*(X,Z) is a free Z-module of rank equal to the number of the conjugacy
classes of G.

[Ito95a], [Ito95b], [Markushevich92], [Roan94] and [Roan96] contributed
to the proof of this theorem. It seems desirable to simplify the proofs for
the complicated sporadic classes. Ito and Reid [IR96] generalized the the-
orem and sharpened it especially in dimension three by finding a bijective
correspondence between irreducible exceptional divisors of the resolution and
conjugacy classes of G (called junior) with certain type of eigenvalues: they
defined the notion of age of a conjugacy class; the junior conjugacy classes
are those of age equal to one. The junior ones play a more important role in
the study of crepant resolutions.
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8 Hilbert schemes and simple singularities:
Introduction

The second half of the article starts here. In it, we study the link from (b)

to (a).

8.1 Abstract

For any finite subgroup G of SL(2,C) of order n, we consider the G-orbit
Hilbert scheme, namely, a certain subscheme Hilb®(A?) of Hilb"(A?) that
parametrizes G-invariant subschemes. We first give a direct proof, indepen-
dent of the classification of finite subgroups of SL(2, C), that Hilb®(A?) is a
minimal resolution of a simple singularity A2/G. Any point of the exceptional
set E is a G-invariant 0-dimensional subscheme Z of A% with support the ori-
gin. Let I be the ideal sheaf defining Z. Then I is an infinite dimensional
G-module. Dividing it by a natural G-submodule of I gives a finite G-module
V' (I), which turns out to be either an irreducible G-module or the sum of two
inequivalent irreducible G-modules. This gives the McKay correspondence as
described in Section 4.

8.2 Summary of main results

We explain in a little more detail. Let S™(A?) be the nth symmetric product of
A? (that is, the Chow variety Chow™(A?)), and Hilb"(A?) the Hilbert scheme
of n points of A2. By Theorems 6.6 and 6.7, Hilb™(A?) is a crepant resolution
of $"(A?) with a holomorphic symplectic structure.

Let G be an arbitrary finite subgroup of SL(2,C); it acts on A% and
therefore has a canonical action on both Hilb”(A2?) and S*(A%). Now we
consider the particular case where n equals the order of G. Then it is easy
to see that the G-fixed point set S*(A%)¢ in S*(A?) is isomorphic to the
quotient A%/G. The G-fixed point set Hilb"(A?)% in Hilb™(A?) is always
nonsingular, but could a priori be disconnected. There is however a unigue
irreducible component of Hilb"(A%)¢ dominating S™(A2)¢, which we denote
by Hile(A2). Since Hile(A2) inherits a holomorphic symplectic structure
from Hilb™(A?), Hilb®(A?) is a crepant (that is, minimal) resolution of A?/G
(see Theorem 9.3).

Our aim in this part is to study in detail the structure of Hile(A2) using
representations of G defined in terms of spaces of homogeneous polynomials
or symmetric tensors.

Let m (respectively mg) be the maximal ideal of the origin of A? (respec-
tively S := A2/G) and set n = mgQ,2. A point p of Hilb®(A?) is a G-invariant
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0-dimensional subscheme Z of A2, and to it we associate the G-invariant ideal
subsheaf I defining Z, and the exact sequence

0—=1— 02— 0Oz —0.

We assume that p is in the exceptional set E of Hilb®(A2); since G acts freely
outside the origin, Z is then supported at the origin, and I C m. As is easily
shown, I contains n (Corollary 9.6). Let V(I) := I/(mI + n). The finite
G-module V() is isomorphic to a minimal G-submodule of I/n generating
the Oy2-module I/n.

If p is a smooth point of E, we prove that V(I) is a nontrivial irreducible
G-module; while if p € E is a singular point, V(I) is the direct sum of two
inequivalent nontrivial irreducible G-modules. For any equivalence class of a
nontrivial irreducible G-module p we define the subset E(p) of E consisting
of all I € Hilb®(A?) such that V(I) contains p as a G-submodule. We will
see that E(p) is naturally identified with the set of all nontrivial proper G-
submodules of p®2, which is isomorphic to a smooth rational curve by Schur’s
lemma (Theorem 10.7). The map p — E{p) gives a bijective correspondence
(Theorem 10.4) between the set Irr G of all the equivalence classes of irre-
ducible G-modules and the set Irr E of all the irreducible components of E,
which turns out to be the classical McKay correspondence [McKay80].

We also give an explanation of why it is that tensoring by the natural
representation appears as the key ingredient in the McKay correspondence.
An outline of the story is given in Section 13.5. The most remarkable point,
in addition to the McKay correspondence itself, is that there are two kinds
of dualities (Theorems 10.6 and 12.4) in the G-module decomposition of the
algebra m/n. (After completing the present work, we were informed by Shin-
oda that the dualities also follow from [Steinberg64].) It is the second duality
(for instance, Theorem 10.6) that explains why tensoring by the natural rep-
resentation appears in the McKay correspondence.

Our results hold also in characteristic p provided that the ground field &
is algebraically closed and the order of G is coprime to p.

The research part of the article is organized as follows. In Section 9 we
prove that Hilb®(A?) is a crepant (or minimal) resolution of A%/G. We also
give some elementary lemmas on representations of finite groups. In Sec-
tion 10 we formulate our main theorem and relevant theorems. We give a
complete description of the ideals corresponding to the points of the excep-
tional set E. In Section 11 we prove the dualities independently of the classi-
fication of finite subgroups of SL(2, C). In Sections 12-16 we study Hilb®(A?)
and prove the main theorem separately in the cases A,, D,, Eg, E; and Ej
respectively.

In Section 17, we raise some unsolved questions.
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9 The crepant (minimal) resolution

Lemma 9.1 Let G be a finite subgroup of GL(2,C), and Hilb™(A%)® the
subset of Hilb™(A2) consisting of all points fired by G. Then Hilb™(A?)¢ is
nonsingular.

Proof By Theorem 6.6, Hilb"(A?) is nonsingular. Let p be a point of
Hilb™(A%)€. The action of G on Hilb™(A2) at p is linearized; in other words
we see that there exist local parameters z; of Hilb™(A?) at p and some con-
stants a;;(g) € C such that g*z; = ) a;;(g)z; for any g € G. The fixed locus
Hilb™(A2%)C at p is by definition the reduced subscheme of Hilb™(A%)¢ defined
by z; — Y aij(9)z; = 0 for all g € G. Hence it is nonsingular. O

Lemma 9.2 Let G be a finite subgroup of SL(2,C) of order n, and S*(A?)¢
the subset of S"(A?) consisting of all points of S*(A?) fized by G. Then
S*(A?%)C¢ ~ A?/G.

Proof Let 0# q € A? be a point. Then since q is not fixed by any element
of G other than the identity, the set G - q := {g(q);9 € G} determines
a point in S*(A2)S. Conversely, any point of S*(A?)¢ is an unordered G-
invariant set ¥ in A%, If £ contains a point q # 0, it must contain the set
G-q. Since |Z| = n = |G|, we have £ = G -q. Note G-q = G - ¢ for
a pair of points q,q' # 0 if and only if ¢’ € G- q. Therefore we have the
isomorphism S™(A?\ {0})¢ ~ (A?\ {0})/G, which extends naturally to a
bijective morphism of S*(A?)¢ onto A?/G. It follows that S*(A?)¢ ~ A?/G
because A?/G is normal. O

Theorem 9.3 Let G C SL(2,C) be a finite subgroup of order n. Then there
is a unique irreducible component Hilb®(A?) of Hilb™(A2)€ dominating A2/G,
which is a crepant (or equivalently a minimal) resolution of A%/G.

Proof The Hilbert-Chow morphism of Hilb™(A2) onto S™(A2%) is defined
by 7(Z) = Supp(Z) (counted with the appropriate multiplicities) for a zero
dimensional subscheme Z of A2. Since Hilb™(PP?) is a projective scheme by
Theorem 6.4, the Hilbert—-Chow morphism of Hilb™(P2?) is proper. Hence
the Hilbert—Chow morphism of Hilb™(A?) is proper, because it is obtained
by restricting the image variety S™(P?) to S™(A2). This induces a natural
morphism of Hilb®(A?) onto S"(A2)¢ ~ A2/G. Any point of S*(A2)¢\ {0} is a
G-orbit of a point 0 # p € A%, which is a reduced zero dimensional subscheme
invariant under G. It follows that Hilb®(A?) is birationally equivalent to
S™(A?)%, so that it is a resolution of S*(A%)¢ ~ A%/G.
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By [Fujiki83], Proposition 2.6, Hile(AQ) inherits a canonical holomorphic
symplectic structure from Hilb(A2). Since dim Hilb®(A2) = dim A%/G = 2,
this implies that the dualizing sheaf of Hile(AQ) is trivial. This completes
the proof. O

Lemma 9.4 Let G be a finite subgroup of GL(n,C). Let S be a connected
reduced scheme, and T an ideal of Opnxs such that Opnys/T is flat over S.
Let I, := T @ Opnx{s)- Suppose that we are given a regular action of G on
A™ x S possibly depending nontrivially on S. If dim Supp(Oanx{s}/Zs) = 0
for any s € S, then the equivalence class of the G-module Opnx(s}/Ls is
independent of s.

Proof By the assumption h! (Oanx{s}/Zs) = 0. Thus h®(Oanx(s}/Zs) is con-
stant on S, because x(Oarx{s}/ZLs) is constant by [Hartshorne77], Chap. III.
Hence again by [ibid.] Oanxs/Z is a locally free sheaf of Og-modules of finite
rank. Let E := Oanyxs/Z and A(g,z) := det(z - id — T(g)) be the charac-
teristic polynomial of the action T'(g) of ¢ € G on E. Clearly A(g,z) is
independent of a local trivialization of the sheaf E. It follows that A(g, ) €
Hom(det E, det F)[z] = I'(Os)|x], the polynomial ring of = over I'(Og). More-
over coefficients of the polynomial A(g,z) in z are elementary symmetric
polynomials of eigenvalues of T'(g). Since all the eigenvalues of T'(g) are nth
roots of unity where n = |G|, coefficients of A(g,z) take values in a finite
subset of C over S. Since S is connected and reduced, they are constant. It
follows that A(g,z) € C[z]. In particular the character TrT(g), the coeffi-
cient of z in A(g,z) is independent of s € S. Since any finite G-module is
uniquely determined up to equivalence by its character, the equivalence class
of the G-module Oynx{s}/Z; is independent of s € S. O

Corollary 9.5 Let G be a finite subgroup of SL(2,C), and I an ideal of
Oz with I € Hilb®(A?). Then as G-modules Op2/I ~ C[G), the regular
representation of G.

Corollary 9.6 Let I be an ideal of Ox2 with I € Hilb®(A2). Any G-invariant
function vanishing at the origin is contained in I.

Proof O,:/I ~ C[G] by Corollary 9.5. This implies that Oa2/I has a
unique trivial G-submodule spanned by constant functions of A% It follows
that any G-invariant function vanishing at the origin is contained in . O

Remark 9.7 By [Nakajima96b], Theorem 4.4, for I € Hilb™(A?), the follow-
ing conditions are equivalent,
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1. I € Hilb%(A?);
2. O42/I ~ C[G];
3. Homo,, (I, Oa2/1)¢

10 The Main Theorem

10.1 Stratification of Hilb®(A?) by Irr G

Let G be a finite subgroup of SL(2,C). As in 4.2, we write Irr G for the set of
all the equivalence classes of nontrivial irreducible G-modules, and Irr, G for
the union of Irr G and the trivial one dimensional G-module. Let V(p) € Irr G
be a G-module, and p: G — GL(V(p)) the corresponding homomorphism.

Let X = X¢ := Hilb®(A?) and S = S¢ := A?/G. Write m (respectively
mg) for the maximal ideal of A? (respectively S) at the origin 0, and set
n:=mgO,2. Let 7: X — S be the natural morphism and E the exceptional
set of m. Let Irr E be the set of irreducible components of E. Any I € X
contained in E (to be exact, the subscheme defined by I belongs to X) is a
G-invariant ideal of 0,2 which contains n by Corollary 9.6. For any p, ¢/,
and p"” € Irr G, we define

V() :=I/(mI +n),
Blp) == {1 € HbS(A2): V(1) > V(a)}
P(p,p) 1= {I € KO (AM; V(1) 5 V(o) @ V(6)},
Q(p,0,p") == {I e HIL?(A%); V(1) D V(o) @ V(0) ® V(p")} .

Remark 10.2 Note that we allow p = o’ in the definition of P(p,p’). Of
E(p

in
course if p # g/, then P(p, p') = E(p) N E(¢').
Definition 10.3 Two irreducible G-modules p and p’ are said to be adjacent
if p® p,,. contains p’, which happens if and only if o' ® p,,, contains p.

In fact, since G C SL(2,C), we have x,..(z7!) = x,.(z) forall z € G
where x,.. := Tr(p,..). Hence for any characters x and x’ of G

(a2 X) = (1/1G)) D X(2) Xt @)X () = (3 X Xo)-
z€G

Thus the multiplicity of ¢’ in p® p,,, equals that of pin p’®p,,,.

The Dynkin diagram '(Irr G) or the extended Dynkin diagram I'(Irr, G)
of G is the graph whose vertices are Irr G or Irr, G respectively, with p and
¢’ joined by a simple edge if and only if p and p’ are adjacent.
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Figure 5: The extended Dynkin diagrams and representations

Then our main theorem is stated as follows.

Theorem 10.4 Let G be a finite subgroup of SL(2,C). Then

1. the map p — E(p) is a bijective correspondence between Irr G and Irr E;
2. E(p) is a smooth rational curve with E(p)* = —2 for any p € It G;

3. P(p,p') # 0 if and only if p and p’ are adjacent. In this case P(p,p') is a
single (reduced) point, at which E(p) and E(p") intersect transversally;

4- P(p,p) = Q(p,p,0") = 0 for any p, ¢, p" € Ir G.

In the A, case, Theorem 10.4 follows from Theorem 9.3 and the theorems
in Section 12; in the other cases, it follows from Theorem 9.3, Theorem 10.7
and Remark 10.8.

By Theorem 10.4, (3), I'(Irr G) is the same thing as the dual graph I'(Irr E)
of E, in other words, the Dynkin diagram of the singularity Sg. Let h be the
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Coxeter number of I'(Irr E). We also call h the Coxeter number of G. See
Table 2 and Section 11.1.

We define nonnegative integers d(p) for any p € Irr G as follows. If G
is cyclic, choose a character x of G such that pn.s = x @ x~!, and define
e(x*) =k, d(x*) = |22 —k|. Although there are two choices of the generator
X, the definition of the pair (& — d(p),% + d(p)) = (e(p),n +1 —e(p)) is
independent of the choice. If G is not cyclic, then I'(Irr G) is star-shaped
with a unique centre. For any p € Irr G, we define d(p) to be the distance
from the vertex p to the centre. It is obvious that d(p) = d(p’) £ 1 if p and
¢ € Irr G are adjacent. Also in the cyclic case if we define the centre to be
the midpoint of the graph, then d(p) is the distance from the centre.

For any positive integer m let Sy, := Sy (onat) be the symmetric m-tensors
of pnat, that is, the space of homogeneous polynomials of degree m. We say
that a G-submodule W of m/n is homogeneous of degree m if it is generated
over C by homogeneous polynomials of degree m.

The G-module m/n splits as a direct sum of irreducible homogeneous G-
modules. If W is a direct sum of homogeneous G-submodules, then we denote
the homogeneous part of W of degree m by S,.(W). For any G-module W in
some Sp,(m/n), we write S;- W for the G-submodule of Sp,4;(m/n) generated
over C by the products of S;(m/n) and W. We denote by W|p] the p factor
of W, that is, the sum of all the copies of p in W; and similarly, we denote
by [W : p] the multiplicity of p € Irr G in a G-module W.

We define

SMcKay(m/n) = Z S"id (0) (m/n)[o].

pElr G

Theorem 10.5 (First duality theorem) Let G be any finite subgroup of
SL(2,C) and h its Cozeter number. Then as G-modules, we have

Lom/n=3 ci.c2(degp)p;

2. SMeKay(M/M) = 37 10 205

3. S%_k(m/n) o~ S%M(m/n) for any k;
4. Sg(m/n) =0 for k> h.

Theorem 10.6 (Second duality theorem) Assume that G is not cyclic.
Let h be the Cogeter number of G and Vi, (0) := Si 1) (m/n)[p] for any
p € IrrG. Then

1. V%_d(p)(p) o~ V%+d(p)(p) ~ p%2 or p if d(p) = 0, respectively d(p) > 1
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2. If p and p' are adjacent with d(p') = d(p) +1 > 2, then

Vi_yp)(0) = {51+ Va_4) (¥)}ol,
and V%-f—d(p’)(pl) ={S" V%-f—d(p) (p)}P']-

3. If d(p) = 0, we write p; € It G for i = 1,2,3 for the three irreducible
representations adjacent to p; then

{S1- Va_1(p) }ol = p,
Via(os) = {51 - Va (o)} ol = pi fori=1,2,3; and
Vi () = {S1- Va_1(p) el + {51 Va_y(p3)}o] = % fori # j.

See Section 11 for the proof of Theorems 10.5-10.6. It is the detailed form
of the duality in Theorems 10.6 and 12.4 that we need for the explanation of
the McKay observation in Section 13.5.

The exceptional sets of Hilb®(A?) are described in Theorems 10.7 and
12.3.

Theorem 10.7 Assume that G is not cyclic.

1. Assume that p is one of the endpoints of the Dynkin diagram. Then
I €E(p)\ (Up, P(p, p’)) if and only if V(I) is a nonzero irreducible
G-submodule (~ p) of V%_d(p)(p) EBV%M(I,) (p) different from V%+d(p) (p).

2. Assume d(p) > 1 and that p is not one of the endpoints of the Dynkin
diagram. Then I € E(p)\ (Up, P(p, p’)) if and only if V(I) is a nonzero
irreducible G-submodule (=~ p) of Vi_a) (p) O Vi La(p) (p) different from
Vi_ap)(0) and Vi g, (p)-

3. Let p and p' be an adjacent pair with d(p)) = d(p) +1 > 2. Then
I € P(p,p’) if and only if

V()= V%—d(p)(p) @ V%-g.d(pf) (o).
We define the latter to be W(p, p).
4. Assume d(p) = 0.
(e) I € E(p)\ (Up, P(p, p’)) if and only if V(I) is a nonzero irre-

ducible G-module of V% (p) different from {S1-Vi_,(¢p')}p] for any
¢ adjacent to p where we note that V% (p) = p®°.
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(b) I € P(p,p') # 0 if and only if
V(I) ={S1- Vi_1(p) }pl @ Vi 1 (0).
We define the latter to be W{p, ¢').

The proofs of Theorems 10.4-10.7 are given in Sections 12-16 in the re-
spective cases.

Remark 10.8 One canrecover [ from V(I) by defining I = V(I)Op2+n. By
Theorem 10.7, the curve E(p) is identified with P(p @ p) ~ P!, the projective
space of nontrivial proper G-submodules p in p P p.

Remark 10.9 The relations in Theorem 10.6, (2)—(3) as well as the following
observation explain why tensoring by ppa; enters the McKay correspondence.
We observe

W(p,0') = Vi_a)(P) ® Vi) (p')  for d(p) = 1,d(p') = d(p) + 1
= {81 Va_go)(0) Pl @ Vi 4 (0)
= Vg—d(p) (p)® {51 - Vg+¢(p) (0)}P,

W(p,0") ={S1-Va_,(0)}ol @ Ve, (p')  for d(p) = 0,d(p') = 1
= {S1-Va_,(p")}pl ® {S1 - Vi (p)}].

11 Duality

11.1 Degrees of homogeneous generators

Let G be a noncyclic finite subgroup of SL(2,C). In this section we prove
Theorem 10.5, (3) and (4). Also assuming Theorem 10.6, (1) we prove Theo-
rem 10.6, (2) and the first half of (3). Theorem 10.5, (2) follows readily from
Theorem 10.6, (1). It remains to prove Theorem 10.5, (1), Theorem 10.6, (1)
and the second half of (3), which we prove by case by case examinations in
Sections 13-16. The cyclic case is treated in Section 12.

There are three G-invariant homogeneous polynomials ¢; for ¢ = 1,2,3
which generate the ring of all G-invariant polynomials. Let d; := deg ;. We
may assume that d; < dy < degds = h, where h is the Coxeter number
of G. We know that d; + dy = ds + 2. We note that the triple d; can
computed without using the classification of G, using instead the method
of [Pinkham80]. See Section 4, Table 4 for the values of the d;. We set
Sm i= Sm(m/n).

Lemma 11.2 S,, #0 for 1<m <h—1 and S,, =0 form > h.
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Proof Choosing suitable ¢;, we may assume that the quotient space A?2/G
is defined by one of the equations % = F(¢1, ¢2) given in 1.1. See [Klein] and
[Pinkham80]. We also see h = deg 3 = deg 1 + deg 2 — 2 by [Pinkham80].
Now we prove that ¢; and ¢, have no common factors as polynomials in x
and y. For otherwise, there is ¢ € C[z, y] such that deg ¢ < di, and ¢ divides
;. Therefore ¢ also divides 3, because of the relation % = F(p1,¢2). This
implies that the one dimensional subscheme of A? defined by ¢ = 0 is mapped
to the origin of A?2/G. This contradicts that A? is finite over A?/G.

Thus ¢; and @2 have no common factors. Hence ¢1Sm—-4; N @2Sm—g, =
©1925m—d1—d, = 0 for m < h. It follows that dim S, = dim S, — dim S—dy —
dim S,—q4, for m < h, and thus

m+1 forl<m<d; -1,
dimS,, = { d; fordi <m<dy—1,
di+dy—m—1 fordy<m<d;—1.
Similarly we have
dimgh = dim Sh/C<p3 — dim Sh—d; — dim Sh..d2
=h—(h+1—d1)—(h+1—d2)=d1+d2—h—2=0.
O

Corollary 11.3 dimm/n=did; — 2 =2|G| — 2.

Proof The first equality is clear from the proof of Lemma 11.2. The second
dyds = 2|G| follows from the classification of G. O

This corollary is not used elsewhere.

11.4 The bilinear form (f,g) on m/n

Let f, g € m be homogeneous. Then we define a bilinear form ( £, g) as follows.
First we define (f, g) = 0 if deg(f) +deg(g) # h. If deg(f) +deg(g) = h, then
in view of Lemma 11.2 we can express fg as a linear combination of ¢; with
coefficients in Oy2, say fg = a3 + asps +asps where a; is homogeneous and
a3 is a constant. We define

(fa g) ‘= as.

This is well defined. In fact, assume that fg = by + bawa + bys. Then we
have (a3 — b3)ps = (b — a1)¢y + (b2 — a2)ws. By the proof of Lemma 11.2, 3
is not a linear combination of ¢; and e with coefficients in Op2. It follows
that a3 = bs. Moreover if either f € nor g € n, then (f,g) = 0. Therefore
the bilinear form is well defined on m/n.
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Lemma 11.5 1. (fg,h) = (f,gh) for all f,g,h € m;

2. (f,9) = (6*(f),0°(9)) and (6*(f),9) = (f,(c7")'(9)) for all f,g € m,
and all 0 € G;

3. (,): fxgwr(f,9) is a nondegenerate bilinear form on m/n.

Proof (1) and (2) are clear. We prove (3). For it, we prove the following
claim.

Claim 11.6 Let f(z,y) be a homogeneous polynomial of degree p < h. If
zf(z,y) = yf(z,y) = 0 in m/n, then f(z,y) = 0 in m/n.

In fact, by the assumption, there exist homogeneous a; and b; € m such
that zf = a1, + asps and yf = by + baws. Hence we have

(ya1 — zb1)p1 + (yaz — xby) s = 0.

We see that deg(ya; —zb;)) = p+2—d; < h+2—d; < di1+do—d; fori=1,2,
because h + 2 = d; + d2. Meanwhile ¢; and @ have no nontrivial common
factors. It follows that ya; — zb; = 0. This implies that z | a; and y | b;.
Hence f =0inm/n. O

We now proceed with the proof of Lemma 11.5, (3). Let f € m be homo-
geneous. Assume that (f, g) = 0 for any ¢ € m/n. We prove that f = Oinm/n
by descending induction on p := deg f. If p = h—1, then f = 0 by Claim 11.6.
Assume p < h — 1. By the assumption, we get (zf,g) = (f,zg) = 0 and
(yf,9) = (f,yg) = 0 for any g € m/n. By the induction hypothesis, zf = 0
and yf = 0 in m/n. Then by Claim 11.6 we have f =0inm/n. O

Lemma 11.7 Let V be a G-submodule of g(h/g)_k, and V* a G-submodule
of S(r/2)+k dual to V with respect to the bilinear form ( , ), in the sense that
(,) defines a perfect pairing between V and V*. Then V 1is isomorphic to
the complex conjugate of V* as G-modules.

Proof Let V¢ be an arbitrary G-module of g(h/g)_k complementary to V.
Then we define V* to be the orthogonal complement in S(4/9)4% to V€. By
Lemma 11.5, (2), *(V*) C V* for any ¢ € G. Moreover by Lemma 11.5, (2)
'IY(al*V) = 'IY((J‘I)TV.), which is equal to the complex conjugate of 'IY(al*v.)
becaunse any eigenvalue of 'IY(al*v.) is a root of unity. Although the definition
of V* depends on the choice of V¢, we always have V ~ the complex conjugate
of V*. O
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Corollary 11.8 Let V, V' be G-submodules of m/n. If V and the complex
conjugate of V' are not isomorphic as G-modules, then V and V' are orthog-
onal.

Lemma 11.9 Let p and p' be equivalence classes of irreducible G-modules
with p # p. Let V ~ p and W =~ p be G-submodules in g(h/2)_k and
S(h/2)—k+1 Tespectively, and W* ~ (¢')* a dual to W in Spoy4k-1. If W C
S1-V, there is a G-submodule V* of Sy W* dualto V. If [pnas®@(0)* 1 0] = 1,
then V* is uniquely determined.

Proof Let V¢ and W*° be (homogeneous) complementary G-submodules to
V and W respectively. Thus by definition,

VeVve= g(h/2)_k and WoWe= -g(h/2)—k+l-

Let W* be the orthogonal complement to W€ in §(h/2)+k_1 with respect to
(,). W C SV, then there exists g,h € V such that zg + yh € W. By
Lemma 11.5, (3), there exists f* € W* such that (f*, zg+yh) # 0 so that we
first assume that (zf*,g) = (f*,zg) # 0. Let U be a minimal G-submodule of
m/n containing zf*. Then U contains V* dual to V by Lemma 11.5, (3) and
(zf*,g) # 0. Obviously V* C S;W* and V* ~ the complex conjugate of V
by Lemma 11.7. If [Sy - W* : 0] < [pnas ® (¢')* : p| = 1, then the uniqueness
of V* is clear. If (yf*,¢) = (f*,yg) # 0, then we see the same by the same
argument. O

Remark 11.10 For any p” € It G, pnas @ p” is a sum of G-submodules with
multiplicity one [McKay80] (recall that G C SL(2,C)), so that p has multi-
plicity at most one in S} - W*. Therefore the dual V* is uniquely determined
and it is the orthogonal complement of V¢ in (S - W*)N g(h/2)+k_1.

Lemma 11.9 implies the following. In the case of E, since
Sy - Sa[py) = Salp)) + Salps] and Sy - Ss[py] = Sapf] + Sales),
we have S1-Ss[0}] = So[ph], S1-Ss[p1] = Solp] and Sy-Ss[pa] = So[oh]+So[ph),
and vice versa. See Section 14.

11.11 Partial proofs of Theorems 10.5 and 10.6.

Since Trz, is real for any k, S; contains any G-module and its complex con-
jugate with equal multiplicities. Theorem 10.5, (3) is clear from Lemma 11.5,
(3) and Lemma 11.7. Theorem 10.5, (4) follows from Lemma 11.2. Theo-
rem 10.6, (2) as well as the first half of (3) are clear from Lemma 11.9.
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12 The cyclic groups A,

12.1 Characters

Let z,y be coordinates on A% and m = (z,y) be the maximal ideal of A% at
the origin. Let G be the cyclic group of order n + 1 with generator o. Let ¢
be a primitive (n + 1)st root of unity. We define the action of the generator
o on C? by (z,y) — (z,y)0 = (ex,e'y). The simple singularity of type A,
is the quotient Sg¢ = A?/G. Let mg be the maximal ideal of Sg at the origin
and n := mgOye.

The Coxeter number h of A, is equal to n + 1. Let po be the trivial
character, and p; for 1 < i < n the character with p;(0) = ¢'. Then e(p;) =i
and h—e(p;)=n+1—1i.

Lemma 12.2 Any [ € Hile(A2) is one of the following ideals of colength
n+1:

2) — Hmp — (l'n+l _ an+l,1.y — ab, yn+l - bn+l),
pel

where & = G - (a,b) is a G-orbit of A? disjoint from the origin; or
Ii(pi : ql) = (pixi - Qiynﬂ_i, zy, xi+l,yn+2—i),

for some 1 < i < n and some [p;, ¢;] € P'.

Proof Let I € Hilb®(A?) with I C m. Then by Corollary 9.5, Op2/I ~
C[G] ~ P!, pi as G-modules. Thanks to Corollary 9.6, we define N := m/n
and M := I/n, and for each i # 0, let M([p;] and Nfp;] be the p;-part of
M, respectively N. Then N[p;] ~ p®?, spanned by z* and y™+!~%, while
M(p;] ~ p; for all i # 0. It follows that for each i, there exists [p;, ¢;] € P!
such that p;x* — g™t~ € M. If pig; # O for some i, then setting u :=
pirt — iyt we have M = (u) + n/n and I = (u, zy) where i is obviously
uniquely determined by I. If M contains no p;z* — ¢;y"+'~* with p;g; # 0 for
any i, then I = (27, y™*?77, zy) for some j. O

Theorem 12.3 Let a and b be the parameters of A% on which the group G
acts by g(a,b) = (ea,e7'b). N

Let S = A?/G := SpecC[a™*!,ab,b"*!] and S — S its toric minimal
resolution, with affine charts U; defined by

U; :=SpecCls;,t;] for1<i<n+1,

where s; == a*/bmt1~t and t; := b"*2~i/a*~1. Then the isomorphism of S
with Hilb® (A2) is given by (the morphism defined by the universal property of
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Hilb™(A2) from) two dimensional flat families of subschemes defined by the
G-invariant ideals of Oy2

Ti(si, i) = (2* — ;"' 7 zy — sity, yV TP — 42

for1<i<n+1.

Proof Note first that Z;(s;,0) = (1 : s;) and Z;(0,t;) = I,_1(¢; : 1) for
> 2.

If ab = s;it; # 0, we see Ii(s;, t;) = (2" — @™t zy — ab, y™*t! — b°H1).
In fact, let p = (a,b) # (0,0) € A2 and T := {p- g;9 € G}. It is clear that
Zi(si,t;) C my, so that Z;(s;, t;) C Ig by the G-invariance of Z;(s;, ;). Since
the colengths of Z;(s;, t;) and Iy in O,z are equal to n + 1, Z;(s;, t;) = Iy =
(zn+1 an+1 Iy — ab yn+1 bn+1)

By the universality of Hilb"(A?) and by Lemma 12.2, we have a finite
birational morphism of S onto a smooth surface Hlle(A2) It follows that
S~ Hilb%(A%). O

Theorem 12.4 (Duality for A,) Assume that G is cyclic. Then for any

p € Irr G there exists a unique pair Ve*(’p)( ) and V__ +i—e(p) (P p) of homogeneous

G-submodules of Se(p)(m/n)[p] and Spi1-e(p)(m/n)[p] such that

w(P) 2V y(P) = p, and

2. if p and p' are adjacent with e(p) = e(p’) + 1, then

V:(-p)(/’) = {Sl‘V:(-pf)(Pl)}[P]a Vn_+1~e( (@) ={%"V, ntl—e( )(P)}[PI]-

Proof First we prove uniqueness of Vji(p). Since S; = p1 @ pn, we have
unique choices Vi* (p1) = Si[p1] = {z} and V; (p.) = Si[pn] = {y}. Then we
have

Vita(pin) = {81V (0} o] = {2},
‘/n.+1 —i pz) {Sl i pl+1)}[pz] - {yn+l—z}‘
In fact, this follows from (2) by induction. This proves Theorem 12.4. O

Theorem 10.4 for G cyclic follows from setting E(p;) = E;. There is a way
of understanding I;(p;, ¢;) similar to that of Theorem 10.7.
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13 The binary dihedral groups D,

13.1 Binary dihedral group
Let G be the subgroup of SL(2, C) of order 4n — 8 generated by two elements

cand T:
_f{e O _ (0 1
7=\ ) TT\-10)0

where ¢ is a primitive £ := (2n — 4)th root of unity. Then we have

n—4 _ 1, 7.4 — 1, n—2 2 -1 —1.

o
The group G is called the binary dihedral group D,_5. The Coxeter number
h of D,, is equal to 2n — 2. See Table 6 for the characters of D,.

G acts on A? from the right by (z,y) — (z,y)g for g € G. The ring of
all G-invariant polynomials is generated by ¢ + ¢, zy(zf — v*) and z%y*. By
Theorem 9.3, X¢ := Hilb®(A?) is a minimal resolution of Sg := A?/G with
a simple singularity of type D,,.

Remark 13.2 We note that if we let H be the (normal) subgroup of G
generated by ¢ and N := G/H, N acts on Hilb”(A?) so that we have a
minimal resolution Hilb™ (Hilb® (A?))(~ X¢) of Sg.

13.3 Symmetric tensors modulo n

Recall ¢ := 2n — 4. Let S,, be the space of symmetric m-tensors of pg,: :=
pa, that is, the space of homogeneous polynomials of degree m and S, the
image of S,, in m/n. The spaces S,, decompose into irreducible G-modules as
follows. Let p1 := py+p}, prn-1 := pp_1+p, and p 1= p; if k = 7 mod 2n—4.
Then we have

Po+p3+ps+ -+ pm1+pmir form=0 mod 4,
Sm=Sp1+ps+ps+-+Ppm-i1+pPms1 form=2 mod 4,
P2+ pa+ps+ -+ Pm-1+ Pmy1 form=1,3 mod 4.

13.4 The submodules V(p;)

By Table 7 we see that m/n ~ (C[G]© p)®?. This isomorphism is realized by
giving G-submodules 20! for i = 1,n—1,n and 4p; for 2 < i < n—2 explicitly
as follows. We define a G-submodule of m/n by Vi(p;) := Si(m/n)[p;], and
define V;(p;) to be a G-submodule of S; such that V;(p;) =~ V;(p;) and Vi(p;) =
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p |1 o T d (& +d)

o |1 1 1 (n—3) -

o |1 1 1 n-3 (2,6)

o2 |2 e+e! 0 n—4 (3,£—1)

o |2 'Y 0 n-2-k (k+1,£+1-k)
oz | 2 3403 ¢ 0 (n—1,n-1)
Py |1 -1 " 1 (n—2,n)

o1 -1 —i" 1 (n—2,n)

Table 6: Character table of D,
m Sn m  Sp
0 O £+2 0
1 p £+1 po
2 pi+ps £ pi+ps
3 pt+ps £—1 p2+p4
k  pr-1+ prs1 £—k+2 pe1+prn
n—2 pn-—3+d—-l+p,n n p"“3+p{ﬂ—1+p{ﬂ
n—1 2pn-—2
Table 7: Irreducible decompositions of S,,(D,)

Va(my) zy V(o) ot -

Vi-1(or) zF1, 9+ Verr(or)  2by, zy
Vickt1(pe) b7+ yfk+t Vicksa(pr) 8%y, oyt F+2
Va-3(pn-2) z"73,4"° Vat1(pn—2) 2"y, 2"
Vaei(pn—2) 2" 100 22y, oy
Va_i(Pa—z) ™yt Vi i(pn-2) 2" Py, zy"?
Vaa(p,—y) 2" —iryn? Va(Ohoy)  zy(z™ 2 +imyn2)

Voa(p,) a"%+i%yn? Valoh) zy(e™? —inyn?

Table 8: Vi, (0)(Dn)
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Vi(p;) mod n. We use V(p;) and V;(p;) interchangeably whenever this is
harmless. We see easily that V;(p;) ~ p; or 0 except for (3,5) = (n—1,n—2),
while V,_; (pn—2) =~ p®2,. We list the nonzero G-submodules of m/n: it is easy
to see that n is generated by zf +¢¢, (zf — y*)zy and z%y?. We also note that
22, y*? € n and that m/n is spanned by z¢, 3¢, 2y and zy* for 1 < i < £ with
the single relation z¢+y¢ = 0 mod n. Hence we see easily that m/n is the sum
of the above V;(p;). It follows that m/n =~ 3° ;. - 2deg(p)p = (C[G]© po)®.

13.5 A sketch for Djs

Before starting on the general case, we sketch the case of Ds without rigorous
proofs. First we recall

Va(pl) = {zy}, Ve(pl) = {x -y }
Va(p2) = {z%y, 2%},  Vi(pe) = {o°,4°}.

We consider the case Z(W) € E(p}) \ P(p},p2)- Let Z(W) := W02 +n
for any nonzero G-module W € P(Va(p}) + Vs(p)) = P({zy, z® — 3°}) such
that W # Vg(p}), that is, W 3 {z® — 3°}. Then we see that

5 5
IW)n=W+> SW+n/n=W+)_ SiVa(p)) +n/n
k=1 k=1

~W+ps+pa+(py+p5) +ps+p2 Z deg(p)p-
pelr G
Thus Z(W) € Hilb®(A?). It is clear that V(Z(W)) := Z(W)/mI(W) + n ~
W ~ pl. Tt follows that Z(W) € E(p}) \ P(p},p2). Hence we have

lim (W) = Vs(p)) + >  SiVa(p
2 TOV) = ol + X2 S04

=Z(Ve(pi) ® S1Va(ph)) = Z(Va(p1) @ Va(p2)) € P(p}, p2),

where S1 ® Va(p}) =~ SiVa(p)) ~ Va(p2) ~ pe. The factor S1 @ Va(p}) =~

p2 among generators of P{p], ps) explains the relation between tensoring by

S1 =~ py and the intersection of E(p)) with E{p2) in McKay’s observation.
Next we consider W € P(Va(p2) @ Vs(p2)) with W # V3(p2), Vs(p2). We

have
IW) =W+ SW+n/n

2 — —
=W+ ZkZI SkVa(pe) + S6 + 57 +n/n

=W +ps+(p+05)+ (P +ps)+pa=) . deg(p)p.

p€lr G
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Since Ss = Vs(p}) + S3Va(p2) # S3Va(ps), we have

1i I(W) = V(p}) + Va SiVz
5, 00 = ) 150 50

= Z(Ve(p) ® Va(p2)) € P(p}, p2)
= I({S1Vs(p2) }[P1] ® Va(p2)),

where Ve(p1) = {S1V5(p2)}o1] = o1, and {S1Vs(p2) ] = Va(p}) = py is by
definition the sum of all the g factors of S;Vs{ps) ~ S1 ® Vs(p2). Hence

lim Z(W)= lim ZI(W) € P(p}, p2).
wim W) =, Jim I(W) € P(py,p2)
Wep} Wzpp

The above argument explains the relation between tensoring by p; =
Pnat and the intersection of two rational curves. The argument also shows
that E(p) is naturally identified with P(Vi_q(,)(p) + Vard(s)(p)), the set of
all nontrivial proper G-submodules of Vi—_g4(5)(p) + Vata() (p) =~ p®2, which is
isomorphic to P! by Schur’s lemma.

Now we consider the general case. We restate Theorem 10.7 as follows.

Theorem 13.6 Let E be the exceptional set of the morphism n: Xg — Sg,
and Sing(E) the singular points of E. Let E(p) be an irreducible component
of E for p € IrrG and E°(p) := E(p) \ Sing(E). Then E°(p) and Sing(E)
are as follows:

E%(p})

W CVa(6h) @ Vileh)
{I(W)’ W £ 0,leh) } |

W C Viga(or) ® Veka (o)
"W # 0, Viga (o), Ve-rr1(or)
. W C Vn—l(pn—Z): w 7é 07 Vril—l(pn—Z)
"W £ Sy Vaaldf) fori=n—1nf’
WcC Vn—z(Pg) ® Vn(pg)
W £0,Vu(5)

} for2<k<n-3,

} forj=n—1n;

and

Sing(E) = P(py, p2), P(ok, pev1) for2<k<n-3
P(p’n—27 P/n_l), P(pn_z,p;l) 3
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where
P(p1, p2) = Z(Ve(p1) ® Va(p2)),
P(px, pr+1) = Z(Ve-rs1(0k) ® Viga(or41)) for2<k<n-—4,
P(pn_.s,pn.- ) =I(Vn( n-s) & Vn_ ( n-—2))
P(pn-%pg) = I(Slvn"2(pj) oV, (pJ))

13.7 Proof of Theorem 13.6 — Start

For 2 < k < n — 2, write C(py) for the set of all proper G-submodules
of Vit1(pr) @ Ve—k+1(px); similarly, let C(p}) be the set of all proper G-
submodules of V2(p}) @ Vi(p}) and for i = n — 1,n, let C(p;) be the set of
all proper G-submodules of V,_2(0}) ® Va(0l). It is clear that the C(px) and
C(p}) are rational curves. As we will see in the sequel, they are embedded
naturally into Grass(m/n,2¢ — 2).

Case I(W) € E(p}) \ P(p},p2) Let (W) := WO,2 + n for any nonzero
G-module W € C(p)) with W # V(p}). First assume W = V;(p}). Then
it is easy to see that Z(W)/n contains Viy1(ok), Ve-k+3(0k), V' 1(pn-2) and
Vat+1(pn-2) for any 2 < k < n — 3. Similarly Z(W)/n contains V,(g),_,) and
Va(p,) as well as W = V5(p}). It follows that

-1 -2
IW)n=W+>_ SVa(el) =W+ SiVa(e) + Sera.
k=1 k=1

In particular, Z(W)/n = 3 . ¢ deg(p)p. Hence (W) € Hilb%(A?). We
see that

V(W) = T(W)/ {mI(W) +n} = W = g,

It follows that Z(W) € E(0}).

Next we assume W # Va(p}), Ve(0}). Then we first see that 2%y € Z(W)
because z3y — (z3y — 2tz*?) = 2tz**? € n. It follows that Z(W)/n contains
‘/l+l(p2)’ Vk+1(Pk), Vl—k+3(Pk), V,-:’..l(Pn—2), Vn+l(pn—2); Vn(p:‘z—l) and Vn(p:-;)
where 3 < k < n—3. Since S1 - W + Voy1(02) = Va(oz) + Ver1(p2) =~ 092,
Z(W)/n also contains 2p,. It follows that

-2 -3

IW)/n=W+>_ Snlalg)) =W+ Smla(ph) + Ses-

m>0 m=0

Hence we have Z(W)/n =~ % 1. cdeg(p)p. Therefore Z(W) € Hilb%(A?).
By the above structure of Z(W)/n, V(I(W)) ~ W =~ p|. It follows that

I(W) € E(p1) \ P(p1, p2)-
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Case (W) € P(ol,p) Let W = W(gl,p) = Vileh) ® Va(pa). Now
Z(W)/n contains z2y and zy?, hence also Viyi(0:), Vimisa(oi) for 3 < i <
n—3, Ver1(02), Vas1(on-2), Va(p,_,) and V,(p),). Similarly, Z(W)/n contains
Vil1(pn—2). We note that {Z(W)/n} [o}] = W = Vi(p}) = {S1 - Ve-1(p2)} [6}]
and {Z(W)/n} [o2] = Va(p2) ® Vera(p2) = S1- Va(p}) @ Veya(ps). It follows
that

£-2 £-3
IW)/n=W+3_ S5aVs(ps) =W+ ) SmVa(p) +Senr.
m=0 m=0

Hence we have I(W)/n =~ 3° | . deg(p)p. Therefore Z(W) € Hilb®%(A2).
We also see that Z(W) € P(p, ps), because

V(ZW)) = Ve(p}) ® {S1 - Va(py)} [p2]
= {81 Ve-1(p2)} [01] ® V3(02) = 01 & p2.

Case I(W) € E{(pi) \ Ppxz1,p0k) for 2 < k < n—3 We consider now
W € C(or) = P(ox C Vier1(ox) ® Veks1(or)) with W # Vii (ox), Veeksa(or)-
Let Z(W) = WOaz + 1.

Hence we may assume that z*+1y — ty*~%*+! € W for a nonzero constant ¢.
Since z*+3y = £?(z"+ly — ty~*+1) + tz?yf~F+! and 2%y® € n, T(W) contains
x""""y. Similarly, tyl—k+2 — —y(xk"'ly - tyl—k+1) + 1L‘k+1y2 gives yl—k+2 c
I(W). Hence we see that Z(W)/n contains Vo_;11(p;) for 2 < i < k-1,
Visa(ps) for k+2 < i < n—3, Vi_yya(p) for 2 <4 < n =3, V,_ (on-2),
Vil 1(on-2), Ve(ph)s Va(pr_1) and Vu(g,). Since zy***1 € Vi_ria(prs1), we
have Vi_gsa(px) C Z(W)/n and zF+2y = z(z*tly — ty® 1) + toyt*+ €
IZ(W)/n. Hence Viyo(prs1) CZ(W)/nif k < n—4. It follows that

-k _ k-1 _
IW)n=W+Y, _ SuVirsloe) + ) SaVekralor-)
£—-2k — £+1 —
=W+ Z:m=1 Sm‘/k+1 (pk) + z:m=£—k+2

It follows from W = g, that Z(W)/n ~3_ 1. . deg(p)p. Therefore I(W) €
Hilb%(A?). It is easy to see that V(Z(W)) ~ W =~ p so that Z(W) € E(px).

Case I(W) € P(px, pi+1) Let W =W (px, pr+1) 1= Verr1(px) © Vira(pr+1)
for2<k<n-—4. Fork=n-3, set

W = W(pn_a,pn_2) = Va(on-3) ® Vril—l(pn—2)'

Now Z(W) /n contains Vo_;y1(p0;) for 2 <4 < k, Vija(p) for k+1<i<n-3,
Viciva(ps) for 2 < i <n—2, VY (pn-2) and V,(p)) for i = n — 1, n. Similarly
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Vi(p)) € Z(W)/n. Hence Z(W) € P(pk, pes1) C Hilb(A2). We also see that

Vn(pn—3) & {Sl . ‘/71-—2 Pr—3 } [pn—2] fork=n-3

{8:- V} k(Pks1)} (k] ® Vier1(px) = ok ® prct,
{Sl n—1 pn——2 } [pn—3] 8% vy -1 (pn 2) Pn-3 & Pn-2.

VW) = {W-Hl(ﬂk) & {9 - Vis1(oe)} o] for2<k<n—4,

Case Z(W) € E(pn-2) \ (P(pn—2, pn-3) U P(pn_3,0,_1) U P(pn_2,0,)) Let
W € C(pn—2) = P(Va_1(Pn-2)), and define Z(W) := WO,z + n. Set

= 51 - Va-2(pn_1), =51 Vaa(p,) and Wi=V. (pn2).

Let H =22 — "/2y"2 and G = 2"2 +3™2y"2. Then for some ¢, we have

= (zH — tzG,yH + tyG). Assume t # 0,1, 00, or equivalently, W # W,
for A = 0,1,00. Then z"™ € Z{W)/n, so that Vi(p}), Ve-it1(p:) for 2 < i <
n— 3 and Vp_;13(p;) for 2 < i < n — 2 are contained in Z(W)/n. We also see
that zyH € V,o(p,_;) C Z(W)/n and zyG € V,(o,) ¢ Z(W)/n. It follows
that

£41

IW)/a=W+>_ S
Since W = pn_s, we have Z(W)/n = 3~ 1. o deg(p)p with V(Z(W)) ~ W.
It follows that Z(W) € Hilb%(A?).

Case Z(W) € E(p,_1)\ P(on—2,0,_1) Let W € C(p,_;) :=P(Va2(p),,)®
Va(pz1)). Assume W s# V,(p,,_;). Then Z(W)/n contains z™y and hence
z™. It follows that Z(W)/n contains Vo_;11(p:), V}_H.g(pt) for2<i<n-3,
and V,,;1(0n—2). We also see that Z(W)/n contains "1 — i*/2zy"~2 so that
{Z(W)/n} N Vao1(Pr—2) =~ Pn-o. Similarly we see easily that Vz(p}), Va(p,) C
I(W)/n. Tt follows that

+1
w )/n_W+ZSV (F)+ D S
m=1 m=n+1

Since W =~ pj,_;, I(W)/n =~ 3 1. o deg(p)p. Therefore Z(W) € E(pf,_;) C
Hilb®(A2?) with V(Z(W)) ~ W.
Case IZ(W) € P(pp—2,0,_,) We consider

W =W (pn-2, Py 1) := 51 - Va2(pn_y)[pn—2] ® Valpn_1) = Wo @ Va(pr_y)-



206 Hilbert schemes and simple singularities

Then Z(W)/n contains z™, therefore Z(W)/n contains Vi(p}), Ve—it1(p:),
Viiva(pi) for 2 < i < n— 3, Voyi(pn—2) and V,(p),). Since W C Z(W)/n,
we see that Z(W)/n ~ 3 ., s deg(p)p. Hence Z(W) € P(pn—3,p,y) C
Hilb%(A?) with V(Z(W)) ~ W.

Case Z(W) € E(p,) \ P(pn-2,p,) or Z(W) € P(pn_2,p,) This is similar
to the above, and we omit the details.

Lemma 13.8 For o' adjacent to p, the limit of TI(W) as Z(W) € E(p) ap-
proaches P(p, p') is Z(W (p, ¢)).

Proof We first consider W € C(p}) with W 3£ V;(p}). Then by 13.7 we see
that Z(W) = W + Va(p2) + 3,51 SmV3(p2). Hence we have

lim (W) = Vi(p}) + Va(p2) + D SmVa(p2)

/
W Veleh) m>1

WeC(p)
= I(Ve(py) ® Va(p2)) = Z(W(p}, p2))-

Next we consider W € C(py) with W # Vi(p2), Ve—1(p2). Then by 13.7
we have Z(W) = W + Ve(p!) + 3,50 SmVa(ps). Since Va(ps) C S$1Vs(p2), we
have

lim Z(W) = Vi(p}) + Va(p2) + Y _ SmVi(p2)

W—Va(p2) m>1
WeC(p2) =

=I(W(d,,p2)) = lm I(W).
(W (p1,p2)) w i (W)
WeC(p))

Suppose that W € C(px) = P(Ve—ir1(pk) D Vi1 (pr)) with W # Vi1 (px),
Veer+1(pr). By 13.7 we see

IW)=W+ Z S Viera(pr1) + Z S Ve—k+2(Pk-1)-

m=>0 m=>0
Thus for 2 < k < n — 4 we see that
li I(W) =IZ(W(ps, = li I(W).
WV _111“ (o0) (W) (W (o, Pr+1)) W—»V::?(pm) (W)

Similarly for W € C(pn—2) with W # W), for A = 0,1, 0o we have

IW) =W+ SuValpn-z)+ . SuVald) =W+ >_ Su,

m>0 m>0 m>n
j=n—-1ln

lim Z(W) =) SnValpn-s) + ) SuWi = I(W1 @ Va(pn-a),

W-Ww,
m>0 m>0
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because V,,(pn—3) C S1Wp + n. Consequently

lim I(WI) = Vn(pn—3) + Z SmVnt1 (pn—4) + Z SmV”—l(pn—Z)

W/=Va(pn-3) m>0 m>0

- 3 SuValpes) + X Sl = i, ZOV),

m>0 m>0

where W’ € C(pp-3), W’ € C(pn-2). The limit when W approaches W or
Weo is similar. O

To complete the proofs of Theorem 13.6, we also need to prove:

Lemma 13.9 E(p) and E(p') intersects at P(p, p') transversally if p and o/
are adjacent.

Proof By the proof of Theorem 9.3, X¢ = Hile(Az) is smooth, with tan-
gent space Ti(Xg) at [I] the G-invariant subspace Homo,,(I,Op2/1 )¢ of
Ty (Hilb™(A?)), which is isomorphic to Home,, (I, Op2/I), where n = |G|.
Assume that p and ¢ are adjacent with d(p') = d(p) + 1. Let W(p,p) =
Vi _a()(P) @ Vi_y()(¢)- Then Z(W(p, ) € P(p,p'). We prove the follow-
ing formula

Tin(X¢) ~ Homo,, (I, Op2 /1) ~
HomG(Vg_d(p) (0), Vg+d(p) (o) @ HomG(Vg+d(p/)(PI)a Vg_d(pf)(Pl)),

where I = Z(W(p, ¢')). First assume p = p; and ¢’ = p}. Then

Homo,, (I, 0x2/1)€ C
Homg(Vi(p}), Va(p})) @ Homg (Va(p2), Vi(p2) @ Vem1(p2))-

Let ¢ be any element of Homo,, (I, Ox2/I)¢. A nontrivial G-isomorphism
wo of Va(pz2) onto Vi(p2) is given by po(z%y) = z, wo(zy?) = —y. Therefore
we may assume @ = cpg mod Vp_;(p2) for some constant ¢. Since ¢ defines
an O42-homomorphism, we have yp(z%y) = zp(zy?), so that 2cry = 0 in
Oa2/1. Tt follows that ¢ = 0, and ¢(V3(p2)) C Vi—1(p2). Thus the formula for
I =Z(W(py, p2)) is proved.

Now we consider the general case. By 13.7 we see that {m/I}[p] con-
tains V414, (p) as a nontrivial factor, while {m/I}[¢'] contains V;_g(¢)
similarly. Moreover by the proof in 13.7 we see that either of the linear
subspaces HomG(Vg_d(p)(p),V%+d(p)(p)) and HomG(Vg+d(p/)(p'),Vg_d(p:)(p’))
yield nontrivial deformations of the ideal I inside the exceptional set E.
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Since dim Tj;)(X¢) = 2 by Theorem 9.3, these linear subspaces span Tjp(X¢).
Hence we have

Tin(Xe) =
HomG(Vh d(p( )’V-'z—'—{—d(p)(p))®H0mG(V%+d(p @), V" —d(p’) (P)),

with

Tin(E(p)) ~ Hom (V" —d(p) ( ) V"+d(p (»),
Ti(E(P)) = Homo(Vy sury(): Vi) (#))

This completes the proof of Lemma 13.9 for p, o’ # pn—o. The cases p= p,_s
are proved similarly. O

Lemma 13.10 Let E*(p) be the closure in E of the set
{ZW);W € Clp), W # Viryy}-

Then E*(p) is a smooth rational curve.

Proof By Lemma 13.9, E*(p) is smooth at Z(W(p, p')) for p’ adjacent to p.
It remains to prove the assertion elsewhere on E*(p).

Let C%p) := {W € C(p); W # Visypt and I := I(W) for W € C%p).
Since we have a flat family of ideals Z(W) for W € C%@p), we have a
natural morphism :: C%°(p) — Hilb®(A?), and a natural homomorphism
(de): T (C(p)) — T[[](Hile(A2)). Equivalently there is a homomorphism

(de)s: Hom(W, Va_y(,) () + Vi 40 (P)/W) — Homo,, (I, Oa2/1)°.

+d(p)

Let ¢ € Tiwj(C(p)). Then (de).(p)(I) C m/I because C(p) C E. Recall
that {m/I}[pe] = 0 by Corollary 9.6. Hence (d¢).(¢){(n) = 0. Since I'/n is
generated by W by 13.7, (dt).(y) is induced from ¢ by extending it to @ S, W
as an Oyz2-homomorphism. Note that we have

Vh d(p( )+Vh+d(p( /W Cm/I.

It follows that (dt), is injective and that C°(p) is immersed at Z(W). The
same argument applies as well when W = Vi 4, if there is no adjacent p'
with d(p') > d(p). Hence E*(p) is a smooth rational curve. O

We will see E(p) = E*(p) soon in 13.11.
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13.11 Proof of Theorem 13.6 — Conclusion

Let E be the exceptional set of , and E* the union of all E*(p) for p € Irr G.
Since E*(p) C E(p) by 13.7, E* is a subset of E. Since 7 is a birational
morphism, E is connected and set theoretically, it is the total fiber 7(0)
over the singular point 0 € Sg. Hence in particular P(p,p’) C E for any
0, 0. By Lemma 13.9, the dual graph of E* is the same as the Dynkin
diagram I'(Irr G) of Irr G. Hence E* is connected because I'(Irr G) is con-
nected. By Lemma 13.10 E* is smooth except at Z(W(p, '), while E* has
two smooth irreducible components E*(p) and E*(p') meeting transversally
at Z(W(p,p')) by Lemma 13.9. It follows that E* is a connected compo-
nent of E. Hence E* = E. It follows that E(p) = E*(p) for all p € Irr G,
P(p,p) ={Z(W(p,p'))} for p,p’ adjacent, and P(p, p') = O otherwise. Simi-
larly Q(p, ¢', p") = 0. Thus Theorem 13.6 is proved.

13.12 Conclusion

The proof of Theorem 13.6 also proves Theorems 10.4 and 10.7 automati-
cally. Theorems 10.5-10.6 are clear from Tables 7-8. Since any subscheme in
Hilb®(A?) with support outside the exceptional set E is a G-orbit of |G| dis-
tinct points in A2\ {0}, the defining ideal I of it is given by using G-invariant
functions as follows

I'= (F((E,y) - F(a" b): G(m)y) - G(a) b)) H(il?, y) - H(a) b)))

where F(z,y) = 2 + 3¢, G(z,y) = zy(z’ — ¢), H(z,y) = 2%* and (a,b) #
(0,0). Thus we obtain a complete description of the ideals in Hilb®(A?2).

14 The binary tetrahedral group Ej

14.1 Character table

The binary tetrahedral group G = T is defined as the subgroup of SL(2,C)
of order 24 generated by Dy = (¢, 7) and u:

(i 0 (0 1 R Y -
7=\ -i)0 TT\-10) HTE BN\ &)
where £ = €2™/® [Slodowy80], p. 74. G acts on A? from the right by (z,y) —
{z,y)g for g € G. Dy is a normal subgroup of G and the following is exact:

1-D,—-G—2Z/3Z — 1.

See Table 9 for the character table of G [Schur07] and the other relevant
invariants. The Coxeter number h of Eg is equal to 12; here w = (—14+/33)/2.



210 Hilbert schemes and simple singularities

p |1 2 3 4 5 6 7 d (kx4
1 -1 v @ owt B

Wwli1 1 6 4 4 4 4

p|1 1 1 1 1 1 1 (2 -

pl2 =2 0 1 -1 -1 1 1 (57

|3 3 -1 0 0 0 0 0 (66

hi2 -2 0 W —w =W w 1 (5,7)

il 1 1 W w Wwow 2 (4,8)

ml2 -2 0 w - -w W 1 (5,7)

i1 1 1 w WP w  w?o2 (4,8)

Table 9: Character table of Fg

14.2 Symmetric tensors modulo n

Let S,, be the space of homogeneous polynomials in x and y of degree m.
The G-modules Sy, and S, := S,,(m/n) by ps decompose into irreducible
G-modules. We define a G-submodule of m/n by Vi(p;) := Si(m/n)[p;] the
sum of all copies of p in S;(m/n), and define V;(p;) to be a G-submodule of .S;
such that V;(p;) = Vi(p;), Vi(p;) = Vi(p;) mod n. We use Vi(p;) and Vi(p;)
interchangeably whenever this is harmless. For a G-module W we define W/p]
to be the sum of all the copies of p in W.

It is known by [Klein], p. 51 that there are G-invariant polynomials Ag,
Ag, A% and A); respectively of homogeneous degrees 6, 8, 12 and 12. In
his notation, we may assume that A¢ = T, As = W and Ajs = ©°. See
Section 14.3.

The decomposition of S,, and 'S, for small values of m are given in Ta-
ble 10. The factors of 5,, in brackets are those in SMcKay- We see by Ta-
ble 10 that Veia()(p) = p®* if d(p) = 0, or p if d(p) > 1. We also see that
Se_r =~ Seyx for any k. Thus Theorems 10.5-10.6 for Ey follows from Table 10
immediately.
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m S, S
0 po 0
1 p P2
2 ps p3
3 ptp Py + ps
4 pi+pi+ps (p1+p1) +p3
5 p2t+ph+ph (p2 + p + p5)
6 po+2ps (203)
7T 2p+ph+ 0 (p2 + p3 + p5)
8 pot+pi+pi+20 (ol +p)+ps
9 p2+205+2p; Pa+ P

10 pi+pi+3ps p3

11 2pp + 205 +2p5 P2

12 2p0+p1+p +3p3 O

Table 10: Irreducible decompositions of Sy (

Es)

m p  Valp) m p  Vaulp)
1 p2 z,y 7 pa S1p,82p
2 ps 22 2y, 0° T oy s19, 800
3 A a,q T 0 ap,qp
3 Py 81,8 8 o 4
4 o 8 M ¥
4 pf ¥ 8 ps Pipap, P2p3p, P31
4 ps pipa,Poaps, Pap1 9 o a2y, Yy’
5 p M 9 py  xzptyp?
5 py zp,yp 10 ps 2Pyt yPe?
5 py zY,y¢ 11 p2 @’ g’
6 p3 Va(ps)p @ Va(pa)y

Table 11: V,,.(p)(Es)

211
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14.3 Generators of V;(p)

We prepare some notation for Table 11. Let

n=z-y p=2"+9’ ps=ay,
=2+ 2w+ Dzy?, q@=19+ 2w+ 1)z,
s1=2° + (2w 4+ Day?, s = + (2?4 1)y,
n=2°-5zy!, 1 =¢"-5z", T =pipps,
©=ps+4wps, V=p;+4lp;, W=gp

We note that n is generated by T', W and ¢* (or 4°®) by [Klein], p. 51.
Computations give Table 11. We note the relations

ph=py-p2=p- 05, Py=pypy=pypa
pr=py-py=p{-py  p3=p}-ps=p}-ps
In view of Table 10, each irreducible G factor appears in S,, with multi-
plicity at most one except when m = 6, p = ps;. Therefore the following

congruences of G-modules modulo n are clear from the fact that these G-
modules are nontrivial modulo n:

Va(ps)p = Va(ph)y, V4
Vi(pa)o® = Vs(pa)y, Vs
Va(ps)e® = Va(pa)d?, Va(

For instance, s;p — ¢;®p = 0 mod T, so that V3(p})p = V3(py)9. Since

pip2(9 — %) =0 mod T, paps(p — wep) =0 mod T and psp;(p — w?) =0
mod T so that Vy(p3)p = Vi(ps)e.

Lemma 14.4 1.
Py form=1,
form =2,

S V / — ,03
mVa(p) p2+py form=3,

ol +ps form=4.
2. SmVa(0)) = Smaa for m > 5, and SpVs(ph) = Sma1Va(p}) for m > 1.
3. SmVs(p2) = ps form =1, ph + py for m =2, and Skys for m > 3.

4. Si1Va(ph) = py + ps.
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Proof (1) is clear for k = 1,2. Next we consider S3Vy(p}). By Table 10
S3Vi(ph) =~ Ss ® Vi(pl) =~ pfy + po. We prove Sy - As # {SaVa(py)}[p2] =
Va(py)Va(p)). For otherwise, Aq is divisible by ¢ € Vj(p}), whence Ag/p €
Va(p}) = {0}, a contradiction. Hence we have S3Vy(p}) = p2 + 0. Similarly
SsVi(pt) = po+ py + ps where {S4V4(0}) }oo] = So- As. The factors pf and p;
in S4V4(p}) are not divisible by Ag. In fact, otherwise {SyV4(p])} 03] = S2- A¢
because S; ~ p3. It follows that Ag is divisible by ¢, which is a contradiction.
Therefore S4V4(0}) = o/ + ps. Finally we see SsV,(p}) = p2 + ph + o where
{SsVa(07)}Hpa] = Sy - As. The factors pj and pj in SsVy(p}]) are not divisible
by As. For instance if {SsV4(p})}[py] = Va(ph) - As, then since the generators
of V5(ph) are coprime, Ag is divisible by ¢, a contradiction. It follows that
SsVa(0)) = ph + p% = So. The rest of (1) is clear. (2) is clear from (1).

Next, we prove that S;Vs(ps) = ps. First, Table 11 gives dim S;Vs(p2) = 4.
Thus Slys(p2) ~ pa ® pa ~ po+ ps. Hence {S1Vs(p2)}po] = So- As. It follows
that S1Vs(p2) = ps. Now consider SpVs(py). Since dimS; ® Vis(p2) = 4,
we have dim S; ® Vs(pa) > 5. We see that SoVs(py) = S2 ® Vs(p2) = p2 +
Py + Py, and that p; =~ Sy - As C SaVs(p2), Va(p3)Va(pl) = Va(py) =~ ) and
Va(o3)Va(ph) = Va(p) = pj. Hence SaVs(ps) = p} + 05

On the other hand, S1V5(p4) = S1 ® V3(p3) = pf + ps, so that S\ Vz(ph) =
S1Va(p5)Va(ot) = o) + ps. We prove that S;V7(py) = o + ps. For otherwise,
by Table 10, we have {S;Vz(05)}[ps] = 0 so that {S;Vz(0y)}ps] = Sz4e.
Vz(ph) is divisible by 4, so that Ag is divisible by ¥. Hence Ag/v¥ € Va(p}),
which contradicts Sz = p;. Therefore {S1V7(05)}ps] = ps and SiVz(ph) =
oy + p3. Similarly S;Vz(p4) = o/ + ps. This proves (4). Moreover Sg_\_{s(m) =
Slsg%(pg) = SI(V-/(p'2) + \7-/(/0’2’)) so that Ss‘/s(p2) o p’l + p’l' +p3= Sg. This
proves (3). O

Lemma 14.5 Let W, = S, - Vs(ng)) (= p3) for any k = 0,1,2, where pgk) =
02, P, p3. Let W € P(Vg(ps)). Then SiW = ps + oy + p3 if and only if
W £ Wy fork=1,23.

Proof We see S - Wy = Sy Vis(ph) = Ss - Vi(p}) = p2 + ol by Lemma 14.4.
Similarly S; - Wy = Ss - V(o) = p2 + ph. Also by Lemma 14.4, (3) we have
St - Wo = gy + ol

Conversely assume W # W; for any k. Choose and fix a G-module
isomorphism h: Wi — W,. For instance, h(pxp) = w*prtp. Then h induces
a natural isomorphism {S; ® h}[p2]: {S1 ® Wi}{p2] — {S1 ® W2}[p2], which
induces an isomorphism {S; - h}[pa]: {S1- Wi}[p2] — {S1- Wa}[ps]. Since
S contains a single p;, we have {S; - W}[p2] =~ {51 - Wa}[02] (= p2) by
{Sy - h}[ps). It follows that {S; - h}[ps] is a nonzero constant multiple of the
identity. Since Vg(p3) = W @ Wy, this proves uniqueness of the G-submodule
W =~ ps of Vg(ps) such that {S; - W}[ps] = 0. Since {S1- Wo}[p2] = 0, we
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have {S) - W}[pa] # 0 by the assumption W # W,. Similarly there exists
a unique proper G-submodule W € Vi(p3) such that {S) - W}[ph] = 0 or
{S) - W}[ph] = 0. As we saw above, {S) - W1}[05] = 0 and {S, - Wa}[p5] = 0.
Therefore Sy - W = pg + ph + pg f W # Wy for k=0,1,2. O

14.6 Proof of Theorem 10.7 in the Fg case

Consider I € X in the exceptional set E, or equivalently, I € Xs with
I ¢ m. For a finite submodule W of m we define Z(W) = WO,2 + n and
V(IZ(W)) :=Z(W)/mZ(W) + n. We write = for congruence modulo n.

Case I(W) € E°(p}) Let W € P(Vy(p})®Vs(p})), so that W =~ p|. Suppose
that W # V(o)) and set Z(W) = WO,z + n. Since Sj; = 0, by Lemma 14.4
we have Sy - W = S - Vy(p}) for k > 4. Also by Lemma 14.4 Si - V4(0}) = Si44
for k > 5. Hence S C Z(W)/n for k > 9. Since Sk - W = Sk - Vy(p})) mod Sy
for £ > 1, we deduce that

4 1
IW)/n=W+3_Su-Va(eh) =W +3_ S Va(p}) +3_ S
k=1 k=9

k>1

We see by Lemma 14.4

_ 1 — —
W + SuVa(ph) = oy + oY + p3 = 5(Sa + Ss),

_ _ 1 — —_
S1Va(ph) + SaVa(py) = p2 + oy + o = 5(Ss + 57),

_ 1—
52‘/:1(,0/1) =p3= 556-

By duality, we have Z(W)/n = 3_ .1, qdeg(p)p. Thus Z(W) € X¢ and
VI(W)) ~W.

Case Z(W) € E°(p),) Let W e P(Vis(py) ® Vi(0h)) with W = p}. Suppose
W # V5(p5), Va(oh). Since Si2 = 0, we have Sy, - W = S - Vs(py) = Skys for
k > 5 by the condition W # V;((p}). We also see that Sy - W = S, - Vs(0h)
mod Sy = Sg. Therefore Sy C Z(W)/n. Hence Si, - W = Sy - Vs(0h) mod Sy
for k > 2. Since S - Vs(ph) = ps and S, - Vz(ph) = p} + p3, we have SIW =
py + ps and {S) - W}[p}] = Va(p}) C Z(W)/n by the assumption W # Vs(pp).

Since SaVs(0h) = p% + pa, we have Sg = Vz(p}) @ SsVs(ph) € Z(W)/n. It
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follows that

2 11

IW)/n=W+Y_ S-Vs(ph) =W+ S Vs(ph) + Y _Si and

k>1 k=1 k=8

X7 [ 7 X7 [ ’ 17 1l = el e
W + S1Vs(05) + SaVs(py) = p2+ 05 + o3 + p3 = 5(55 + S¢ + S7).

Hence ZW)/n=3_ deg(p)p. Thus Z(W) € X¢ with V(Z(W)) ~ W.

pEIrr G
Case I(W) € E°(p}) or Z(W) € E%p%) These cases are similar.

Case Z(W) € E%p;) Let W € P(Vs(p2)®DVz(p2)), so that W =~ p,. Suppose
that W # Vy(p;). As above, we see that Sy, C Z(W)/n for k > 10. It follows
that S3- W = S3 - Vs(pg) mod Sip = Ss. Therefore S, C Z(W)/n for k > 8.
Similarly Sp- W = Sy Vs(p2) = phy+ 0 mod Sgand S;-W = S, -Vs(p2) = p3
mod Ss. It follows that

2 11
IW)/n=W+) S -Vs(p) =W+ Sk-Vs(p2) + Y Sk, and
k=8

k>1 k=1

(§5 + -gs + §7)

N =

W + S51Vs(p2) + SoVis(p2) = p2 + ph+ s + ps =

Hence Z(W)/n=3_ deg(p)p. Thus Z(W) € X¢ with V(I(W)) =~ W.

pElT G

Case Z(W) € E%ps) Let W € P(Vi(ps)). Let Wy = S - Vi(ol) for any
k = 0,1,2 where pgk) = po, Py, 5. Now we suppose that W # W;. Then
S1-W = §; by Lemma 14.5 so that Z(W) contains S for any k¥ > 7. It
follows that

11
IW)n=W+> SW=W+)> 3,
E>1 k=7

Hence Z(W)/n=3_ deg(p)p, and so Z(W) € Xg with V(Z(W)) ~ W.

pelr G

Case I(W) € P(py,py) Let W = W(p, ph) = Vs(p}) ® V5(p2). Recall
that W = {Sy - Va(03)}[P}] @ V5(py) = Va(p) ® S1 - Va(p}). By Lemma 14.4,
we see that S1 - Vs(py) = pa, So- Va(ph) = pa + 05, S3- Va(py) = pi + pa
and Si C Z(W)/n for k > 8. It follows that Z(W)/n =} . - deg(p)p by
Table 10. Therefore Z(W) € X¢ with V(Z(W)) @ W.
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Case Z(W) € P(dh,ps) Let W = W(ph, ps) := Viloh) ®SiVe(ps) = Va(0)) ®

Wi. We recall that S; - Wi = ps + g, so that S, C Z(W)/nfor k > 7.
Since Wy = p3 we have Z(W)/n = 3 ;. - deg(p)p by Table 10. Therefore
I(W) € X¢ with V(Z(W)) ~W.

Cases Z(W) € P(ps, ps) or Z(W) € P(py,ps) Similar.
The following Lemma is proved in the same manner as before. It allows us
to complete the proof of Theorem 10.7 by the same argument as in Section 13.

Lemma 14.7 Each E(p) is a smooth rational curve. Moreover, if p and o
are adjacent then

1. as Z(W) € E(p) approaches the point P(p,p"), the limit of T(W) is
IW(p,P));

2. E(p) and E(p') intersect transversally at P(p, p').

14.8 Conclusion

Theorem 10.4 also follows from Lemma 14.7. Theorem 10.7, (3) follows from
Tables 10-11 and Lemma 14.5.
Let I € X¢. If Supp(Oya2/I) is not the origin, then

I= (T(:II, y) - T(aa b)a ‘Pa(xv y) - ‘Pa(aa b)a W((II, y) - W(aa b))

where (a,b) # (0,0).
By the same argument as in Section 13 we thus obtain a complete descrip-
tion of the G-invariant ideals in Xg.

15 The binary octahedral group E~

15.1 Character table

The binary octahedral group @ is defined as the subgroup of SL(2, C) of order
48 generated by T = (o, 7, u) and «:

st O __(0 1 _ 1 (e € (€0
0 - TT 1 0 FTAENE ) FT 0 &)

where & = e2"/® [Slodowy80), p. 73. G acts on A? from the right by (z,y) —
(z,y)g for g € G. Dy and T are normal subgroups of G and the following
sequences are exact:

1-T—-G—Z/]2Z -1
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and
12D =G — S53—1,

where S3 is the symmetric group on 3 letters.
See Table 12 for the character table of G and other relevant invariants.
FE; has Coxeter number A = 18.

15.2 Symmetric tensors modulo n

The G-modules Sy, and S, := Sp(m/n) by pua = py for small values of
m split into irreducible G-modules as in Table 13. The factors of S,, in
brackets are those in Syckay. We use the same notation V,,(p) and Vi,(p) for
p € Irr G as before. Let ¢ = p2+4wp3, Y = p2+4wlpl, T(z,y) = (=t —y*)zy.
In Table 14 we denote by W ~ ps the G-submodules of Vo(ps) =~ p$%;
Wy = Sy - Va(p), W3 := 51 - Vs(Ps), Wy = 51 - Va(ph).

Lemma 15.3 The G-module S,,,Vk(p)_ splits into irret!ucible G-submodules as
in Table 15. We read the table as S2Vs(p}) = ps, S2Va(p) = ps + ph and so
on.

Proof The assertions for (m,k) = (1,6),(2,6),(3,6) are clear. There are
three generators As, Aj2 and Ag of respective degrees 8, 12 and 18 for the ring
of G-invariant polynomials. We know that Ag = ¢, A)3 = T? by [Klein),
p. H4.

Note first that Sp, = Sm—s - As ® S for m = 10,11 and

SaVe(p)) = (o5 + P5) ® py = ph + p3,  SsVe(py) = (P + pa) ® Py = pa + pa.

If {S4Ve(p})}ps] = 0 in Syo, then {SyVs(0))}[ps] = S - As. Ag would be
divisible by T, a generator of Vg(p)). However, this is impossible. Hence
{S4Vs(p1) }ps] = ps so that SaVs(p}) = pf + ps. SsVs(py) = p2 + py is proved
similarly. B

Since SsVs(p)) = (01)* + p3 + Py = po + p3 + ph, SeVe(ph) = ps + p3 or
pa. If SeVe(py) = ps, then Selps] - Ve(ph) is divisible by T?, so that Ss[ps] is
divisible by T. Since deg T = 6, this is impossible. Hence SgVs(p)) = p3 + p5.

Next we have S7Vs(p})) = ph + p2 + p4 and {S7V6 P el = p2 - App. If
{S7V6 £1)}pa] = O, then {S7Vs(p))}pa) = Valpa]Ve(p)) = pa- A1z or py- Ag. In
the first case, Vz[p4] is divisible by T, which is impossible because degT = 6
and dim S; = 2 < deg py = 4. In the second case, Vz[p,] is divisible by As,
which is 1mp0351ble It follows that {S7Vs(0))}ea] = pa- If {S7Vs(0)) }Heh] =
0, then Vz[po)Vs(p}) = p - A1z or pfy - As. In the first case Vz[p,] is divisible by
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pll 2 3 4 5 6 7 8 d (kta
1 -1 uw p? T Kk TK K

g1 1 8 8 6 6 12 6

po |1 1 1 1 1 1 1 3) -
p|2 -2 1 -1 0 V2 0 =2 2 (7,11)
ps |3 3 0 0 -1 1 -1 1 1 (8,10)
ppi 4 -4 -1 1 0 0 0 0 0 9,9
hl3 3 0 0 -1 -1 -1 1 (8,10)
ohl2 -2 -1 0 -2 0 V2 2 (711
Al 1 1 1 1 -1 -1 -1 3 (6,12)
MAl2 2 -1 -1 2 0 0 0 1 (8,10)

Table 12: Character table of E7

m Sp S

1 p P2

2 pP3 pP3

3 ps P4

4 py+ph Py + P4

5 potps Pa+ ps

6 m+ptoh (1) + p3 + ph
T patph+ps (p2+ P) + pa
8 pot+petpstph (P2 + p3+ p5)
9 p2+2p (2p4)

10 ph+ 203+ ph (3 + p3 + p5)
11 pa+ ph+ 2ps (P2 + 05) + pa
12 po+py+p5+p3+205  (p))+p3+ 04
13 pa+205+2p4 Pa+ pa

14 ph+p5+ 2p3 + 205 Py + P4

15 p2+ph+3ps P4

16 po+2p5 + 2p3 +2p; P3

17 2pa+ ph+ 3ps4 P2

18 po+pi+ps+3p3+2p; 0

Table 13: Irreducible decompositions of S,,(E;) and S,,(E7)
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P Valp)
7 p2 T+, —z7 — 728y
11 pp 2% — 6259° + 52%° —2y® + 625¢® — 5%
8 p3  —2zy” — 14x%° 2% — 98 227y + 142%°
10 ps 42! 4 6028y, 52% + 542%y° + 5z3°
60z%y® + 4y1°
9 py WI+Wa=Wa+Wj=Wj+ W) ~pf?
9 Wy 1283 + 122%7, 2% — 102%y* + 718
— 28y + 102%° — %, 1227y? + 122%°
9 Wi . 21z%% + 3227, —2° + T8yt + 2198
—228y — Txty® +¢°, —3z7y? — 2123y°
W3 23T, z%yT, zy°T,y3T
oy 2T, 2yT, y*T
10 py  —3xz8%y% — 142%° + 910, 827y® + 8x%y7
210 _ 14z8y* — 3528
7 py zT,yT
11 pfy  —11z8y3 — 222%" + ¢!, 112398 + 2227y — 2!
6 pp T
12 p) 2% —33x%y* — 33x%y8 4 12
8 oy Y-y
10 pf =Py — 2P, —2%yp + 2y’

Table 14: V;,(p)(E7)

T, which contradicts Table 14. In the second case V;[p;] is divisible by As,
absurd. Hence {S7Vs(0})}[ph] = ph. It follows that S;Vs(p}) = o + ps = Sia-

We note next that dim S;Vi1(ph) > 3. If dim $1Vi1(ph) = 3, then there
exists an f € Sy such that Vi;(ph) = S1 - f. Hence f € Sio[p}] = {0},
a contradiction. Hence dim $1Vi1(p}) = 4, so that $;Vi1(py) = p) + 5. If
{S1V11(ph)} o) = 0, we have {S1V11(ph) }es] = Valph] - As by Table 13. Since
dim S; < degp; = 3, there exists a nontrivial element of {S1V11(0})}[0}]
divisible by both z and As. Hence Vj;(p}) contains a nontrivial element
divisible by As. This implies that Vj;(p5) is divisible by As. Then V3(p}) =
Vi1(0h) As! = ph, which contradicts S; = ps. Hence S;V1,(0}) = p} + 0}

It is clear from p, ® pj = p4 and Table 13 that S;Vz(o}) = ps.

Next Sz ® Vs(p3) = p3 + p; by Table 12. Since dim S2Vs(p;) > 4, we have
SaVa(p) = ps+ph. If {S2Vs(05) Hes] = O, then {S2Va(o73)}[ps] = S2-As. Since
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m_k_p SaVile) |[m k  p  SaVi(p)

1 6 pf ph 2 8 py pst+ph

2 6 3 3 8 p2+ P+ pa
3 6 P4 1 7 p2 ps

4 6 Patps || 2 7 P4

5 6 P2+ pa 3 7 P2+ P

6 6 pstps |47 P2+ ps

7 6 Prtps || 57 P+ pa+ oy
1 11 gy pp+ps |1 10 ps patpa

1 8 py m 1 10 p3 py+pa

Table 15: Decomposition of S, Vi(p)

deg o4 < deg p3 and Vs( %) is generated by ¢? and 1?2, there exists a nontrivial
element of {S2Vs(pf)}ps] divisible by both ? and As. Since ¢ and 1 are
coprime, Sm contalns a nontrivial element divisible by (21, a contradiction.
If {S2Va(0h)}es] = 0, then {S2Vs(ph)}ps) = Sz - As = ps, a contradiction.
Hence Sng(pg) p3 + ps.

Next we consider S3V3(p5). Since dim S;V3(p5) = 6 by the above proof,
we have dim S3V3(py) > 7. By Table 12 S3 ® V(o) = p2 + py + pa so that
S3Va(ph) = pa+ph+py. Assume San(pg) # pa+ph+pa. Then by Table 13 the
only possibility is that {S3Vs(o4)}ps] = 0. Assume {S3V3(0h)}Hps] = S5 - As
so that there exists an element of {SsVs(p4)}[pa] divisible by both ¢* and As.
Therefore there exists a nontrivial element of S3 divisible by 1, which is a
contradiction. Hence S3V3(pf) = pa + ph + pa-

Clearly S1Vz(p2) = po + p3, S2Vz(p2) = p2 + ps. Hence SiV7(p2) = p3 and
S2Va(p2) = pau-

Next S3®Vz(p2) = pa®p2 = ph+p3+p5 by Table 12. Since dim S2V7(p2) =
6, we have dim S3V7(p2) = 7 so that S3®V7(ps) = ph +ps+ 0. It is clear that
{S1V2(p2)}po] = So - As, {S2Vr(p2)}[pe] = Si - As. Hence {S3Vz(ps)}[ps] =
S+ Ag. It is clear that {S3Vz(p2) } o) # Sa - As and {S3Vz(p2)}ph] # Sz - As.
Hence S3V;(p2) = p + 05.

Next we see dim S;Vz7(p2) = 10, S4V7(p2) = Sa® Vz(p2) = ph+ 2ps. Hence
S4Vz(p2) = py+p4 by Table 13. It is easy to see that dim SsV4(p;) = 12. Hence
SsVa(pa2) = Ss®Vi(p2) = pi+05+ps+2p5 so that SsVr(ps) = pi+ps+ps = Sia
by Table 13.

Similarly we see easily that dim S;Vie(ps) = dim S;Vio(p}) = 6. Hence
S1Vio(ps) = p2 + ps, S1Violps) = o4 + pa- If {S1Vio(ps)}ea) = 0, then
{S1Vio(p3)}pa) = S3 - As. Therefore there exists a nontrivial element of
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Vio(ps) divisible by Ag so that Vig(ps) is divisible by As. This implies that
Vio(ps) = 0. But by the choice of it, Vio(p3) = Vio(ps), a contradiction. This
completes the proof. O

Corollary 15.4 1. S$iVes(p1) = Vi(eh), S2Vs(el) = Va(eh), S1Va(pe) =
Va(p3).
2. S3Va(py) = Su, SsVa(p2) = S1a, SiVe(py) = Sa.
3. SaVs(0) = g + ps, S2Va(dh) = ps + p, S2Va(ps) = s + 5.

Proof Clear. O

We omit the proof of Theorem 10.7 because we need only to follow the
proof in the Eg case verbatim.

15.5 Conclusion

We also can give a complete description of G-invariant ideals in X¢. Let
x = z'2 — 3328%* — 33x%® + 912, F(z,y) =xT, W(z,vy) = pv.
Let I € X¢g. If Supp(O,2/I) is not the origin, then we know that
I=(W(z,y) — W(a,b), T*z,y) — T*(a,b), F(z,y) — F(a,b)),
where (a,b) # (0,0).

16 The binary icosahedral group Ej

16.1 Character table

The binary icosahedral group I is defined as the subgroup of SL(2,C) of order
120 generated by o and 7:

v — e 0 s L —(e—¢*) &2 -¢
- 0 &)~ S\ ef- e-¢

where £ = €2"/5. We note ¢® = 72 = —1. G acts on A2 from the right by
(z,y) — (z,y)g for g € G. G is isomorphic to SL(2,Fs). An isomorphism of
G with SL(2,Fs) is given by o+ (33),7+ (29). Letn=¢?=¢*"/5 In
Slodowy’s notation [Slodowy80}, p. 74

__1 (n+n"‘ 1
n-pP\ -1 -n-n*)

See Table 16 for the character table of G [Schur07] and the other relevant
invariants. The Coxeter number h of Ej is equal to 30; here p* = 1&¥3,

T



222

Hilbert schemes and simple singularities

pl1 2 4 5 6 7 8 9 d (kx4
1 -1 ¢ o¢* o o* 1 o¥ o'7
g1 1 12 12 12 12 30 20 20
po|1 1 1 1 1 1 1 1 1 (5) -
ml2 -2 put —u pum —ut 0 -1 4 (11,19)
|3 3 wr o owm o opwt -1 0 0 3 (12,18)
pld -4 1 21 -1 0 1 -1 2 (13,17
ps|5 5 0 0 0 0 1 -1 -1 1 (14,16
pe |6 —6 —1 1 -1 1 0 0 0 0 (15,15)
dl4 4 -1 -1 -1 -1 0 1 1 1 (14,16
hl2 -2 = —p* pt - 0 -1 1 2 (13,17)
A3 3 o o opt o opt o -1 0 0 1 (14,16)
Table 16: Character table of Fs
m  Sm m Sp
0 0 30 0
1 ) 29  po
2 ps 28 p3
3 27 p
4 ps 26 ps
5 P 25 pe
6 p5+p4 24 p5+ph
7 pytops 23 ph+pe
8 pi+ps 2 pitops
9  patpe 21 psa+ps
10 ps+ps+ps || 200 pa+ps+ps
11 (p2) +pa+ps || 19  (p2) + ps+ps
12 (p3)+py+ps | 18 (p3) + Py +ps
13 (py+pa)+ps || 17T (ph+pa) + ps
4 (o +py+ps) || 16 (05 + py+ ps)
15 (2ps)

Table 17: Irreducible decompositions of Sy, (Es)
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m_ k p  SaVilp) m k p  SuVi(p)

1 11 p2 ps 1 16 ps pat+ps

2 1 Pa 1 13 p f

3 11 ps 2 13 6

4 11 P6 3 13 o5+ ps

5 11 Ps+ oy 4 13 P4+ pe

6 11 Pa + pe 5 13 p3+ 0y + ps
7 1 Py +ps 1 16 py dhy+ps

g 1 Pa+ ps 1 14 p5 pe

9 1 pst+pst+ps | 2 14 Py +ps

1 18 p3 patpa 3 14 P+ pa+ pe
1 17 py ps+ps

Table 18: Irreducible decompositions of S,,Vi(p)

16.2 Symmetric tensors modulo n

The G-modules S, := Sm(m/n) by pnat := pa for small values of m split into

irreducible G-modules as in Table 17. The factors of S, in brackets are those

in Smekay- We use the same notation V,,,(p) and V,,(p) for p € Irr G as before.
We define irreducible G-submodules of Vis(p5) (= p&?) and o, 7; by

Wy = S51Viu(ps), Wy:=S5Vule), Ws:=S5Vi(ps),
o1 =z +662%° — 113, 0y := —112'° - 662" + ¢'°,
7 =10 — 392%° — 26y, 7 = —262'° 4 39z%° + ¢'°.

Lemma 16.3 The G-modules S,,Vi(p) split into irreducible G-submodules as
in Table 18.

Proof We give a brief proof of the lemma. Recall that the ring of G-
invariant polynomials is generated by three elements A, Az and Ajp of
degree 12, 20, 30 respectively. See [Klein], p. 55 or Table 4. Note that
Sy ® Vii(p2) = p2 ® p; = po + p3. Hence S) ® Vii(p2) = poAi2 + p3. In fact
Ajz = zy(z'® + 112%° — 4'°) by [Klein], p. 56. It follows that S;Vi1(p2) =
ps._Similarly Sy ® Vi1(p2) DO Sk-1412. Therefore S ® Vii(p2) = p2 + pa,
SaVii(p2) = ps, S3®@Viu(p2) = p3+ps, S3Vii(p2) = ps, Sa® Vir(p2) = ps+ ps,
SiVii(p2) = pe, S5 ® Vu(ps) = o5 + py + ps, SsViu(pa) = o5 + gy All of
these are proved as in Lemma 15.3. In fact, for instance dim SsVy;(ps) = 7
by Table 19, and ps ® p2 = 0} + p}) + ps so that SsViy(p2) = pls + 0}
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We see SgV11(pa2) = py+ pe because S17 = ph+pg+ps and p2® SsVii(p2) =
P2®(p5+ply) = pi+2ps contains no ps. Sys = p3+py+ps and pa®SVai(p2) =
P2@(ph+pe) contains no p, whence S:V11(p2) =_pf1 +ps. Similarly SgVii(ps) =
pa + pe because Sig = p2 + ps + ps, p2 ® StVu(p2) = Py + pa + 2p6. By
Table 17 S = p3 + p5 + ps. p2 ® SsVii(p2) = ps + 2ps + p5 + p. Hence
SoVii(p2) = p3 + p5 + ps = Sao. ~

S$1Vig(p3) = p2 + p4 follows from comparison of S; ® Vig(ps) and Sie and
the fact that any polynomial in Vig(p3) is not divisible by A;s.

Similarly 51V17(P4) = p3 + ps, S1Vie(ps) = pa + ps and S1Vis(ph) = pj.
Since p3 ® py = ps, we see SyVi3(ph) = ps. One checks dim S3Via(ph) =
dim $;W, = 8 by using Table 19. It follows from this that SsVi3(ph) =
04 + ps. Similarly it is clear that SqVisz(ph) = Sq ® Vis(ph) = pa + pe and
SsVia(ph) = S5 ® Vis(ph) = Sis. Note dim SiVia(ph) = 3(k+ 1) for k = 1,2, 3
so that SpVi4(p%) = Sk ® Via(p%). It follows from it that SkVM(p3) Sk ® p
for k = 1,2,3. In particular, S;V14(p%) = p3 ® ps = p} + ps, S;;V14(p3) =
Py+ps+ps="S17. O

Corollary 16.4 1. S;Vi1(02) = Virga(orsa) for 1 £ k < 3; $1Via(ph) =
Via(py)-

2. SoVi1(p2) = Sa0, SsVia(oh) = Sis, SsVia(pl)) = Sir-

3. S2Via(ps) = P + ply, S2Via(Py) = P4 + ps, S2Via(of) = oy + ps.

Proof By Table 19, dim S; W} =9, dim S$1W,; = 8, dim S;Ws = 7. Hence
SaVia(ps) = SiW5 = py + ps, 52V14(P4) = SVulpy) = SiW; = pf + ps,
SsV11(p2) = SoVia(ps) = SiWs = p5 + pj. O

In order to prove Theorem 10.7 in the Eg case we have only to follow the
proof of Theorem 10.7 in the D,, or Eg case verbatim. We omit the details.

17 Fine

We would like to mention some related problems that are unsolved or are the
subject of current research.

Conjecture 17.1 Let G be any finite subgroup of SL(3,C). Then Hilb®(A3)
is a crepant smooth resolution of A3/G.

The conjecture is solved affirmatively in the Abelian case [Nakamura98],
where for any finite Abelian subgroup G of GL(n,C) the Hilbert scheme
Hilb®(A") is described as a (possibly nonnormal) toric variety. There is
a McKay correspondence [Reid97], [INkjm98] similar to [GSV83]. See also
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m_ p Valp)
11 po  z01,—Y0O3
19 pp  —57z'y% 4+ 24721%° + 17125y + ¢»°
—z1® + 171zMy5 — 2472910 — 57z4y!®
12 ps 7?0y, —5zlly — 5zy!!, 20,
18 p3 —12z8 3+117av10 8 + 12625y + y18
45av14 4 — 1302%° — 45ztyM
— 126213y + 11728y10 4 122%y1°
13 py = 01,——3z12y+22z — Tz2ylt
—T7xMy? — 2225y7 — 3zy'2, 430,
17 py  —221y? +52av10 T+ 91x%y12 + y17
10zy® — 652°%y® — 3524y™3
—35213y* + 6528y° + 10x3y™
—217 4 9112 — 52gTyl0 — 22yt
14 ps 2oy, —2z'% + 3328y — 8x3yM!
~512y? — 52yl2
—8ally® — 33258 — 20913, —yta,
16 ps 64x5y + 7282108 + 416
66z14y? + 676x%7 — 91z4y!?
56113y 4 741288 — 5623y
91z'%y* + 676x7y° — 6612y
218 + 7282%y10 — 64xy'S
13 oy yim,—2n
17 gy 2V +1192'%5 + 187270 + 1722y
—17ac15 y? + 18721097 — 1192542 4 417
14 o — 147%5 + 49z%y°
7z12 2 _ 48q7y — Tz2y!?
49x1%% + 14z5° + y!
16 pf 3z'y — 143710 — 3975y + y1©

—25z13y% — 257313

216 4 3921195 — 14328910 — 3zy!®

Table 19: V,,.(p)(Es)
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Vi (p)

m p

4 p
16 py
15 pe

15 W
15 W]
15 Ws

zyi1y, —xim, Yy, —2ym

—2015y 4 772195 — 84z5yll 4 y16
35212y* + 11027y° + 1522y'4
15::314 2 — 110z%" + 35z%y1?
—z6 — 84751195 — 7720y10 — 2y!5

W3 +W4=W£+W5=W5+Wé'2p®2

= 51V1(p3) (== ps)
15 + 8471%5 + 7725910 + 2415
—zy + 142%° — 492%y1!
—T2132 + 48a:8y7 + T23y12
72123 — 482798 — T2x2y13
—49z1y* — 1425° — gyt
—9rl8 + 771.10 5 84235 10 + y15
= 51V1a(ply) (= p6)
18 +392310 5 1431.5 10 _3y15
-2y + 78:::93,/6 + 52z4y!
z13y? — 39287 — 262%y12
—26x'2y3 + 3927y + 2%y13
52zy* — 7825° — 22914
31.15 - 1431.10 5 391.5 10 +y15
= 51V1a(ps) (== ps)
5315 + 330305 — 555y
—7z'y + 1982%5 — 43z%yM!
~1953y2 + 6628 y ~ 31z3y1?
—31x'2y% — 6627y® — 1922y!3
—43zx1y* — 1982%y° — Tyt
—55z1%5 — 33025410 + 5y1°

Table 19: V,,,(p)(Es), continued
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[Nakamura98]. In general the normalization of Hilb®(A") is a torus embed-
ding associated with a certain fan Fan(G) given explicitly by using some
combinatorial data arising from the given group G. However, in general it
is not known whether Hilb®(A") is normal. There are various examples of
Hilb¢(A"). Reid gave some examples of singular Hilb® for finite Abelian
subgroups G in GL(3,C) in private correspondence.

If G is the cyclic subgroup of SL(4, C) of order two generated by minus the
identity then Hilb®(A%) is nonsingular; however, it is not a crepant resolution
of A*/G. There are also some examples of Abelian subgroups of SL(4, C) for
which Hile(A"‘) is singular, although a crepant resolution does exist. The
simplest example is the Abelian subgroup of order eight consisting of diago-
nal 4 X 4 matrices with diagonal coefficients +1. [Kidoh98] gave a concrete
description of Hilb®(A?) for a finite Abelian subgroup G of GL(2, C) by using
two kinds of continued fractions.

We will treat the non-Abelian cases of Conjecture 17.1 elsewhere [GNS98];
in almost all the non-Abelian cases, a certain beautiful duality in m/n is
observed [GNS98]. See also Section 7.

The following question would be important for future applications:

Problem 17.2 Let G be a finite subgroup of SL(n,C), N a normal subgroup
of G. When is Hilb®(A") ~ Hilb®/N (Hilb" (A"))?

Unfortunately the answer is negative in general in dimension three. This will
appear in [GNS98].
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Bounds for Seshadri constants

Oliver Kiichle* Andreas Steffens*

Introduction

This paper develops a new approach to bounding Seshadri constants of nef
and big line bundles at a general point of a complex projective variety. A
modification of this approach even allows us to give bounds valid at arbitrary
points.

The Seshadri constant €(L, z), introduced by Demailly [De92], measures
the local positivity of a nef line bundle L at a point z € X of a complex
projective variety X; it can be defined as

e(L,z) := inf {i},

C3z | mult,(C)

where the infimum is taken over all reduced irreducible curves C C X passing
through z. The interest in Seshadri constants comes in part from the fact
that they govern an elementary method for producing sections in adjoint line
bundles Ox(Kx + rL) with certain properties. This connects the theory of
Seshadri constants to the famous conjectures of Fujita on global generation
and very ampleness of such bundles (cf. §1 below for further characterizations
and properties of Seshadri constants; see also [De92] and [EKL]).

There has been considerable progress in the study of Seshadri constants
in recent years, starting with Ein and Lazarsfeld’s result (cf. [EL]) that the
Seshadri constant of an ample line bundle on a smooth surface is > 1 for
all except possibly countably many points. On the other hand, examples
by Miranda (cf. [EKL, 1.5]) show that for any integer n > 2 and any real
number & > 0 there is a smooth n-fold X, an ample line bundle L on X and a
point £ € X with (L, z) < 6; in other words, there does not exist a universal
lower bound for Seshadri constants valid for all X and ample L at every point
zeX.

Then it was proved by Ein, Kiichle and Lazarsfeld [EKL] that, for a nef
and big line bundle L on a projective n-fold, the Seshadri constant at very
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236 Bounds for Seshadri constants

general points (that is, outside a countable union of proper subvarieties) is
bounded below by 1/n, which implies the existence of a lower bound at general
points depending only on n.

Finally, we want to mention the recent papers by Lazarsfeld [La] and
Nakamaye [Na] dealing with Seshadri constants on Abelian varieties, as well
as variants due to Kiichle [Kii], Xu [Xu95] and Paoletti [Pa] concerning Se-
shadri constants along several points and higher dimensional subvarieties re-
spectively.

Our approach to bounding Seshadri constants is based on considering
families of divisors with high multiplicity at assigned points. The method
itself relies upon ideas of Demailly’s paper [De93] as explained and translated
into the language of algebraic geometry by Ein, Lazarsfeld and Nakamaye
[ELN]. Very roughly, the idea is to start with an effective divisor E in a
linear system |kL| (for k > 0) with large multiplicity at z, and to consider
the locus V' of points where the singularities of E are “concentrated” in a
certain way. The possibility that V is zero dimensional imposes constraints
on the local positivity of L at z in a sense. Otherwise one uses variational
techniques to give a lower bound on the degree of V.

In contrast to [De93] and [ELN], instead of making a positivity assumption
on the tangent bundle of the manifold in question to be able to “differentiate”,
we apply the strategy of differentiation in parameter directions in the spirit of
[EKL]. The result of this method is the following theorem on linear system,
which might also be of interest in other contexts:

Theorem 1 Let X be a smooth projective n-fold, L a nef and big line bundle
on X and a > 0 a rational number such that L™ > o™. Let

0=51<Po< - <Prn<Ppyi=0

be any sequence of rational numbers and x € X a very general point. Then
one of the following holds:

(a) there ezist k> 0 and a divisor E € |kL| having an isolated singularity
with multiplicity at least k(Bp+1 — Bn) at z, or

(b) there exists a proper subvariety V C X through x of codimension ¢ < n

such that
deg, V=L Ve—> [1-»¢ (1_21).: J
gL - (,Bc+l - ,Bc)c L»
"
(,Bc+l - ,Bc)c '



Oliver Kiichle and Andreas Steffens 237

To pass from Theorem 1 to actually bounding the Seshadri constant, we
use a rescaling trick (cf. Remark 3.2) in combination with the well-known
characterization of Seshadri constants via the generation of s-jets by certain
adjoint linear systems (cf. Theorem 1.5). The bound we get does not improve
that of [EKL] in general, although the method at hand may give better results
in certain cases, since our bound can be expressed more flexibly in terms of
the degrees of subvarieties with respect to the line bundle in question:

Theorem 2 Let L be a nef line bundle on an irreducible projective n-fold
X, and z € X a very general point. Suppose given positive rational numbers
Q1,...,0n, and set y =1+ E?;ll a;. For some real number € > 0, suppose
that every d-dimensional subvariety V. C X containing x (for any d with

1 < d < n) satisfies
deg, V = L¢.V > eiymad™.
Then e(L,z) > €.

After writing a first draft of this paper, we realized that the rescaling argu-
ment mentioned above can also be applied in the context of [ELN], leading,
somewhat surprisingly, to bounds for Seshadri constants valid at arbitrary
points; however, these bounds depend on the line bundle L and the manifold
X, or rather, its tangent bundle T:

Corollary 3 Let X be a smooth projective n-fold, ¢ € X any point, A an
ample line bundle and 6 > 0 a real number such that Tx(0A) is nef. Then

e(A,z) > min{(n — 1)"-}(27; ) ,%—} .

This gives, in particular, bounds valid at arbitrary points for the Seshadri
constants of the canonical line bundle Kx = (A" Tx)* or its inverse if these
are ample, or for any ample line bundle in case Kx is trivial (cf. Remark 4.4).

Corollary 3 accords with, and should be compared to, bounds following
from recent work of Angehrn and Siu [AS] on the basepoint freeness of adjoint
linear systems (cf. 4.5), and Demailly’s original very ampleness criteria [De93].

The paper is organized as follows. After fixing notation and establishing
the general setup, we recall some basic facts about Seshadri constants and
collect some auxiliary statements in §1. Then, in §2, we prove the main
technical result, Theorem 1. Finally we give the applications to bounding
Seshadri constants at general points in §3, and at arbitrary points in §4.
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Notation and the general setup

0.1

0.2

0.3

04

0.5

Throughout this paper we work over the field C of complex numbers.
Given a variety Y, a statement valid for a very general point y € Y
is a statement which holds for all points in the complement of some
countable union of proper subvarieties of Y.

Given a smooth variety Y, an integer m > 0 and a subvariety W C Y
we denote by I‘s['," ) the symbolic power sheaf of all functions vanishing
to order at least m along W. Then ¥ = Zw is the ideal sheaf of W,
and I3 = I for a smooth subvariety Z C Y.

Let M be a line bundle on a smooth variety Y. Given a divisor E € |kM|
we call the normalized multiplicity

ind, (8) = 2l ®)

the indez of E at a point y € Y.

For a line bundle L and a coherent sheaf of ideals 7 on Y, we denote
by |L ® J| the linear subsystem of the complete linear system |L] cor-
responding to sections in L ® J. Given such a system |L ® J| # 0
on Y, the base locus Bs|L ® J| is the support of the intersection of all
members of |[L ® J|.

We will be concerned with the following setup: let X be a smooth irre-
ducible n-dimensional projective variety, T a smooth irreducible affine
variety and ¢: T — X a quasi-finite dominant morphism with graph T
examples of this situation are provided by Zariski open subsets T C X.
Let pry and prr denote the projections from Y = X x T to its factors.
Note that these restrict to dominant maps from I' to X respectively T
Given a Zariski closed subset (or subscheme) Z C X x T, we consider
the fibre Z, of pry over t € T as a subset (or subscheme) of X. Simi-
larly, Z, C T is the fibre of Z over x € X. Given a sheaf F on X x T
we write F; for the induced sheaf on X.



Oliver Kiichle and Andreas Steffens 239

1 Preliminaries

In this section we collect some preliminary results needed in the sequel. We
start with some remarks concerning multiplicity loci in a family. Let E be
an effective divisor on a smooth variety Y. Then the function y — mult,(E)
is Zariski upper-semicontinuous on Y. For any given irreducible subvariety
Z C 'Y we write multz(E) for the value of mult,(F) at a general point z € Z.
The following lemma allows us to calculate multiplicities fibrewise.

Lemma 1.1 (cf. [EKL, 2.1]) Let X and T be smooth irreducible varieties,
and suppose that Z C X x T is an wrreducible subvariety which dominates T.
Let E C X X T be an effective divisor. Then for a general pointt € T, and
any irreducible component Wy C Z; of the fibre Z;, we have

multy, (E;) = multz(E). O

The next two elementary lemmas give a way of detecting irreducible com-
ponents of base loci, and show that being an irreducible component is well-
behaved in families.

Lemma 1.2 Let m be a positive integer, M a line bundle on a smooth variety
Y and V C W C Y subvarieties such that V is an irreducible component of
W. Suppose that

(1) Iw ® M is generated by global sections, and
(2) Tw Cc I,
Then V is an irreducible component of Bs|I{™ ® M.

Proof Consider the inclusions
V € Bs|Z{™ ® M| C Bs|Tw ® M| C W, (+)

where the first inclusion is obvious, the second follows from (2), and the third
from the fact that Bs |Zw ® M| = W because Iw @ M is globally generated
according to (1).

Now let Z C Bs |I{,m) ® M| be any irreducible component containing V.
Then (*) and the assumption that V' C W is an irreducible component imply
V = Z, hence the claim follows. O

Lemma 1.3 Let f: Y — Z be a morphism between irreducible varieties, and
V C W C Y subvarieties such that V is an irreducible component of W, and
f restricts to a dominant map from V to Z.

Then over a general point z € Z, every wreducible component U, of V,
has dimension dimV — dim Z and is an irreducible component of W,.
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Proof For the first part we refer to [Ha, II, Ex 3.22]. The second assertion
comes down to an easy dimension count as follows: write

W=vuv

with V' C Y a subvariety not containing V, so that dim V' > dim(V N V). If
the map from VNV’ to Z is not dominant, then V;, and V do not meet in a
general fibre and the claim follows.

Otherwise, over general z € Z, we obtain:

dimV,=dimV - dimY
>dim(VNV') —dimY = dim(V nV’),,

and therefore dim U, > dim(V NV’), > dim(U, N V}), where U, C V; is any
irreducible component. Considering the decomposition V, = U, U U, where
U, ¢ UL, we conclude dim U, > dim(U, n (U, U V})), which shows that U, is
an irreducible component of W, = U, U (VU U}). O

For the reader’s convenience we recall some well-known facts concerning
Seshadri constants. The next lemma deals with the Seshadri constant at
general points versus that at very general points (compare [EKL, 1.4]).

Lemma 1.4 Let X be a smooth projective variety and L a nef and big line
bundle on X. Suppose e(L,y) = ¢ for a point y € X. Then for any real § > 0
there exists a Zariski open neighbourhood U(8) C X of y such that

e(L,z) >e—4& forallzeU@B). O

Finally we recall the relations between isolated singularities, generation
of higher jets, and Seshadri constants (cf. [ELN, 1.1], [EKL, 1.3]).

Theorem 1.5 Let X be a smooth projective n-fold and L a nef and big line
bundle on X.

(1) Suppose there ezists a divisor E € |kL| having an isolated singularity
of index > n+s atx € X. Then H(X,Ox(Kx + L) ® I:*') = 0.
In particular, |Kx + L| generates s-jets at «, i.e., we have a surjective
evaluation map

H(X,0x(Kx + L)) — H*(X,Ox(Kx + L) ® Ox /T3*).

(2) Let e(L,z) be the Seshadri constant of L at . If

r>—— +L
e(L,z)  e(L,z)’

then |Kx + rL| generates s-jets at x € X.
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(8) Conversely, if e(L,z) < a, then for all so > 0 and all real ¢ there exists
an s> so and anr > E+c such that |Kx +rL| does not generate s-jets
atz. O

2 Proof of Theorem 1

2.1 Partitions of the interval [0, q]

Let a € QF be such that L™ > o, and 0 = 3, < B3 < -+ < fBpy1 = a &
partition of the interval [0, a] with rational 8;. In the applications in §3 we
will use a clever choice of the §;, which we call “rescaling” of the interval
[0,a].

2.2 Families of divisors

Pick an arbitrary point y € X and a smooth affine neighbourhood T' C X of
y in X. Then the embedding ¢g: T — X satisfies the properties of 0.5. Note
that (very) general points of T’ correspond to (very) general points of X. We
will use the notations introduced in 0.5 henceforth.

Arguing as in [EKL, 3.8], for £k > 0 with ak € Z we obtain divisors
& € | pry(kL)| in X x T satisfying

indr(ﬁ'k) > a.

The argument is, in brief, that for any z € X one finds a divisor £ € |kL|
with mult,(E) > ak by using Riemann-Roch and a parameter count. Hence
the torsion free Op-module

R =prr, (pri(hD) @)

has positive rank, and is globally generated since T is affine. Therefore via
the evaluation map pry R — pri (kL) ®Il(f'k), a nonzero section ® of R gives
the desired divisor &.

2.3 The multiplicity schemes Z,(£)
For k > 0 with ak € Z, we set
A = |7 @ pry (kL)

Then by 2.2, A; is nonempty for sufficiently large k. For nonzero & € Ag
and any rational number ¢ > 0, we define

Z,(Sk) = {y = (I,t) €& | indy(ﬁ'k) > U}.
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Note that Z,(&) is a Zariski closed subset of X x T. Its natural scheme
structure is given locally by the vanishing of all partial derivatives of order
< ko of a local equation of &. We are only interested in Z,(&) as an
algebraic set, and for a general choice of &.

The following lemma, which is an analog of [ELN, 3.8], says that the
multiplicity loci Z,(€;) are independent of k and the choice of a general
&, € Ay, as soon as k is sufficiently large.

Lemma 2.3.1 For fized o there is a positive integer ko such that Z,(&,) =
Z5(Ek,) for all ky, ky > k.

Proof (compare [ELN]) For simplicity, as o and « are fixed, we write Z(k)
for Z,(&). Choose an integer m > 2 such that Ay # 9 for k > m. Fixing an
integer a > m, we claim that there exists a positive integer k(a) such that

Z(r) C Z(a) whenever 7 > k(a). (%)

To prove the claim, suppose that y ¢ Z(a), so that there exists n > 0 satis-
fying

multy(&,) < ao — 1.
Since the index is a discrete invariant, 7 is bounded below independently of
y; in fact if mo € Z then n > 1/m. Suppose b > m is an integer coprime to
a. Then any integer r > ab can be expressed as r = aa + b with o, € Z
and 0 < 8 < a. Consider the divisor &, = a&, + B& € A,. Then
mult, (&) < 1+ mult, (&) = 1+ o - mult, (&) + 5 - mult, (&)

< 1+ aao — an+ B - mult,(&)

_, (U_ (1= %) | 145 (mul,(&) —ab)) |

a T

where the first inequality is a consequence of a general version of Bertini’s
Theorem for the general &, € A, (see, for example, [Xu96]). Since 7,8 and
b are bounded independently of r, it follows that mult,(£,) < ro for r 3> 0.
Hence y ¢ Z(r) for all sufficiently large r, as claimed.

If Z(r) = Z(a) for all » >> 0 we are finished. Otherwise by (x), there
exists a’ > 0 such that Z(a’) C Z(a). The argument can then be repeated
with @’ instead of a. Since this process must stop after a finite number of
steps, the lemma follows. O

The next lemma is an adaptation of [ELN, 1.5, 1.6] to our situation. We
present a sketch proof for the reader’s convenience.
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Lemma 2.3.2 (Gap Lemma) Let £ C X x T be a family of effective di-
visors on X with indr(€) > « along the graph T C X x T of g: T — X.
Define

Zo=XXT and
Zi=Z5(E)={yec€ | indy(E) =B} for1<j<n+1

(with 3; as above). Then there exists an index ¢ with 1 < ¢ < n, and an
trreducible subvariety V C X x T such that:

(1) codim(V) = c,
(2) T CV, and
(3) V is an irreducible component of both 2, and Z.41.

This means that the index of £ “jumps” by at least 8.4 — (3. along V,
that is, ind,(£) > B4 for every y € V and there is an open set U C X x T
meeting V such that ind,(£) < . for every v € U \ V.

Sketch of Proof The sets Z; lie in a chain
FrcZ2,C---C2Z=£CZ=XxT.

Starting with Z,,, and working up in dimension, we can choose irreducible
components V; of Z; containing I such that V;;1 C V;. So we arrive at a
chain of irreducible varieties

Fc Ve Vo C...CV) CVy = X xT,

and since X x T is irreducible of dimension 2n = dim(I") + n, at least two
consecutive links in the chain must coincide, say V. = V.., and we take
V = V,. Using elementary combinatorial arguments one shows that also the
condition codim(V) = ¢ can be achieved. For details we refer to [ELN], proof
of Lemma 1.6. O

2.4 The “jumping” locus as base locus of a certain
linear system

By Lemma 2.3.1, there exists an integer ko such that the multiplicity loci
2Z5,(&), for 1 < i < n + 1, are independent of k as soon as k > ky and
& € Ay is general. Therefore also the multiplicity “jumping” loci V obtained
by the Gap Lemma 2.3.2 can be chosen independently of £ = & and k up to
the above restrictions. Fix such a V and put 8 = By — e
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Proposition 2.4.1 For all sufficiently divisible k > 0 the jumping locus V
s an irreducible component of the base locus of the linear system

I8 @ pr (kL) .

Here sufficiently divisible means that B;k € Z for alli=1,...,n+ 1.

We start by recalling some general facts concerning differentiating sec-
tions of line bundles pr% (kL) in parameter directions and its connection with
certain multiplicity loci (cf. also [EKL, §2] and [ELN, §2]).

Let D%, r(prk (kL)) be the sheaf of differential operators of order < £ on
prk (kL) and D% the sheaf of differential operators of order < £ on 7'. Since
there is a canonical inclusion of vector bundles

prr(DF) < Dir(prk (kL)),

the sections of D% act naturally on the space of sections of pr (kL). A section
¥ € I'(X x T,pr (kL)) determines a sheaf homomorphism

0¢(v): pry(D%) — pri(kL).

If we represent v locally by a function f, then 9g(1) just takes a differential
operator D to the function D(f). Since pr (kL) is a line bundle, there exists
a sheaf of ideals Zy,(4) such that

m (0e(4): pry(D§) — pri (kL)) = Tsw ® pri (k).
Let 1) be a defining section for a divisor £ € | prk(kL)|. Then we claim that
Ze(¥) = {(z,t) € X x T | mult,(E;) > £}. (2.4.2)

Indeed, the scheme structure on the right hand side is given locally by the
vanishing of all partial derivatives of order < £ in the T direction of a local
equation for &£.

Note also that the sheaves Zg,(y) ® pr (kL) are generated by global sec-
tions, because they are quotients of the globally generated sheaf pry (’D%)

Proof of Proposition 2.4.1 The plan is to apply Lemma 1.2. By assump-
tion,

ak, p=p:k and q= Pk are integers.

Let £ € Ay be a divisor determining V and v a section defining £. For
integers £ put X, = X,(v)). We claim that

Iy, , C T (2.4.3)
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To prove this, let f be a local equation for £ over some open set U. Then
Is,_, is locally generated by all functions

{D(f) | D € (o DF)(©)}-
On the other hand we have D(f) € Iy for every D € D55 (pr (kL)) (U),

since V is an irreducible component of Zete (€). And in particular D(f) € Iy

for every D € (pry DEY')(U). Hence for all D € pr3 D5} the function
D(f) vanishes to order > g on V, which proves (2.4.3).

Since Iy, , ® pri (kL) is globally generated, applying Lemma 1.2 to our
situation will give the desired result once we show that V is also an irreducible
component of 2, ;. This is the content of Lemma 2.4.4 below. I

Lemma 2.4.4 For ok a positive integer, let £ € |pr(kL)| be an effective
divisor on X X T and V C Z,(€) an irreducible component dominating X.
Then V is also an irreducible component of Lyo—1(E).

Proof By definition Z,(€) C Zgo-1(€). Let W C Zpo-1(€) be an irre-
ducible component containing V. If we can show that W C Z,(£), then we
are done, because that implies V = W. Lemma 1.1 shows that indy (€) =
indw; (£) for general x € X and any irreducible component W, of W,,. Hence
the assertion follows from indy,_(€;) > o, where we used (2.4.2). O

Corollary 2.4.5 For all sufficiently divisible k > 0, we have
P g prj((kL)l c \I{,"’“) ® pri(kL)| .

Proof By the above, any sufficiently general £ € A determines the same
V, in particular, such an £ satisfies indy(€) > f;, and this implies that
£ € |Ig,_, ® pr(kL)| by (2.4.2), where again we assume that ak, p = Gk
and q = Bk are integers. The claim then follows from (2.4.3). O

Proposition 2.4.6 For all sufficiently divisible k > 0 and for very general
t €T, the following hold:

(1) There exists an irreducible subvariety V C X of codimension ¢ contain-
ing g(t) which is an irreducible component of the base locus of the linear
system

= () 41

on X such that multy D > kB for all D € |Jx|. In particular, if c = n,
i.e., V =T, then by Bertini’s Theorem there exists a divisor D € |kL|
having an isolated singularity of index > (3 at the point x = g(t).
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(2) dim H(X, I3k ® kL) < dim HO(X, Ji).

Proof To begin with, we study the situation for a fixed k. First we note
that after possibly shrinking T', we can assume that the coherent sheaf F =
I\(,ﬂk) ® pr(kL) is flat over T. In fact pry: X x T — T is projective and T
is affine and integral, hence the assertion follows by considering the Hilbert
polynomials of the F; (cf. also [Ha, I11.9.9]): these do not depend on ¢t for ¢
in an open dense subset of T

After possibly shrinking T' more, it follows from semicontinuity that there
is a natural isomorphism

HY(X x T, F) @ k(t) ~ HY(X, F,) (%)

(cf. [Ha, I11.12.9]). In other words, taking global sections of F commutes with
restricting to fibres over general t € T, and therefore (Bs|F|); = Bs|Jy| for
such ¢.

Now we can prove (1). By Proposition 2.4.1 we have I' C V C Bs|F|
with V an irreducible component of Bs |F|, hence Lemma 1.3 shows that any
irreducible component V' of V; is an (n—c)-dimensional irreducible component
of (Bs|F|): = Bs|Jk|.- It remains to show that multy D > kS for all D €
|Jx| = |F:l- But this follows from (*) and Lemma 1.2.

Assertion (2) follows in the same way from Corollary 2.4.5 and the fact
that

(ZeV), = @), = 73k,

To complete the proof of the proposition we only have to remark that, since
V does not depend on k, the above arguments work simultaneously for all
divisible k > 0 if we replace the general t € T by a very generalt € T. O

2.5 Bounding the degree of irreducible components of
base loci

In this section we complete the proof of Theorem 1 by bounding the degree
of the irreducible component V of Proposition 2.4.6, using a strategy essen-
tially due to Fujita (see [Fu82], [Fu94]). Alternatively one could carry out an
approach via graded linear systems as in [ELN], leading to slightly weaker
bounds.

Let k > 0 be sufficiently large and divisible, and fix a very general t € T..
Let Jx = (I\(,ﬂ *) )t ® kL and V C X be as in Proposition 2.4.6; recall that V
depends on t but not on k, and that V is an (n — c)-dimensional irreducible
component of Bs|Jx|. We may assume that dim V' > 0, since otherwise the
assertion of Theorem 1 follows from Proposition 2.4.6, (1).
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2.5.1 Resolving the base locus of A := |J;|, we can find a sequence
X=X,—»->X,=2X,.1—  —=X12oXo=X

of birational morphisms 7;: X; — X;_; together with linear systems A; on X;
such that

(1) Ag=A.
(2) 1:i: X; — X;_ is the blowup of a smooth subvariety C; of X;_;.

(3) 7*Ai-1 = A; + m;E; for some nonnegative integers m;, where F; is the
exceptional divisor on X; lying over C; and E; ¢ Bs A;.

(4) BsA, = 0.

Let 7 = 7,0 --- o1y be the composite, Ef the pullback of E; to X', and
Y; = 7(E}), so that Y; coincides with the image of C; in X.

Let F; denote the pullback to X’ of the general member of the linear
system A; on X;. Finally, let H be a general member of A, F = 7*(kL), and
E the fixed part of 7*A, so that H = F — E, where E =Y ;_  m;E}.

By assumption there exists an index r with Y, = V, and

m, > kB (2.5.2)

since multy (D) > kB for all D € |J|. We also may and will assume that
the resolution 7 is chosen in such a way that dimY; < dimV = n — ¢ for all
i < 7, and in particular V' =Y, is birational to C,.

Lemma 2.5.3 F"~°- E- H°7! > k" *mcdeg, V.

Proof First of all note that, since F' and H are nef and £ — m,E; is an
effective divisor, we have

Frc-E-H'>mF"°. Ef - H\ (*)

Then one proceeds exactly as in the proof of [Fu82, Lemma 3.2] by first
showing

Fre.Fe>Frc.F, . H" (xx)
This inequality is proved inductively, and reduces to checking the inequality

Heb-tFbFr—<(F, — H) > 0 for b > 0, which follows from the semipositivity
of F? on the class representing F"~- E’ for all components E’' C E.
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Finally one computes both sides of the inequality (). SincedimY; < n—c
for all ¢ < r, we have

Fre . Ff=F""-(F =) mE})°=F"" (F - m.E})",
i<r
hence F*¢. F¢ = F™ — mZdeg,; (V) by the birationality of the morphism
C, — Y, = V. A similar argument shows F"°. F,. H*! = F* — m, E* -
He=!. Fr=¢. Combining this with () and (**) proves the lemma. O

Lemma 2.5.4 For any € > 0 there exist a sufficiently large and divisible k
and a resolution 7: X' — X of the rational map given by |Ji| satisfying the
properties in 2.5.1 and such that H® = (F — E)* > k*(L™ — a™ — ¢).

Proof The proof follows closely the proof of [Fu94, Theorem|. We therefore
only give an outline, indicating the necessary modifications. For varying k,
consider |J;| and denote by (X}, Hy) the pair (X', H) obtained as in 2.5.1.
We derive a contradiction assuming that H < k*(L" —a™ —¢) on X, for all
large and divisible k.

Letting ¢ grow if necessary, we may assume that

€
n o~ n_ n_ ._ _ =
H > (L o —¢ (2n)!>
on X for one fixed large and divisible £. Now, for any integer s > 0, we claim
that

n(sf)"e
(2n)! ’
which is proved exactly as in [Fu94] by using the lower bound on H} and

considering an appropriate resolution of A = |Js|. From Proposition 2.4.6,
(2) and asymptotic Riemann—Roch we then obtain

R(X, Jue) < K(X,, sHe) +

(%)- (L™ - o™) + o(s) < RO(X, 12 ® stL) < KO(X, Tue)
. 0/ vt n(sl)"e
S h (Xe, SHé) + (2n)|

n(sf)"e
(2n)!
where ¢ and % are functions with lim,_,, %,?Z = lim,_,00 '!’s(,f) = 0. This gives

the desired contradiction. O

8

< n!E"(L"—a"—e)+

+ 9(s),

Before stating the main result of this section which will complete the proof
of Theorem 1, we need to recall some well-known facts (cf. [De93, 5.2], [Fu82,
1.2]).
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Lemma 2.5.5 Let F', H be nef divisors on a smooth projective n-fold Y.
Then:

(1) Fé. g4 > 2/(Fr)d 3/ (H™)~1 holds for all 0 < d < n.
(2) If E = F— H is effective, then F*- H"™* > F*. H"® for anya >b. O

Proposition 2.5.6 In the above notation the degree of V satisfies

am\°
< —_ - —_— T
degy V 5 (1 (1 L") )L

Proof By Lemma 2.5.3 we have

deg, V < F"‘°~E~H°‘1.

1
- kn—c
Note that F"=¢. E . He™l = (Fretl -H°‘1 — F™*. H°). So if we bound the
first term using Lemma 2.5.5, (2) and the second using (1), we find

deg; V <

1
k —em c
<— ( - (F™)%

(Fn—c+1 . Hc—l _ Fn—c . Hc)
~ kreme

*)
_miw@u<'?w—wﬂ

1 a™\\ ..
S'ﬁ‘c( (“fﬁ))L’

where the last steps are Lemma 2.5.4 plus the fact that deg; V is integral,
and (2.5.2). O

A

3 Applications

Theorem 3.1 Let X be a smooth projective n-fold, x € X a very general
point and L a nef and big line bundle. Let r and s be positive integers, v > 1
a rational number satisfying (rL)* > (y(n + s))", and a,...,an_1 positive
rational numbers with Z::ll a; = v — 1. Suppose that |Kx + rL| does not
generate s-jets at x.

Then there is a proper subvariety V C X of positive dimension d contain-
ing T with

_ (rL)" (1t emy
deerV =LV S o sy (1 \/(1 o) ) |
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Proof Put L' =1L, a = f,11 = y(n+s), B, = (v—1)(n+s), and recursively
downwards 8; = Biy1 —an-i(n+s)fori=n—1,...,1. Let z € X be a very
general point and apply Theorem 1. In case (a) there exists k£ >> 0 and a
divisor E € |kL'| having an isolated singularity of index > n + s at z, hence
by Theorem 1.5, (1) the linear system |Kx + L'| = |Kx +rL| generates s-jets
at x. Therefore there is a subvariety V C X with the claimed properties. O

Remark 3.2 Up to the assumption on the positivity of Tx and the genericity
of z € X, Theorem 3.1 looks similar to [ELN, Theorem 4.1]. Note however
that in the estimate of the degree deg; V we have (n+s)¢ compared to (n+s)™
in [ELN], which turns out to be crucial when bounding the Seshadri constant.
This improvement is achieved by “rescaling” the interval [0, ] as in 2.1.

3.3 Proof of Theorem 2

First we note that, since we are only considering general points, there is no
loss of generality in supposing that X is smooth (see [EKL, 3.2] for the precise
argument).

Suppose that (L, z) < £. Then by Theorem 1.5, (3) there exist positive
integers s and r with r > #£2 guch that |Kx + rL| does not separate s-jets

€
at z. By assumption we have

(rL)" 2 ()" > (v(s +n))".
So we apply Theorem 3.1 to obtain a subvariety V 3 z of positive dimension d
satisfying a degree bound which, due to the trivial estimate 1— {/(1 — a)» ¢ <
1 for 0 < a < 1 can be replaced by
LV < edymaf™,
leading to a contradiction. O

Remark 3.4 From Theorem 1 one can deduce easily various boundedness
statements by specifying the a;:

(a) Setting a3 = -+ = @, = 1, we get the universal bound &(L,z) > n™
for the Seshadri constant.

(b) With the following choice, one comes closer to the bound of [EKL]: put
a; = (n—1)(27%(1 — 2'")7}, and define p(d) := miny {L¢- V'}, where
the minimum runs over all d-dimensional subvarieties V C X containing
very general points. Then

. d (n —1)nd
e(L,z) > 1211%11: { \/ﬂ(d) n[29(1 — 21—n)]n—d} .




Oliver Kiichle and Andreas Steffens 251

4 Bounds at an arbitrary point

In this section, we show how to apply the strategy of §3 to obtain certain

bounds for Seshadri constants at arbitrary points using the following result
of [ELN]:

Theorem 4.1 (Ein-Lazarsfeld-Nakamaye) Let z € X be any point of a
smooth n-fold X. Let A be an ample line bundle on X and § > 0 a real
number such that Tx(8A) s nef. Suppose that

0=0< - <Ba< VL

are rational numbers. Then either

(a) there exists E € |kA| (for k > 0) with an wsolated singularity at x of
index

:Bn+l - ;Bn .

1+08, @

(b) there exists an irreducible subvariety V 3 z of codimension ¢ # n with

n—c — 1 + 613 c ¢ . Aam
A"V =deg, V < (—,Bc+l —,Bc) 1
Theorem 4.1 follows from [ELN, Theorem 3.9] together with [ELN, 1.5,
1.6] and the remark (from the proof of Theorem 3.9) that V is in any event
an irreducible component of the base locus of |l'€,’c Q0 x(k(1+60)A))| on X;
when V is O-dimensional, this gives the divisor in (a) by Bertini’s Theorem.
Then the argument proceeds as in §3:

Corollary 4.2 Let X, A and § be as in (4.1), and moreover, let r, s be positive
integers, and vy > 1 a rational number such that (rA)" > (y(n + s))*. Let.
ai,...,0n-1 be positive rational numbers with

1+(1+ n+s)) Za."’y

Then for any r € X either Kx + rA separates s-jets at =, or there exists
a subvariety V C X through x of dimension d > 1 and degree

n—d
Ay < ™ (n + s)? (1 $(n+s) it a,)

rd aq
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Proof Put A’ = rA, B = y(n+8),68, = (n+ 8) - ?z‘ll o;, and B; =
Biy1 — @n—i(n + 8). Then apply Theorem 4.1 to A’ and §' = g, and use
Theorem 1.5, (1). O

Theorem 4.3 Let X, A and & be as in 4.1, moreover let € > 0 be real and
o1, ..., 0, positive rational numbers. Let x € X be any point and suppose
that, for any 1 < d < n, any d-dimensional subvariety V C X containing =
satisfies

n—d n
1 5 @—1 ; n—1
degAV_—_Ad.VZSd(%) ‘(1+(1+5€)Z°‘i> _
d

i=1

Then e(A,z) > €.

Proof Fix z € X and suppose €(4,z) < &. Then there exist positive
integers r, 8 with r > (8 + n)/e such that |Kx + rA| does not generate s-jets
at z. Put vy =1+ (1+(n +5)) £ . Then by assumption

(rA)" > r"e” (1 + (1 + d¢) "z-i ai)

i=1
n—1

> (s+n)" (1 + (1 +§(s+n)> Zai> =((s+n)y)".

i=]

Then we arrive at a contradiction because Corollary 4.2 gives the existence
of V 3 z of dimension d > 1 with

n— n—d
A4V < 7" (n + 8) (1*‘%(""'3) Can ai)

rd oy
1468630 @ nd
< ey ( i=d+1 t)
Qg
n—d n
148370 o , =1
d i=d+1 "t
<t | —————_ P14+ (1+6e o | . O
(=% (o2,
Setting oy = - -+ = &, = 1 one obtains Corollary 3 of the introduction.

Remark 4.4 It is well known that, for a very ample line bundle H on X, the
twisted tangent bundle Tx (Kx +nH) is globally generated, and in particular
nef (cf. [De93, 12.1]). In case A = Kx is ample on X one therefore can use
one of the available effectivity statements for very ampleness of ample line
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bundles (e.g. [De93]) to determine explicit values for §, making Theorem 4.3
or Corollary 3 effective, in the sense that the bounds for the Seshadri constant
of Kx at any x € X only depend on the dimension n. The same argument
works in case A = —Kx is ample, or for any ample A in case Kx is trivial.

Remark 4.5 Finally, let us compare Corollary 3 with the bounds that can be
obtained using Angehrn and Siu’s basepoint-free Theorem. Namely, Angehrn
and Siu prove that, for an ample line bundle A on X, the adjoint line bundles
mA + Kx are free for m > n(n + 1) + 1. An elementary argument (see
for example [Kii, 3.3]) shows that £(A4,z) > 1 for all ample basepoint-free
line bundles A. Moreover, if Tx(6A) is nef, then so is the Q-line bundle
M := det(Tx(6A)) = —Kx +ndA. Seshadri constants by definition have the
sublinearity property

eAL+uM,z) > X-e(L,z)+ p- (M, x)
for nef line bundles L, M and any rational X, x > 0. This shows that

2

> .
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Degenerate double covers
of the projective plane

Marco Manetti *

Abstract

We prove that the set of canonical models of surfaces of general
type which are double covers of P? branched over a plane curve of
degree 2h is a connected component of the moduli space if and only if
h is even. To get a connected component when A is odd, we must add
some special surfaces called degenerate double covers of P2.

Moreover, we show that the theory of simple iterated double covers
(cf. [Ma3]) “works” for every degenerate double cover of P?; this allows
us to construct many examples of connected components of the moduli
space having simple iterated double covers of P? as generic members.

0 Introduction

Double covers of rational surfaces play an important role in the theory of
minimal surfaces of general type, especially those with small ¢} (cf. [Horl]).
For example, if S is a smooth minimal surface with K% = 2 and py(S) = 3,
then its canonical model is a double cover of IP?, while if K% = 8 and p,(S) =6
then S is either a deformation of a double cover of P2, or a deformation of a
double cover of P! x P! ([B-P-V, p. 231]).

One of the main goals of this paper is to determine all smooth surfaces of
general type that are (smooth) deformations in the large of a double cover of
IP2. In other words, if M denotes the coarse moduli space of surfaces of general
type ([Gi]) and Sy — P? is a double cover (branched over a nonsingular curve),
we want to describe all surfaces S whose classes [S] € M are in the same
connected component as [So]. It is important to say that, as we consider only
smooth deformations, the minimal resolution of double covers of P? branched
over very singular curves are not in the same connected component of [Sy].

*Research carried out under the EU HCM project AGE (Algebraic Geometry in Eu-
rope), contract number ERBCHRXCT 940557.
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256 Degenerate double covers of the projective plane

For every h > 4, let N(P?,0O(h)) C M be the (irreducible) subset of
surfaces whose canonical model is a double cover of P? branched over a plane
curve D C P? of degree 2h. Equivalently N(P?, O(h)) C M is the set of
double covers of P? branched over a curve of degree 2k with at most simple
singularities [B-P-V, IL.8]. It is not difficult to prove that N(P?,O(h)) is an
open subset of the moduli space, but the above examples show that it is not
closed in general. Our first result is the following:

Theorem A Let h > 4 be a fized integer and set N = N(P?, O(h)).
(1) N is open in the moduli space.
(2) N s closed in the moduli space if and only if h is even.
(8) If h is odd then the closure of N in the moduli space is open.

(4) The closure of N(P?,O(h)) in the moduli space is a connected compo-
nent.

We recall that the local analytic structure of M at a point [S] is isomorphic
to the quotient of the base space of the semiuniversal deformation of the
canonical model S by the (finite) group of automorphisms of S (cf. [Gi],
[Mad4]) and the subset Mgz, C M of minimal surfaces with fixed K2, x is
a quasiprojective variety. (1) is therefore an easy application of well-known
theorems about deformations of double covers of smooth surfaces, while (4)
is an immediate consequence of (1), (2) and (3).

The idea of the proof of (2) and (3) is the following: let {S¢}, ¢t € A be a
flat family of minimal surfaces of general type such that [S;] € N(P?, O(h))
for every t # 0. Denoting by Yj the canonical model of Sy, we use the results
of [Mal] to prove that either [Sy] € N(P?,O(h)), or Yy is a double cover
of Wy, the projective cone over the rational normal curve of degree 4 in P*,
nonflat over the vertex wy € Wy; in the latter case we call Yy a degenerate
double cover of P?. (As the referee points out, degenerate double cover of P?
and their deformations can also be described easily in terms of subvarieties
of the weighted projective space P(1,1,1,2,d).)

It is then clear that (3) is a consequence of the local irreducibility of the
moduli space M at every degenerate double cover Y of P?; this is proved in
§4 by giving an explicit description of the Kuranishi family of Yj.

We also prove the vanishing of some Ext groups on Yp; these results allow
us to apply the machinery of [Ma3] of simple iterated double covers to give a
large number of examples of connected components of the moduli space. A
finite map between normal algebraic surfaces p: X — Y is called a simple
sterated double cover associated to a sequence of line bundles L,,...,L, €
PicY if the following conditions hold:



Marco Manetti 257

(1) There exist normal surfaces X = Xj,..., X, = Y and flat double covers
mi: Xi-1 = X; such that p =7, 0---0om.

(2) If pi = mpo---omyy: X; = Y is the composite of the m; for j > 4,
then we have the eigensheaf decomposition m,,Ox, , = Ox, ® p;(~L;)
foreachi=1,...,n.

We say that a simple iterated double cover 7: X — Y is smooth if each
X, is smooth. By [Ma3, 2.1}, 7: X — Y is smooth if and only if X is smooth.

For any sequence Ly,..., L, € PicP?, define N(P?, L,,...,L,) to be the
locus in the moduli space M of surfaces of general type whose canonical
model is a simple iterated double cover of P? associated to Ly,...,L,. The
subset N(P?, L;,. .., L,) is parametrized by a Zariski open subset of the space
of sections of a decomposable vector bundle of rank 2" —1 over P? (cf. [Ma3]),
and therefore it is irreducible and unirational.

Theorem B Set N = N(P?,L,,...,L,) with l; = deg L;, and write N for
the closure of N in the moduli space.

(1) Ifl, >4 and l; > 21,4y fori=1,...,n—1 then N is an open subset of
the moduli space.

(2) Assume in addition to (1) that ly,...,l,—1 are even integers, l, is odd
and [S] € N\ N; then the canonical model of S is a simple iterated
double cover of a degenerate double cover of P?> and has unobstructed
deformations.

(8) If l, > 5 is odd, I; is even and l; > 2134y for each i =1,...,n —1 then
N is a connected component of the moduli space M.

In the last section of this paper we see, using Theorem B, (3) that simple
iterated double covers of P? give examples of distinct connected components
of moduli space whose general members are smooth simple iterated double
covers of P? with fixed numerical invariants.

This paper is considered as the ideal continuation of [Mal] and [Ma3].
To avoid the excessive number of pages necessary for a selfcontained proof of
Theorems A and B, we often use the results of the above papers.

An earlier version of this paper formed part of the author’s thesis [Mad].
It is a pleasure to thank my advisor F. Catanese, and also L. Badescu and
C. Ciliberto for their interest in this work and many fruitful discussions.
Thanks also to the referee for several useful remarks.
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Notation

We work exclusively over the complex field C; for any algebraic variety X, we
write Q% for the sheaf of Kahler differentials and 8x = (2%)V for the sheaf
of tangent vector fields. If X is normal we denote by Kx its Weil canonical
divisor.

By a deformation we mean any flat family over a connected base; a small
deformation means a deformation over a germ of a complex space. Thus to
say that a class C of surfaces is stable under small deformations means that
for every deformation f: X — B and every point b € B such that f~1(b) € C,
there exists an analytic neighbourhood b € U C B such that f~!(u) € C for
every u € U.

We denote by Defx the functor of infinitesimal deformations of X from
the category of local Artinian C-algebras to pointed sets ([Sch]), by Ty =
Defx (C[t]/(t?)) its tangent space, and, if T is finite dimensional, by Def X
the base space of the semiuniversal deformation of X (also called Kuranishi
family). We define in a similar way Def(x,g), T(IX)O) and Def(X,0) for any
isolated singularity (X, 0).

According to [Ca3] a surface singularity (X,0) is called a half rational
double point (or half R.D.P.) if it is the quotient of a rational double point
by an analytic involution. The half rational double points are completely
classified in [Ca3].

For every g > 0 we denote by F; = P(Op: & Op1(q)) the Segre-Hirzebruch
surface; if p: F;, — P! is the natural fibration we denote by 0w, f, 59 € PicF,
the classes of the unique section of p with negative selfintersection, of the
fibre of p and of a section disjoint from ¢,. It is well known that oy, f are
generators of the Picard group, 0y ~ 0w + qf, 02 = —02, = ¢, and the
canonical bundle is K = —0¢ — 0o — 2f.

1 Degenerations of double covers of P?

Throughout this paper we denote by Wy C P the projective cone over the
rational normal curve of degree 4 in P* and by wy € W, its singular point.
The minimal resolution of Wy is the Segre-Hirzebruch surface Fy. It is well
known that W, is a degeneration of P? and, according to [Ca3, §2] and [Mal,
Theorem 15 and Theorem 8], P? and W, are the only degenerations of the
projective plane with at worst half R.D.P.s

Lemma 1.1 Let 0 C Wy C P® be a generic hyperplane section. Then o is a
generator of PicWy = Z.

If W — A is a deformation of Wy such that W, = P? for every t # 0,
then every line bundle on Wy extends to a line bundle on W. Moreover, if L
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is a line bundle on W such that Ly = ao then L, = Op2(2a) for t # 0.

Proof Let v: X = Fy — W, be the minimal resolution. Since o doesn’t
contain the vertex wy of the cone and o2 = 4, y!(0) must be a section oy.
The singularity at wy is rational, which identifies Pic Wy with the set of line
bundle Ly on X such that Lo - 0, = 0. Since g(Wy) = pg(Wp) = 0, the
restriction PicWW — Pic W, is an isomorphism by ([Mal, Lemma 2]). After
a possible restriction of the family W — A to an open disk 0 € A’ C A of
smaller radius we can assume W embedded in P5 x A (cf. [Mal, Prop. 3])
and the restriction of Ops(a) to W; for ¢ # 0 is a very ample line bundle with
selfintersection 4a®. The conclusion is now trivial. O

Lemma 1.2 Let f: Y — A be a proper flat family of normal surfaces such
that Y; is a smooth surface for every t # 0, and Yy has at worst R.D.P.s.

Let t: Y — Y be an involution preserving f such that Y;/T = P? for every
t # 0. Then either:

(i) Yo/T =P2, or

(i) Yo/7 = Wy. The double cover w: Yy — Wy is branched exactly over
the vertex wy € Wy and over a divisor D' ~ (2a — 1)o with wy ¢ D'.
Fort #0, Y; = Y;/r = P? is branched over D, ~ O(4a — 2) and the
divisibility of the canonical class r(Y;) is even.

Proof The fact that the quotient family /7 — A has normal fibres fol-
lows from the general fact [L-W, 5.6] that smoothings of normal two dimen-
sional singularities are preserved under finite group actions which are free
in codimension 3. We also note that in our particular case, if 7: Y — Y/1
is the projection, then 7,0y = Oy, ® M, where M is the Oa module of
anti-invariant functions, and this decomposition commutes with base change
B — A.

Yo/ is a normal degeneration of P? with at worst half R.D.P.s, and there-
fore either Yy /7 = P2 or Yy /7 = W,. Assume Yy/T = W); then, since (Wy, wo)
is not a rational double point, 3y = 7~ (wy) is a fixed point of the involution
7. By [Ma3, Prop. 3.2 and Table 2], the singularity (Y, yo) is a simple node
defined by the equation z3 + 22 + z3 = 0 and the involution 7 is conjugate
to z; — —z; for ¢ = 0,1,2. In particular y, is an isolated fixed point of the
involution.

Let §: S — Y} be the resolution of the node (Y, %) and E =6 (yo) C S
the corresponding nodal curve, i.e., a smooth rational curve with selfinter-
section E? = —2. The action of 7 can be lifted to an action on S, and it is
easy to see that S/7 = X = ;. Moreover the flat double cover 7: S — Fy is
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branched over D = oo, U D', where oo, N D' = ), and since this divisor must
be 2-divisible in PicFy, D' ~ (2a — 1)o9 and }(0e U D') = agg — 2f where f
denotes the fibre of F,. O

We now recall some results of [Ma3] about flat double covers of surfaces
and their deformations. Let 7: X — Y be a flat double cover of normal
surfaces and L — Y the line bundle such that 7,0x = Oy ® Oy(-L).

The surface X can be described as a hypersurface of L defined by the equa-
tion 2% = f, where z is a coordinate in the fibres of L and f € H°(Oy(2L)).
Clearly R = {z =0} C X and D = {f =0} C Y are exactly the ramification
and the branch divisors of 7. The line bundle L and the branch divisor D
determine the double cover uniquely up to isomorphism. In this situation we
say that X is a flat double cover of Y associated to the line bundle L. If
¢ € H%Oy(2L)) the surface given by the equation 22 = f + ¢ is called a
natural deformation of X.

Applying the functor Home, (—, Ox) to the exact sequence of sheaves

0—- 70y - Q% = Or(~R) =0 (1.3)
on X gives the exact sequence

EXt(lgx (OR(—R), Ox) i) EXt(lgx (Qﬁ(, Ox)
— Exty, (Qf, Oy) ® Exty, (Qf, —L). (1.3)

Now there exists an isomorphism Extg, (Or(—R), Ox) = H(Og(7*D)) =
H°(Op(D)), and if ¢(Y) = 0 then the image of ¢ is exactly the space of first
order natural deformations of X. In particular if Y = P? and the degree of
L is > 4 then ¢ is surjective, so that by the Kodaira—Spencer criterion the
family of natural deformations is complete, and then double covers of P? are
stable under small deformations.

This proves that N(P?, O(h)) is open in the moduli space for every h > 4
and that

No(P?, O(h)) = {[S] € N(P?,0(h)) | Kg is ample}
is an open dense subset of it. More generally, the following holds:

Proposition 1.4 ([Ma3], 2.3) In the above notation, let X - Y — H be
a deformation of the map ® parametrized by a smooth germ (H,0) and let
rx: (H,0) = Def X, ry: (H,0) = DefY be the induced maps. Assume:

1. ry is smooth.

2. The image of rx contains the natural deformations.
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3. Exth, (2, ~L) = 0 and H'(Oy) = 0.
Then the morphism rx is smooth.

Definition 1.5 Let a > 3 be an integer and 7: S — Fy the double cover
associated to L = aogo — 2f branched over the disjoint union of s, and a
divisor D' ~ (2a — 1)g¢ with at worst simple singularities ([B-P-V, 11.8]).
E = 17Y(04) is a nodal curve; taking its contraction §: S — Y, we get a
surface with at worst rational double points which is a double cover of the
cone Wy. We say that Yj is a degenerate double cover of P:. The number a
determines K%, = 8(a — 2)* and is called the discrete building datum of Yj.

If a = 2 the above construction still makes sense. In this case, we obtain
a well-studied class of K3 surfaces [Sai, §5], [Hor2].

Theorem 1.6 For even h > 4, the set N = N(P?,O(h)) is a connected
component of the moduli space. If h is odd then the set N \ N is contained

in the set of degenerate double covers of P? with discrete building datum a =
Hh+1).
2

Proof Note first that N and Ny have the same closure in the moduli space.
If [So] € Ny, then by the valuative criterion, there exists a deformation
f: S = A of Sp with [S;] € Ny for every t # 0, and an involution 7 act-
ing on the punctured family S* — A* such that S;/7 = P? for every ¢ # 0.
Let Y — A be the relative canonical model of S —+ A. Then Y} is a nor-
mal surface with at worst rational double points and ample canonical bundle
and Y; = S; for every t # 0. It is now an immediate consequence of [F-P,
Prop. 4.4] (cf. also [Ma5]) that 7 extends to a biregular involution of Y. As is
well known, in general 7 does not necessarily extend to a biregular involution
of S (cf. [Ca3]).

The theorem now follows from Lemma 1.2. [

Remark 1.7 In the notation of 1.4, if Defy is prorepresentable (e.g., if
H%@x) = 0), then it can be proved that Proposition 1.4 holds without the
assumption that (H,0) is smooth. Philosophically, this means that if X — Y
is a flat double cover of normal surfaces ramified over a sufficiently ample
divisor then Def X is isomorphic to the product of Def Y with a smooth germ
(€, 0).

One of the main goals of the next sections is to prove that every degenerate
double cover Yy has unobstructed deformations. The natural double cover
m: Yy — W, is not flat and so we cannot apply the above result (fortunately,
since Def W) is not irreducible, cf. [Rie]).
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2 Vanishing theorems for degenerate double
covers of P

Before proving the main results of this section we need an explicit description
of all cotangent vector fields with fixed poles on a Segre-Hirzebruch surface
F,, ¢ > 1. For this, we use the description

F, = (C* - {0}) x (C* - {0})/ ~

where (lo, 11, 0, t1) ~ (Mo, Aly, Muto, ut1) for any A, u € C*.
From now on, by the standard torus action on F, we mean the faithful
(C*)? action given by

(C*)2 =] (67 77) (l07llyt07tl) - (lﬂagllyntﬂa tl)

F, is covered by four affine planes C? ~ U;; = {I;t; # 0}, which are invariant
under the standard torus action. In this affine covering, we choose local
coordinates as follows:

Uop: z=UL/ly and s=to/t:l{,
Uso: z=1Ui/lp and s =tl/t,
Uip: 2 =b/li and y' = t,l]/te,
Ur: 2 =1y/liy and y=t/t:}.

(2.1)

We call Uy ) the principal affine subset and z, s principal affine coordinates.
The other pairs of affine coordinates are related to s, z by

’ -1 / -1 1

Z=2z1 d=s51 y=s2z"7 and ¢y =s10=yL

The map F, — P!, (lo,l1,t0,t1) = (I, 1) represents the Segre-Hirzebruch
surface as a rational geometrically ruled surface, where oo, : {¢t; = 0}, 0¢ :
{to =0} and f : {{; = 0}. Note that the rational function y gives the rational
equivalence 0o, ~ gy — ¢f.

Lemma 2.2 h%(F,, Q' (poo + r0)) = qp* — 1 for every p,qg > 0 and r > 0.

Proof H%(Q'(pos + r0s)) is the vector space of rational cotangent vector
fields having at most poles of order p and r along 0y and 0., respectively.
The standard torus action induces an eigenspace decomposition

HY(Q(poy + r0s)) = @ M.y
a,beZ
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where w € M, if and only if
W = 0gp2° 18Pz + B, 52%8" 1ds

on the open set Uy, for some complex numbers ag p, 5, p-
The same w is written in Uy as

w= aa,bz“‘ls"”dz - ﬁa,bzasl_b_ldsl
and in Uy ;
—(a+1+gb —(a+qb), b—
w = _(aa,b + qﬁa,b)zl (a+1+q )ybdz’ + ﬁa,bzl (a+q )yb ldy

Note that UoﬁUo,l : {8 = 0}, UoonUO,l = 0, UoﬁUo,o = 0, UoonUO,O : {8’ = 0},
oo NUy : {y =0} and 0, NU;;; = 0. From the above local description of
w it follows immediately that w # 0 implies b < 0, and then there exists an
isomorphism H®(2 (poy+700)) = H* (2} (poy)). By reflexivity, every section
of ' (poy) on Up; UUp o UL, extends to a unique section on Fy, so that the
following set of rational cotangent vector fields

22 1sbdz for a>1, 0>b>—-p, a+1+gb<0,
2%s"~1ds for >0, ~1>b>1—p, a+bg <0,
—q2* lsbdz + 2%sP"1ds for —1>b>1-p, a+bg=0

are gp?> — 1 bihomogeneous sections of 2!(pay); to prove that these form a
basis is an easy calculation that we omit. O

Corollary 2.3 For every p,q,v > 0, h*(F,,0) = ¢ — 1, h'(Fy, Q2 (pay)) = 1
and h*(Fy, 0) = h*(Fy, Q' (poo)) = h' (Fy, Q' (poo + 7)) = 0.

Proof The equality h'(F,,8) = ¢ — 1 is well known ([Ko]). By the Hodge
decomposition and Serre duality we have h°(F,, Q') = h%(F,,0(K)) = 0 and
h*(F,, ') = 0, and since both — K and pay are effective divisors also h?(Fy, 6)
and h%(F,, 2 (poy)) vanish. By Riemann-Roch and Lemma 2.2 we then get
hY(F,, Q*(poo)) = 1.

For every p,r > 0 it follows from standard exact sequences that

hl(]quQl(PUo +7f)) < hl(]Fq:Ql(Uo +f) = hO(Fle(Uo +f)-a

and using the method of proof of Lemma 2.2 we easily see that 22~'s~'dz,
for 0 < a < ¢ — 1 is a basis of H*(F,, Q' (0 + f)), and the right-hand side
aboveis 0. O

Proposition 2.4 For the surface F;, ¢ > 0 we have:
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(i) H(aoo +bf) #0 if and only ifa > 0 and ag+ b > 0.

(ii) The linear system |acy + bf| contains a reduced divisor if and only if
eithera >0,b> —q ora=0,b>0.

(1i) H'(aoo + bf) = 0 if and only if either a = —1 ora > 0,b > ~1 or
a<-2,b<g-1.

(iv) For every pair of positive integers p,r, the natural map
Hpay) @ H(roy) — H((p + r)oo)

is surjective; in particular the image of By by the complete linear system
|oo| is projectively normal.

(v) P-1(F,) = h°(—Kp,) = max(9,q +6).

Proof (i) and (ii) are clear since |oo|, |f| are base point free and oo €
|oo — qf|. By Serre duality it is sufficient to study the vanishing of A! only
for a > —1. Using standard exact sequences and induction on |b| we have

k(=00 + bf) = h'(—00) =0 for every b € Z,
and if b > —1, by induction on a > 0 we have
h(aco + bf) < h}(=0¢ + bf) = 0.

If a > 0 and b < —2 then we can write agy + bf = 04 + D where by (i) and
Serre duality h%(D) = 0, thus

hl(aco + bf) > hY (O, (a0o + bf)) = A (Opi (b)) > 0.

In the principal affine coordinates z,s a bihomogeneous basis of H%(poy) is
given by the monomials s~¢2° with 0 < a < p and 0 < b < ag, so that (iv)
follows immediately.

For every ¢ > 0 we have —K = 0y + 0o +2f and K2 = 8. If ¢ < 3 by (iii)
and Serre duality H!(—K) = H*(—K) = 0 and P_; = 9 by Riemann-Roch.
If g >3then —K -0, <0and P, = h%(0p+2f)=¢+6. O

Throughout the rest of this section a is a fixed integer > 3. Let X be the
Segre-Hirzebruch surface F; and 7: S — X the double cover ramified over
D = 0, UD' with D' a reduced divisor linearly equivalent to (2a — 1)o,. We
assume that S has at worst rational double points and write R C S for the
ramification divisor.

We have 1,05 = Ox ® Ox(—L) where L = aop — 2f and E = 771 (04)
is a nodal curve. Denote by §: S — Y, the contraction of E; then ¥ is a
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surface with at worst rational double points and ample canonical bundle. We
call 6(F) = yo the vertez of the degenerate double cover Yq.

By abuse of notation we use the same letter o to denote the line bundles
0o € PicX, 7*0y € PicS and 4,7*0p € PicYy. By the Hurwitz formula
Ks=n*(Kx+L)=(a-2)o.

Lemma 2.5 H!(Y,,po) = 0 for every integer p.

Proof By the Leray spectral sequence we have
H'(Yo,po) = H'(S,p0) = H'(X,po) ® H'(X, (p — a)o + 2f)

and the lemma follows from Proposition 2.4, (iii). O

Lemma 2.6 For every smooth curve C' contained in a smooth surface S,
HA(2%) # 0.

Proof There exists an inclusion H*(F ® O¢(C)) C H}(F) for any locally
free sheaf F on S (this is proved in [B-W, 1.5] for the tangent sheaf, but
the same proof works for any locally free sheaf) and according to the exact
sequence of differentials H°(O¢) C H(Q} ® Oc(C)). O

Lemma 2.7 If p > 2a then h(S,Q4(Ks +po)) < 1.

Proof We consider the exact sequence on S (cf. (1.3))
0 —= 7 (Q% (Kx + L + po)) = Q5(Ks + po) = Or(r*(Kx +po)) = 0,

where R C S is the ramification divisor.
Using the previous results, we get

hl(OD(Kx +P0))

<KX, (p—-2)o +2f) + h*(X,Kx + (p— 2a)0 + 4f) = 0,
RYm* Q% (Kx + L+ po)) =

RYQLY (Kx + L+ po)) + A1 (Q%(Kx +po)) =1

for p > 2a, and the proof follows from the equality h'(Og(n*(Kx + po))) =
hl(OD(KX +p0)) 0

Theorem 2.8 In the above notation, Exty, (Q;, —po) = 0 for every p > 2a.
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Proof Y is a Gorenstein surface, in particular Ky, +po is a Cartier divisor.
By Serre duality ([Hal, p. 243))

Exty, (Qy,, —po)" = Exty, (Qy,(Ky, +p0), Ky)" = H'(Qy,(Ky, +p0)).
We use the following exact sequence of sheaves on Y; ([Kas], [Pi2])
0— O} — 6,05 = G, — 0,

where for every open subset E C U C S and every w € HY(U,Q}), a(w) =0
if and only if the holomorphic 2-form dw vanishes on E. We observe im-
mediately that Q{,o, being locally generated by closed 1-forms, is contained
in the kernel of a; the converse inclusion requires some computation ([Kas,
p. 55)). Note moreover that, according to ([Ste], [Pil, App.]), the sheaf 6,00
is reflexive, and then the exactness of the above sequence is equivalent to the
equality Hp, (Yo, Q) =C.
Twisting the above exact sequence by Ky, + po = 6.(Ks + po) we get

0 — QL (Ky, +po) = 8.Q5(Ks + po) — Gy, = 0.

Our first step is to prove that H(Q}, (Ky, + po)) = H' (6.0 (Ks + po)) for
p > 2a, that is, that o is surjective on global sections. Actually the following
stronger result holds:

Lemma 2.9 In the above notation if p > 2 then the composite of H®(a) with
the pullback map ©*: HY(Q%(Kx + po)) = HY (U (Ks + po)) is surjective.

Proof Let s,z be the principal affine coordinates on X = Fy and consider
w = s72dz(dz A ds) € H*(Q%(Kx + po)). In the open set Upg C X with
coordinates z,s', we have w = dz(ds’ A dz), and 0 = {s = 0}; locally,
S is the double cover of X defined by the equation ¢2? = §', s0 that m*w =
2¢dz(d€ A dz).

Now dé A dz extends to a holomorphic invertible section of K¢ in a neigh-
bourhood of E and then, up to nonzero scalar multiplication, a(r*w) =
a(£dz) # 0 since d(§dz) =dé Adz. O

The Leray spectral sequence gives an exact sequence
0 — HY(6.QL(Ks + po)) = H (Qs(Ks + po)) — H°(R'6.05(Ks + po)),

and if r # 0 then by Lemma 2.7 the proof is complete.
For any open set E C U C S there exists an exact sequence

0 = H(U,Q}(Ks +po)) = H'(U \ E, Q4(Ks +po))
4 HYQL(Ks +po)) 2 H' (U, Q4(Ks + po)).
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On the open set V = §(U) C Y, the coherent sheaf 6,24 (K g+ po) is reflexive,
in particular the above map £ is an isomorphism and the map ry is injective.
Since HL(QL(Ks + po)) = HE(2Y) # 0 the above inclusion factors as

Hy(Qg) € H'(S,Qg(Ks + po)) = H'(U,Qs5(Ks +po)),

and then r =limry #0. O

3 Deformations of degenerate double covers
locally trivial at the vertex

Let a, m: S — X and §: S — Yj be as in Definition 1.5. Then = is a flat
double cover, and there exists a family of natural deformations of S obtained
by deforming the branch divisor D = 0,,UD’ ~ 2ac —4f. Since 0, is a fixed
part of the linear system |D|, the natural deformations are parametrized by
HO(X, (2a - 1)o).

The singularity (Yo, yo) is rational, so that, as in [B-W], we can define the
blowdown morphism 3: Defg — Defy,. It is clear that every (infinitesimal)
natural deformation of S is trivial in a neighbourhood of F and its blowdown
is a deformation of Y, locally trivial at yo.

Thus taking first order deformations gives a commutative diagram

Nat,
—

HY(X,(2a - 1)o) Td
P 18
T'LT(Yo,50) — T3,
where (3 is the blowdown map and T'LT (Y, 30) the kernel of the natural
restriction map Ty, — T1 Youo): Note that natural deformations never give a

complete family of deformatlons of S, because the nodal curve E contributes
to the space T% ([B-W]).

Theorem 3.1 The above map p is surjective and the blowdown of the family
of natural deformations of S is a complete family of deformations of Yy, locally
trivial at the vertex, with smooth base space.

Proof The exact sequence (1.3') in this particular case becomes

H°(Og(r*D)) - ExtL(Q}, Os) — H'(6x) ® H'(6x(-L)),
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and the image of € is the set of first order natural deformations. Given an open
subset V C X, the inclusion 7*Q% — Q% induces a commutative diagram

Extg(Q%, Os) — Extioa) (s vy, Or1(v))
cl l
H'(9x) ® H'(0x(-L)) =5 H'(6v)® H'(6v(-L)).

Lemma 3.2 In the above set-up, if 6, C V, then vy is injective.

Proof of 3.2 It is clearly sufficient to prove that the two natural maps
m: H'(6x) = H'(0x ® O,,,), 72: H'(0x(—L)) = H'(0x(~L) ® Oy,,)

are isomorphisms.

Note first that Al(6x ® O, ) = 3, K (6x(—L) ® Os,) = 1 and by Corol-
lary 2.3, h(9x) = 3, ki (Bx(~L)) = R (@ ((a — 2)00)) = 1, h*(Ox (—0)) =
hO(Q (=00 — 2f)) = 0.

Hence v, is surjective and then it is an isomorphism. To show that 7, is
surjective, we prove that the natural map H2(0x(—L — 0s)) = H2(0x(—L))
or its Serre dual H°(Q) ((a —2)0o)) = H°(%%((a — 2)09 + 0)) is an isomor-
phism, but this is exactly the result of Lemma 2.2. O

Returning to the proof of Theorem 3.1, we note that the open sets 771(V'),
O C V are a fundamental system of neighbourhoods of E. Thus from
Lemma 3.2 it follows that for every open subset U C S with E C U, the
kernel of the natural map

a: Extg(Q, Os) — Exty, (%, Oy)

is contained in the set of first order natural deformations ker 6 = ime.
We now apply this fact to a smooth open subset E C U such that §(U)

is an affine open neighbourhood of yy. According to the Cartesian diagram
([B-W))

T = HYU,6y)

Bl 1 By
T, —  Thy

we have S(ker a) = kerr = T' LT (Y;, yo) and since p = B o¢, the first part of
the theorem is proved.

For the second part, we introduce the functor on Artin rings LT (Y}, yo) of
deformations of Y which are locally trivial at the point yo. More generally, for
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every complex space Z with isolated singularities and for every finite subset
{z1,..., 2.} C Z, we can define the functor D of deformations of Z which
are locally trivial at the points zy,...,z,. This functor has been studied by
several authors (cf. [F-M]); for example in [G-K, §1], it is proved that:

1. D satisfies the Schlessinger conditions [Sch, H1-H3].

2. There exists a closed analytic subgerm (possibly nonreduced) V of Def Z
such that the restriction of the semiuniversal deformation of Z to V' is
a complete family of deformations locally trivial at z,. .., 2,.

3. The Zariski tangent space of V is the kernel of the differential of the
natural morphism Def Z — [, Def(Z, 2;).

Applying these results to the functor LT (Y, yo) concludes the proof. O

4 The Kuranishi family of a degenerate
double cover

Let m: Yo — Wy be a degenerate double cover of P? ramified over the union
of the vertex wy and a divisor D' ~ (2a — 1)o with a > 3. Here we construct
explicitly a smooth complete family of deformations of Y. This will imply
in particular that the moduli space at Y is locally irreducible and then the
closure in the moduli space of the set N (P2, O(h)) is a connected component
for every h > 4.

The idea is to describe deformations of Yj as canonical coverings of suitable
deformations of the cone Wy and then prove that they give a complete family.

We first recall some well-known facts about cyclic coverings associated to
Q-Cartier divisors. For every normal complex space X we denote by My
the sheaf of meromorphic functions on X and for every analytic Weil divisor
D C X by Ox(D) the reflexive subsheaf of Mx of meromorphic functions
f such that div(f) + D > 0. We keep this explicit description of Ox(D)
throughout this section.

Let L be a Weil divisor on a normal irreducible variety X such that nL
is Cartier and let s € H°(X,nL) be a meromorphic function such that the
divisor D = div(s)+nL is reduced and is contained in the set of points where
L is Cartier.

Multiplication by s gives a morphism of Ox-modules Ox(—nL) — Ox
and we may define in a natural way a coherent analytic reflexive Ox-algebra
(cf. [Reid, 3.6], [E-V, 1.4]):

AL ) = @) A = @ Ox(~iL)

i=0 i=0
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If (X,z) is a normal analytic singularity, its local analytic class group is
by definition the quotient of the free Abelian group generated by the germs
of analytic Weil divisors modulo the subgroup of principal divisors. For a
2-dimensional rational singularity, it is a finite group naturally isomorphic to
the first homology group of the link of X ([Bri]).

Lemma 4.1 Let n,L,s,D be as above. If x ¢ D then up to isomorphism,
the local analytic O -algebra A;(L,s) only depends on the class of L in the
local analytic class group of the analytic singularity (X, z).

Proof Letn,L’ s, D' be another set of data with ¢ D’ and assume that
L — L' is principal at z. This means that there exists an analytic open
neighbourhood U of z and a meromorphic function f on U such that L =
L' +div(f) and div(s)lU = —-nL, div(s’)lU =—nL'

Therefore s~!s'f ™ is an invertible holomorphic function on U and, pos-
sibly shrinking U, we may assume that it admits an nth root g. Thus
s = s'(fg)" and the multiplication map (fg)*: Oy(—iL’) — Oy(—iL) gives
the required isomorphism.

The cyclic group u, acts on the algebra A by

Pa X A D (6, h) = E7°R € A,
and then the finite map
n: Z = Specany (A(L,s)) = X

is a cyclic covering of normal varieties (here Specan ([Fi, 1.14]) is the analytic
spectrum; if X is projective then by GAGA principles it is the same as the
usual algebraic spectrum ([Hal, II, Ex. 5.17)]).

According to Lemma 4.1, if z ¢ div(s)+nL, the germ of the covering over
the point z is independent of s.

Corollary 4.2 In the above set-up, assume X compact and let T be a suffi-
ciently small analytic open neighbourhood of s in H°(X,nL). Let w: Zp —
X X T be the cyclic covering of degree n associated to the Weil divisor L x T
and multiplication given by s(z,t) = t(z), t € T.

If X — S is a flat map such that the composite Z — X — S is flat then
also the composite Zp - X x T — S x T is flat.

Proof Let U C X be the open subset where L is Cartier. If T is sufficiently
small then s;(z) = 0 for some ¢ € T implies that + € U. Hence if z ¢ U
then by Lemma 3.1 the germ of Zr over (2, s) is locally isomorphic to Z x T
On the other hand the map U x T'— S x T is flat and the restriction of the
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algebra A over U x T is locally free and then the restriction of 7 over U x T
is a flat map. O

Therefore, in the case S = point, we have a morphism from deformations
of s to deformations of Z. Consider for example the hypersurface Z C P? xC
with equation 22, — 22 = t22 for t € C, and the involution 7: Z — Z given
by 7(t, 20, 21, 22, 23) = (t, 20, —21, — 22, —23)-

Let t: Z — C be the projection on the coordinate ¢ and Z; the projective
subvariety of Z of points with fixed ¢. It is immediate to observe that Z;
is a smooth quadric for ¢ # 0, whereas Z; is the cone over a nonsingular
conic, and t gives the semiuniversal deformation of the isolated singularity
(ZO, (1, 0, 0, 0’ 0))

The quotient Z/7 is the variety W C P° x C defined by the equation

T To T3 +1txp
rank Ty T3 T4 <1, (4.3)
T3+ 1tTy T4 Ts5

where zg = 22, 1) = 22, T2 = 2123, T3 = 22, T4 = 2923, T5 = 22.

The quotient family W — C, (z,t) — t is a deformation of W, and is
exactly the degeneration of P? obtained by sweeping out the cone over the
Veronese surface V C P°. To see this, let C (V v) C P8 be the projective cone
over the image of the map P2 — P2, z; = ul, o = wouy, 73 = v, 24 = ujug,
T5 = ul, T¢ = uouy — ul. It is defined by the equation

T Ty T3 -+ Te
rank T T3 T4 <1. (4.4)
T3+ T T4 Ts5

V is the intersection of C(V,v) with the hyperplane z, = 0 and the vertex v
is the point with homogeneous coordinates (1,0,0,0,0,0,0).

Let H, C P%, t € C be the hyperplane given by the equation z¢ — tzo = 0.
Then H,NV =V N{z¢ = 0} is a smooth hyperplane section and the surface
W, = C(V,v) N H, is exactly the surface defined in (4.3).

Let H C W be the Weil divisor defined by the equation z; = z3 = 24 = 0.
Then Ow(—H) is the ideal sheaf of H, and 2H is the hyperplane section 23 =
0 of W. In fact the closed subset {z; = 23 = 5 = 0} has codimension 3 in W
and then it is sufficient to prove the equality 2H = div(z3) on its complement.
An easy computation shows that on every affine subset WN{z; # 0} 1 =1,3,5
the equality of ideals (z%z;!, z%z;!, z%z;!)? = (z3z]!) holds.

Note that 7,0z = Ow @ (20/23)Ow(—H) and then there exists an iso-
morphism of Ow-algebras 7,0z = Ow & Ow (—H), where the algebra struc-
ture on the right is induced by multiplication z¢/z3: Ow (—2H) — Ow.

Now let my: Yy — Wy C P° be a fixed degenerate double cover. Then,
according to Proposition 2.4, W, is projectively normal in P° and then there
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exists a section so € H°(P%, O(2a—1)) such that 7 is ramified over the union
of {wo} with the divisor of the restriction of sy to Wj.
Let T be a small open neighbourhood of so and consider the double cover

Yr = Specany, ¢ (OWXT ® Owxr(—(2a — 1)H x T)) - WxT,

where the algebra structure is induced by the section s(z,t) = s;(x) for s, € T
and x € W. This makes sense since 2H X T is a Cartier divisor linearly
equivalent to {s(z,t) = 0}.

By our previous results (4.1, 4.2) it follows that:

(i) The map Yr — T is a deformation of the space
Y = Specanyy (ow ® Ow(—(2a - 1)H))

with the algebra structure induced by s,.

(if) Over the vertex wp the space Y is isomorphic to the above space Z and
then the composite Y - W — C gives a complete deformation of the
node (Yo, o)-

It is now easy to prove the following
Theorem 4.5 In the above notation the composite
fYroWxT>CxT

is a smooth complete family of deformations of Y;.

Proof We need to prove that f~1(0, so) = Yj and that the Kodaira-Spencer
map of the family is surjective.

By definition f~1(0, o) = Specy, (Ow, ® (Ow (—(2a—1)H) ® O, )) while
by definition and from the normality of Yy we have Yy = Specy, (Ow, ©
Ow,(—L)) where L = ac — 2I, and I C W} is a line through w,.

Note that all lines through wy are linearly equivalent, L is linearly equiv-
alent to (4a — 2), the intersection Hy = H N W, is the union of the two lines
h={r1=x2=23 =24 =0}, h = {5 = 22 = 23 = 24 = 0} and then
the natural map j,: Ow(nH) ® Oy, — Ow,(2nl) is an isomorphism over
Wo \ {wo} for every integer n.

In a neighbourhood of the vertex wy, since the sheaf Ow (nH) is reflexive
on W and invertible for even n, by [E-V, 2.1], the map j, is injective for
every n and an isomorphism for even n. Moreover, the ideal of Hy C Wy is
generated by x,x;}, T3z5", 24x;" and then j_; is also surjective. Tensoring
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with the line bundle Ow (2pH), p € Z, we get the surjectivity of j, for every
integer n. In particular, since j;_3, is an isomorphism, Y; is a fibre of f.

By (ii) the composite of the Kodaira—Spencer map of f with the natural
restriction map r: T1(Yy) — T1(Yy, vo) is surjective, therefore it is sufficient
to prove that Y contains every deformation locally trivial at the vertex. But
this is an immediate consequence of Theorem 3.1 and the surjectivity of the
map H(P5, O(2a — 1)) = H°(Wj, (2a — 1)o) = H*(Fy, (2a — 1)o). O

Corollary 4.6 Every degenerate double cover deforms to a smooth double
cover of P%; in particular, for every odd integer h > 5, the subset N (P2, O(h))
s not closed in the moduli space.

Corollary 4.7 The line bundle o of Yy can be extended to every deformation
of Yg.

Proof The pullback of the hyperplane section 2H to Yr is an extension of
o to a complete family. O

Proof of Theorem A (1) and (2) follow from Theorem 1.6. According
to Theorem 4.5 the set of (possibly degenerate) double covers of P? is stable
under small deformations, therefore N is locally open in the moduli space,
proving (3) and (4). O

5 Simple iterated double covers of P?
and their deformations

This section is almost entirely devoted to the proof of Theorem B of the
introduction. The first preliminary result we need is the following

Lemma 5.1 Let 7: X — Y be a simple iterated double cover associated to
a sequence Ly,...,L, € PicY. Assume that Y and L.,..., L, satisfy the
conditions:

(a) DefY is smooth.
(b) Ly,...,L, extends to a complete deformation of Y.

(c) For every h >0 and0<i<ji <---<jp <,

h
H'(Y,2L; - Y _ L;) =0.
s=1
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(d) HY(Oy) = 0.

(e) For every h > 0 and every sequence 1 < ji < jo < -+ < jn <m,
h
Extg,, (2} Z -L;,)=0 and H'(Y,Y -L;)=0.

s=1 s=1
(f) H°(L;) # 0 for every i, and H*(Y,2L; — L;) = 0 for every j <.

Then Def X is smooth, every deformation of X is a simple iterated dou-
ble cover of a deformation of Y and if M € PicY extends to a complete
deformation of Y then m*M extends to a complete deformation of X.

Proof Using the computation (involving (f)) about Ext groups in the proof
of [Ma3, 2.7] and induction on n, we can reduce the proof of the lemma to the
case n = 1. In this case the cohomological conditions (c), (d) and (e) become

H'(Oy) = H'(Y,—L) = H'(Y,2L) = Extg, (9}, -L) = 0.

Then X is defined in the total space of the line bundle L by the equation 22 =
g with vg € HO(Y,2L). Let Y — DefY be the Kuranishi family of ¥ and
L € PicY the extension of L (which is unique by (d)). Since H'(Y,2L) =0,
by semicontinuity and base change there exists a subspace V C H°(Y 2L)
such that the natural restriction V — H°(Y,2L) is an isomorphism.

Taking H C V a small neighbourhood of vy we can consider the fiat double
cover 7: X = Y X V defined by the equation

#=uv(y) with yeYandveV.
By construction the flat maps

X 5V xV sDefY xV

are deformations of the double cover 7: X — Y and satisfy the assumptions
of Proposition 1.4. Therefore J Xisa complete deformation of X, Def X is
smooth and it is clear that if M € PicY extends M then 7* M extends 7* M.
Note that if the generic deformation of Y is smooth and the linear system |2L|
is base point free then a generic small deformation of X is also smooth. [

We recall that Extf, 2(QP2,0]pz(—h)) = 0 for every h # 3 and therefore
we have the result:

Corollary 5.2 Let n: X — P? be a simple iterated double cover associated
to the sequence of line bundles Ly,...,L, with degL; = I;. Ifl; > 2l;41 and
I, > 4 then every deformation of X is a simple iterated double cover of P?
and the set N(P?,L,,...,L,) is open in the moduli space.



Marco Manetti 275

Proof Immediate consequence of Lemma 5.1. O

Next we want to classify all the possible degenerations of simple iterated
double covers of P2. For reasons that will be clear later, we consider only the
case where the degrees I; satisfy certain numerical conditions.

Definition 5.3 A sequence of line bundles L,..., L,, L; = Op2(l;) is called
a good sequence if it satisfies the following 3 conditions:

(1) ;, >4foreveryi=1,...,n.
(2) I; > 2li4, foreveryi=1,...,n— 1.

(3) lyisodd and I; iseven fori =1,...,n — L.

A goodsimple iterated double cover of P? is, by definition, a simple iterated
double cover associated to a good sequence.

Proposition 5.4 Let Ly,...,L, € PicP? be a good sequence, L; = O(;)
and let Xo be the canonical model of a surface belonging to the closure of
N(P?,Ly,...,L,). Then either X, is a simple iterated double cover of P?
associated to Ly, ..., L,, or there exists a degenerate double cover Yy of P?
with discrete building datum a = (I, + 1) such that X, is a simple iterated
double cover of Yy associated to the sequence My, ..., My, M; = (I;/2)0.

Proof Note that if 7: X — P? is a smooth simple iterated double cover
associated to a good sequence O(l;) then Kx = n*O(>_1; — 3) is ample and
then the subset Ny C N of surfaces with smooth canonical models is a Zariski
open dense subset, in particular the closure of Ny is the same as the closure
of N in the moduli space.

Let f: X — A be a deformation of Xj such that X; is a smooth simple
iterated double cover of P? associated to L1, ..., L, for t # 0.

We now prove by induction on n that, up to base change, there exists a
factorization

f: XLy LA,

where ¢ is a deformation of a (possibly degenerate) double cover Y; of the
projective plane with-Y; a smooth double cover associated to Ly, for t # 0, and
p is a simple iterated double cover of Y associated to My, ..., M,_; with M;
the unique extension of M; to Y (if Y; is not degenerate we set M; = giL;).
This holds trivially if n = 1, so we assume n > 1. As in the proof of
Theorem 1.6, after a possible base change, the action of the trivial involution
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7 of the surfaces X; extends to an action over X, and we have a quotient
family

" Z=X/tr - A.

Now Z; is a simple iterated double cover of P? associated to the sequence
L,,...,L, for t # 0. By the Hurwitz formula, for ¢ # 0 the canonical bundle
of Z; is the pullback of Op2(ly + --- + I, — 3) and then its divisibility in
H?*(Z;,Z) is even. By [Ma3, 3.1], Z, has at worst rational double points
and the double cover m: X — Z is flat. Now by the Brieskorn—Tyurina
simultaneous resolution and by semicontinuity, the minimal resolution of Z,
is a smooth minimal surface of general type and, taking the relative canonical
model of Z we have, up to a base change, a factorization

X5 Z2=X/T-2 Zan Y L A,

with p,¢g and Y as in the induction hypothesis.

Thus, to conclude the proof we only need to show that d is an isomorphism,
i.e., that the canonical line bundle of Z; is ample. Since 7 is flat there exists
a decomposition

7 Ox = Oz & p*Oz(—H),

where H is a line bundle over Z such that H; is the pullback of L, for every
t # 0. If M € PicY is the extension of (I, + 1)o then M, is the pullback
of L, over Y;; moreover, since ¢(Zp) = 0, we have H = é*p*Ml by injectivity
of the extension ([Ma3, 3.8]).

Assume that Kz, is not ample; then é contracts some irreducible curve C
with Kz,-C =0, Hy-C = 0. If C" C X, is the strict transform of C then by
the Hurwitz formula K, - C' = 0, which is a contradiction. O

Proof of Theorem B Theorem B, (1) is exactly Lemma 5.1 applied to
the case Y = P2, L; = Op2(l;). In B.2, Ly, ..., L, is a good sequence (Def-
inition 5.3), so that by Proposition 5.4, if [S] € N \ N then the canonical
model of S is a simple iterated double cover of Y, a degenerate double cover
of P2 with discrete building datum a = (I, + 1), associated to the sequence
My,... .M, € PicY, M; = (l;/2)0 and the smoothness of Def X follows
from Lemma 5.1 and the vanishing theorems of §2.

B.3 follows immediately from B.1, B.2 and the local properties of the
moduli space of surfaces of general type. [



Marco Manetti 277

6 Some examples

For every smooth surface of general type S we denote by Is = K2 — 8x(Os)
its index and by r(S) the divisibility of the canonical class:

r(S) = max{r € N | ks = rc for some c € H*(S,Z)}.

If S is a smooth simple iterated double cover of P? associated to a good
sequence Ly,..., L, with deg(L;) = [;, then using the formulas of [Ma3] we
have m;(S) = 0, and

K2=20"L-3? Is=2'(1->8), r(S)=(>_t-3),

so that the invariants K2,I and r only depend on the two positive integers

>, and )12
Example 6.1 For n = 3 we can consider the two sequences
(h,l2,l3) = (3T — 24,T,5) and (I},0,0) = (3T — 22,T - 6,9).

Then "5 = "I, 212 = Y I% and for every even T > 26, both L; = O(l;)
and L; = O(l;) are good sequences.

For T = 26 the associated simple iterated double covers have K% = 53792,
I = —28928, ¢, = 70288, r = 82. It is not difficult to prove that every two
distinct good sequences Ly, ..., L,, My, ..., M, give distinct connected com-
ponents N(P? L,,...,L,) and N(P?, My,..., M,,). To see this, it is enough
to show that for the generic [S] € N(P?, Ly,...,L,) we have Aut S = Z/2Z =
{1,7}. In fact S/7 must necessarily belongs to N(P?, Lo, ..., L,), and then
we use induction on n.

We don’t prove here the above statement about automorphisms. However,
this is a straightforward generalization of the analogous result for simple
iterated double covers of P! x P! proved in {Ma3], as well as an immediate
application of a general result about automorphisms of generic simple cyclic
covers proved in [Mab5].

Example 6.2 Let X — P2, Y — P! x P! be simple iterated double covers
associated to Ly = O(26), L, = O(12), L3 = O(5) and L] = 0(20,40), L; =
0(22,2). A calculation shows that X and Y have the same invariants K2, I,r,
and it is not difficult to see that X,Y do not belong to the same connected
component of the moduli space.

In fact the equation of a generic Y is

2* = f+wh with f € H(0(40,80)) and h € H*(0O(18,78)),
w? = g with g € H0(0(44, 4))’
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where f,g,h are generic, and the arguments of [Ma3] show that the only
automorphisms of Y are the identity and the “trivial” involution z — —z.
Its quotient is the surface ¥; = {w? = g}. Since the invariants of Y; are
different from those of surfaces in N(P?, L,, L3), the surface Y cannot belong
to N(]Pz, Ll; L2, L3)

Although explicitly finding simple iterated double covers of P? having
the same invariants is not easy, it is not difficult to use these surfaces to
obtain again a lower bound of the form & > (K?2)°°6X” for the number of
connected components of moduli space, where ¢ is a positive constant. In
fact for sufficiently large n, if ¢, is the number of sequences I,...,I, such
that > l; =T, =8-3"+3, 1, > 5 odd, [; even for i < n and [; > 2l;4; then
log g, > an? for a positive constant a independent of n. For each of these g,
sequences, its quadratic sum ) [? is smaller than T?, and then there exists
at least g,/T? good sequences giving simple iterated double covers with the
same invariants K2 = 2"T2 and I = 2"(1-3_ {?). An easy computation along
the lines of [Ma3, §5] gives the claimed lower bound for 4.
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The geometry underlying
mirror symmetry

David R. Morrison

Abstract

The recent result of Strominger, Yau and Zaslow relating mirror
symmetry to the quantum field theory notion of T-duality is rein-
terpreted as providing a way of characterizing geometrically which
Calabi-Yau manifolds have mirror partners. The geometric descrip-
tion is rather surprising: one Calabi—Yau manifold should serve as a
compactified, complexified moduli space for special Lagrangian tori
on the other. We formulate some precise mathematical conjectures
concerning how these moduli spaces are to be compactified and com-
plexified, as well as a definition of geometric mirror pairs (in arbitrary
dimension) which is independent of those conjectures. We investigate
how this new geometric description ought to be related to the mathe-
matical statements which have previously been extracted from mirror
symmetry. In particular, we discuss how the moduli spaces of the ‘mir-
ror’ Calabi-Yau manifolds should be related to one another, and how
appropriate subspaces of the homology groups of those manifolds could
be related. We treat the case of K3 surfaces in some detail.

Precise mathematical formulations of the phenomenon in string theory
known as “mirror symmetry” (21, 33, 19, 27] have proved elusive up until
now, largely due to one of the more mysterious aspects of that symmetry: as
traditionally formulated, mirror symmetry predicts an equivalence between
physical theories associated to certain pairs of Calabi-Yau manifolds, but does
not specify any geometric relationship between those manifolds. However,
such a geometric relationship has recently been discovered in a beautiful paper
of Strominger, Yau and Zaslow [53]. Briefly put, these authors find that the
mirror partner X of a given Calabi—Yau threefold Y should be realized as the
(compactified and complexified) moduli space for special Lagrangian tori on
Y.

This relationship was derived in [53] from the assumption that the physical
theories associated to the pair of Calabi-Yau threefolds satisfy a strong prop-
erty called “quantum mirror symmetry” [52, 6, 12, 42]. In the present paper,
we invert the logic, and use this geometric relationship as a characterization

283
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of mirror pairs, which we formulate in arbitrary dimension.! On the one hand,
this characterization can be stated in purely mathematical terms, providing a
criterion by which mathematicians can recognize mirror pairs. On the other
hand, the characterization contains the essential ingredients needed to apply
the quantum field theory argument known as “T-duality” which could in prin-
ciple establish the equivalence of the associated string theories at the level of
physical rigor (cf. [45, 53]).2 This geometric characterization thus appears to
capture the essence of mirror symmetry in mathematical terms.

This paper is organized as follows. In Section 1, we give a brief sum-
mary of quantum mirror symmetry and review the derivation of the geomet-
ric relationship given in [53]. In Section 2, we discuss the theory of special
Lagrangian submanifolds [29] and their moduli spaces [37], and explain how
these moduli spaces should be compactified and complexified (following [53]).
In Section 3, we review in detail the topological and Hodge theoretic prop-
erties which have formed the basis for previous mathematical discussions of
mirror symmetry. We then formulate in Section 4 our characterization of
geometric mirror pairs, which we (conjecturally) relate to those topological
and Hodge theoretic properties. In Section 5 we present some new results
concerning the geometric mirror relationship, including a discussion of how
it leads to a connection between certain subspaces of H,(Y) and Heyen(X),
and in Section 6 we discuss geometric mirror symmetry for K3 surfaces.

1 Quantum mirror symmetry

Moduli spaces which occur in physics often differ somewhat between the clas-
sical and quantum versions of the same theory. For example, the essential
mathematical data needed to specify the two dimensional conformal field the-
ory associated to a Calabi-Yau manifold X consists of a Ricci flat metric gi;
on X and an R/Z-valued harmonic 2-form B € H2(X,R/Z). The classical
version of this theory is independent of B and invariant under rescaling the
metric; one might thus call the set of all diffeomorphism classes of Ricci flat
metrics of fixed volume on X the “classical moduli space” of the theory. The
volume of the metric and the 2-form B must be included in the moduli space
onice quantum effects are taken into account; in a “semiclassical approxima-
tion” to the quantum moduli space, one treats the data (g,;, B) (modulo
diffeomorphism) as providing a complete description of that space. However,

1Our definition appears to produce valid mirror pairs of conformal field theories in any
dimension, even though the string theoretic arguments of [53] cannot be directly extended
to arbitrary dimension to conclude that all mirror pairs ought to arise in this fashion.

2There are some additional details which need to be understood before this can be
regarded as fully established in physics.
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a closer analysis of the physical theory reveals that this is indeed only an ap-
proximation to the quantum moduli space, with the necessary modifications
becoming more and more significant as the volume is decreased. The ultimate
source of these modifications—which are of a type referred to as “nonpertur-
bative” in physics—is the set of holomorphic curves on X and their moduli
spaces. A convenient mathematical way of describing how these modifica-
tions work is this: there are certain “correlation functions” of the physical
theory, which are described near the large volume limit as power series whose
coefficients are determined by the numbers of holomorphic 2-spheres on X .3
The quantum moduli space should then be identified as the natural domain
of definition for these correlation functions. To construct it starting from the
semiclassical approximation, one first restricts to the open set in which the
power series converge, and then extends by analytic continuation to find the
complete moduli space.* We refer to this space as the quantum conformal
field theory moduli space Mcpr(X). (When necessary, we use the notation
M1 (X) to refer to the semiclassical approximation to this space.)

A similar story has emerged within the last year concerning the moduli
spaces for type IIA and IIB string theories compactified on a Calabi-Yau
threefold X. The classical low energy physics derived from these string the-
ories is determined by a quantum conformal field theory, so one might think
of the quantum conformal field theory moduli space described above as being
a “classical moduli space” for these theories.

In the semiclassical approximation to the guantum moduli spaces of these
string theories, we encounter additional mathematical data which must be
specified. In the case of the ITA theory, the new data consist of a choice
of a nonzero complex number (called the “axion-dilaton expectation value”),
together with an R/Z-valued harmonic 3-form C € H3(X,R/Z). This last
object has a familiar mathematical interpretation as a point in the interme-
diate Jacobian of X (taking a complex structure on X for which the metric
is Kéhler). In the case of the IIB theory on a Calabi-Yau threefold Y, the
corresponding new data are a choice of nonzero “axion-dilaton expectation
value” as before, together with what we might call a quantum R/Z-valued
harmonic even class C € Hg**(Y,R/Z). The word “quantum” and the sub-
script @ here refer to the fact that we must use the quantum cohomology
lattice rather than the ordinary cohomology lattice in determining when two

3There are several possible (equivalent) mathematical interpretations which can be given
to these correlation functions: they can be interpreted as defining a new ring structure on
the cohomology (defining the so-called quantum cohomology ring) or they can be regarded
as defining a variation of Hodge structure over the moduli space. We review this in more
detail in Section 3 below.

4There can also be modifications caused by higher genus curves [5], but these are less
drastic and are not important for our purposes here.
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harmonic classes C are equivalent. (The details of this difference are not im-
portant here; we refer the interested reader to [6, 42].) For both the IIA and
IIB theories, a choice of such “data” as above can be used to describe a low
energy supergravity theory in four dimensions.

Just as in the earlier example, there are additional corrections to the
semiclassical description of the moduli space coming from “nonperturbative
effects” [52, 26, 12]; some of these go by the name of “Dirichlet branes,” or
“D-branes” for short. The source of these D-brane corrections differs for the
two string theories we are considering: in the type IIA theory, they come from
moduli spaces of algebraic cycles on X equipped with flat U(1)-bundles, or
more generally, from moduli spaces of coherent sheaves on X.5 In the type IIB
theory, the D-brane corrections come from (complexified) moduli spaces of so-
called supersymmetric 3-cycles on Y, the mathematics of which we describe
in the next section. Just as the correlation functions which we could use to
determine the structure of the quantum conformal field theory moduli space
involved a series expansion with contributions from the holomorphic spheres,
the correlation functions in this theory will receive contributions from the
coherent sheaves or supersymmetric 3-cycles, with the precise nature of the
contribution arising from an integral over the corresponding moduli space.

Quantum mirror symmetry is the assertion that there should exist pairs
of Calabi-Yau threefolds® (X,Y) such that the type IIA string theory com-
pactified on X is isomorphic to the type IIB string theory compactified on
Y'; there should be compatible isomorphisms of both the classical and quan-
tum theories. The isomorphism of the classical theories is the statement that
the corresponding (quantum corrected) conformal field theories should be iso-
morphic. This is the version of mirror symmetry which was translated into
mathematical terms some time ago, and leads to the surprising statements
relating the quantum cohomology on X to the geometric variation of Hodge
structure on Y (and vice versa).

On the other hand, the isomorphism of the quantum theories has only
recently been explored.” At the semiclassical level, one infers isomorphisms

5A D-brane in type IIA theory is ordinarily described as a complex submanifold Z
together with a flat U(1)-bundle on that submanifold; the associated holomorphic line
bundle on Z can be extended by zero to give a coherent sheaf on X. The arbitrary coherent
sheaves which we consider here correspond to what are called “bound states of D-branes”
in physics. (This same observation has been independently made by Maxim Kontsevich,
and by Jeff Harvey and Greg Moore.)

SThere are versions of quantum mirror symmetry which can be formulated in other
(low) dimensions, but since these are statements about compactifying ten dimensional
string theories, they cannot be extended to arbitrarily high dimension.

"The speculation some time ago by Donagi and Markman {22} that some sort of Fourier
transform should relate the continuous data provided by the intermediate Jacobian to the
discrete data provided by the holomorphic curves is closely related to these isomorphisms
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between the intermediate Jacobian of X (the 3-form discussed above), and an
analogue of that intermediate Jacobian in quantum cohomology of Y. The
full quantum isomorphism would involve properties of the coherent sheaves
on X, as related to the supersymmetric 3-cycles on Y. In fact, there should
be enough correlation functions in the quantum theory to fully measure the
structure of the individual moduli spaces of these sheaves and cycles, so we
should anticipate that the moduli spaces themselves are isomorphic.® It is
this observation which was the key to the Strominger—Yau—Zaslow argument.

Strominger, Yau and Zaslow observe that the algebraic 0-cycles of length
one on X (which can be thought of as torsion sheaves supported at a single
point) have as their moduli space X itself. According to quantum mirror
symmetry, then, there should be a supersymmetric 3-cycle M on Y with pre-
cisely the same moduli space, that is, the moduli space of M should be X.
Since the complex dimension of the moduli space is three, it follows from
a result of McLean [37] (see the next section) that bj(M) = 3. Now as we
explain in the next section, the complexified moduli space X for the super-
symmetric 3-cycles parameterizes both the choice of 3-cycle M and the choice
of a flat U(1)-bundle on M. Fixing the cycle but varying the bundle gives a
real 3-torus on X (since by (M) = 3), which turns out to be a supersymmetric
cycle on that space. This is the “inverse” mirror transform, based on a cycle
M which is in fact a 3-torus. Thus, by applying mirror symmetry twice if
necessary, we see that we can—without loss of generality—take the original
supersymmetric 3-cycle M to be a 3-torus. In this case, we say that Y has
a supersymmetric T3-fibration; note that singular fibers must in general be
allowed in such fibrations.

We have thus obtained the rough geometric characterization of the pair
(X,Y) stated in the introduction: X should be the moduli space for super-
symmetric 3-tori on Y. This characterization is “rough” due to technical
difficulties involving beth the compactifications of these moduli spaces, and
the complex structures on them. We take a different path in Section 4 below,
and give a precise geometric characterization which sidesteps these issues.

This line of argument can be pushed a bit farther, by considering the
algebraic 3-cycle on X in the fundamental class equipped with a flat U(1)-
bundle (which must be trivial, and corresponds to the coherent sheaf Ox).
There is precisely one of these, so we find a moduli space consisting of a single

of quantum theories.

8In the case of coherent sheaves, one should not use the usual moduli spaces from
algebraic geometry, but rather some sort of “virtual fundamental cycle” on the algebraic
geometric moduli space, whose dimension coincides with the “expected dimension” of the
algebraic geometric moduli space as computed from the Riemann-Roch theorem. When
the moduli problem is unobstructed, this virtual fundamental cycle should coincide with
the usual fundamental cycle on the algebraic geometric moduli space.
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point. Its mirror should then be a supersymmetric 3-cycle M’ with b (M') =
0. Moreover, we should expect quantum mirror symmetry to preserve the
intersection theory of the cycles represented by D-branes (up to sign), so
that, since the 0-cycle and 6-cycle on X have intersection number one, we
should expect M and M’ to have intersection number one if M’ is oriented
properly. In other words, the supersymmetric T3-fibration on Y should have
a section,® and the base of the fibration should satisfy b; = 0.

The final step in the physics discussion given in [53] is to observe that
given a Calabi~Yau threefold with a supersymmetric T3-fibration and a mirror
partner, the mirror partner can be recovered by dualizing the tori in the
fibration, at least generically. This suggests that by applying an appropriate
duality transformation to the path integral—in quantum field theory this is
known as the “T-duality argument” —one should be able to conclude that
mirror symmetry does indeed hold for the corresponding physical theories.
Strominger, Yau and Zaslow take the first steps towards constructing such an
argument, at appropriate limit points of the moduli space. To complete the
argument and extend it to general points in the moduli space, one would need
to understand the behavior of the T-duality transformations near the singular
fibers; to this end, a detailed mathematical study of the possible singular
fibers is needed. Some preliminary information about these singularities can
be found in [29, 17] (see also [28]).

2 Moduli of special Lagrangian submanifolds

The structure of the supersymmetric 3-cycles which played a réle in the previ-
ous section was determined in [12], where it was found that they are familiar
mathematical objects known as special Lagrangian submanifolds. These are
a particular class of submanifolds of Calabi-Yau manifolds first studied by
Harvey and Lawson [29]. We proceed to the definitions.

A Calabi-Yau manifold is a compact connected orientable manifold Y of
dimension 2n which admits Riemannian metrics whose (global) holonomy is
contained in SU(n). For any such metric, there is a complex structure on the
manifold with respect to which the metric is Kahler, and a nowhere vanish-
ing holomorphic n-form € (unique up to constant multiple). The complex
structure, the n-form © and the Kahler form w are all covariant constant
with respect to the Levi-Civita connection of the Riemannian metric. This

9The existence of a section is also expected on other grounds: the set of flat U(1)-
bundles on M has a distinguished element—the trivial bundle. This provides a section for
the “dual” fibration, and suggests (by a double application of quantum mirror symmetry
as above) that the original fibration could liave been cliosen to have a section, without loss
of generality.
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implies that the metric is Ricci flat, and that © A Q is a constant multiple of
w™.

A special Lagrangian submanifold of Y is a compact real n-manifold M
together with an immersion f: M — Y such that f*(€) coincides with the
induced volume form d voly for an appropriate choice of holomorphic n-form

Q. Equivalently [29], one can require that

(1) M is a Lagrangian submanifold with respect to the symplectic structure
defined by w, i.e., f*(w) =0, and

(2) f*(Im ) = 0 for an appropriate .

To state this second condition in a way which does not require that Qg be
specified, write an arbitrary holomorphic n-form §2 in the form © = ¢, and
note that

/f*(9)=c/ F1(Q) = ¢ (vol M).
M M

Thus, the “appropriate” n-form is given by
_ (vol M) O
)

and we can replace condition (2) by

2) f* (Im (Tﬁ)) =0

(The factor of vol M is a real constant which can be omitted from this last
condition.)

Very few explicit examples of special Lagrangian submanifolds are known.
(This is largely due to our lack of detailed understanding of the Calabi~Yau
metrics themselves.) One interesting class of examples due to Bryant [18]
comes from Calabi-Yau manifolds which are complex algebraic varieties de-
fined over the real numbers: the set of real points on the Calabi—Yau manifold
is a special Lagrangian submanifold. Another interesting class of examples
is the special Lagrangian submanifolds of a K3 surface, which we discuss in
Section 6.

In general, special Lagrangian submanifolds can be deformed, and there
will be a moduli space which describes the set of all special Lagrangian sub-
manifolds in a given homology class. Given a special Lagrangian f: M — Y
and a deformation of the map f, since f*(w) = 0, the almost complex struc-
ture on Y induces a canonical identification between the normal bundle of M
in Y and the tangent bundle of M. Thus, the normal vector field defined by
the deformation can be identified with a 1-form on Y.

The key result concerning the moduli space is due to McLean.

Q
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Theorem (McLean [37])

(1) First order deformations of f are canonically identified with the space
of harmonic 1-forms on Y.

(2) Every first order deformation of f: M — Y can be extended to an
actual deformation. In particular, the moduli space My L(M,Y) of spe-
cial Lagrangian maps from M to Y is a smooth manifold of dimension
b (M).

We have in mind a global structure on My, (M,Y), in which two maps de-
termine the same point in the moduli space if they differ by a diffeomorphism
of Y. McLean also observes that M = My,(M,Y) admits a natural n-form
© defined by

e(’l)l,...,,’l)n)=/ 01/\"'/\0n
M

where 8; is the harmonic 1-form associated to v; € Ty y.

As discussed implicitly in the last section, the moduli spaces of interest
in string theory contain additional pieces of data. To fully account for the
“nonperturbative D-brane effects” in the physical theory (when n = 3), the
moduli space we integrate over must include not only the choice of special
Lagrangian submanifold, but also a choice of flat U(1)-bundle on it. If we
pick a point b on a manifold M, then the space of flat U(1)-bundles on M is
given by

Hom(m (M, b),U(1)) = HY(M,R)/H'(M, Z).

Thus, if we construct a universal family for our special Lagrangian submani-
fold problem, i.e., a diagram

f

U —Y
rl
MsL(Mv Y)

with the fibers of p diffeomorphic to M and fp

|p=2(m)
and if p has a section s: M ,(M,Y) — U, then we can define a moduli space
including the data of a flat U(1)-bundle by setting

MD(My Y) = RIP*Ru/RlP*Zui
at each point m € My, (M,Y), this specializes to
H'(p~'(m),R)/H*(p~*(m), Z) = Hom(m (p~" (m), s(m)), U(1)).

the map labeled by m,



David R. Morrison 291

(In the case n = 3, this is the “D-brane” moduli space, which motivates our
notation.) Note that this space fibers naturally over Mg (M,Y), and that
there is a section of the fibration, given by the trivial U(1)-bundles.

Both the base and the fiber of the fibration Mp(M,Y) — M(M,Y)
have dimension b; (M), and the fibers are real tori. In fact, we expect from
the physics that there will be a family of complex structures on Mp(M,Y)
making it into a complex manifold of complex dimension &,{M). Roughly, the
real tori should correspond to subspaces obtained by varying the arguments of
the complex variables while keeping their norms fixed. It is expected from the
physics that the complex structure should depend on the choice of both a Ricci
flat metric on ¥ and also on an auxiliary harmonic 2-form B. {This would
make Mp(M,Y) into a “complexification” of the moduli space Ms {M,Y) as
mentioned in the introduction.) It it not clear at present precisely how those
complex structures are to be constructed, although in the case b(M) =n, a
method is sketched in [53] for producing an asymptotic formula for the Ricci
flat metric which would exhibit the desired dependence on g;; and B, and
the first term in that formula is calculated.!® The complex structure could in
principle be inferred from the metric if it were known.

Motivated by the Strominger—Yau-Zaslow analysis, we now turn our at-
tention to the case in which M is an n-torus. The earliest speculations that
the special Lagrangian n-tori might play a distinguished réle in studying
Calabi-Yau manifolds were made by McLean [37], who pointed out that if
M = T then the deformations of M should locally foliate Y. (There should
be no nearby selfintersections, because the harmonic 1-form corresponding to
a first order deformation is expected to have no zeros if the metric on the
torus is close to being flat.) By analogy with the K3 case, where such elliptic
fibrations are well understood, McLean speculated that if certain degenera-
tions were allowed, the deformations of M might fill out the whole of Y. We
formulate this as a conjecture (essentially due to McLean).

Conjecture 1 Suppose that f: T" — Y i a special Lagrangian n-torus.
Then there is a natural compactiﬁcatigzz_ M (T, Y) of the moduli space
Me(T™,Y) and a proper map g: Y — Mg (T, Y) such that

g‘l(MSL(M, Y) - Y

9l

MsL(M, Y)

is a universal family of Lagrangian n-tort in the same homology class as f.

101n the language of 53], the “tree level” metric on the moduli space is computed, but
the instanton corrections to that tree level metric are left unspecified.
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Definition 1 When the properties in Conjecture 1 hold, we say that Y has
a special Lagrangian T"-fibration.

It is not clear at present what sort of structure should be required of
Mg (T",Y): perhaps it should be a manifold with corners,!! or perhaps
some more exotic singularities should be allowed in the compactification.
We will certainly want to require that the complex structures extend to
the compactification, and that the section of the fibration extend to a map
Myo(ThY) =Y.

The mirror symmetry analysis of [53] as reviewed in the previous section
suggests that the family of dual tori Mp(T™,Y) can also be compactified,
resulting in a space which is itself a Calabi—Yau manifold. We formalize this
as a conjecture as well.

Conjecture 2 The family Mp(T*,Y) of dual tori over MSILT",Y) can
be compactified to a manifold X with a proper map v: X — Mg (T"Y),
such that X admits metrics with SU(n) holonomy for which the fibers of

V-1 Mo (@nyy 9T special Lagrangian n-tori. Moreover, the fibration v ad-

mits a section 7: Mg, (T™,Y) — X such that
T(MSL(:’m7Y)) - MD(rIm’Y) cX
is the zero section.

It seems likely that for an appropriate holomorphic n-form € on X, the
pullback 7*(2) will coincide with McLean’s n-form © when restricted to
M (T Y).

The most accessible portion of these conjectures would be the following:

Sub-Conjecture The family Mp(T",Y) of dual tori over Mg (T, Y) ad-
mits complez structures and Ricci flat Kihler metrics. In particular, it has a
nowhere vanishing holomorphic n-form.

Strominger, Yau and Zaslow have obtained some partial results concern-
ing this subconjecture, for which we refer the reader to [53]. It appears,
for example, that the construction of the complex structure on the D-brane
moduli space should be local around each torus in the torus fibration.

UThis possibility is suggested by the structure of toric varieties, the moment maps
for which express certain complex manifolds as T"-fibrations over manifolds with corners
(compact convex polyhedra).
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3 Mathematical consequences of
mirror symmetry

There is by now quite a long history of extracting mathematical statements
from the physical notion of mirror symmetry. Many of these work in arbitrary
dimension, where there is evidence in physics for mirror symmetry among
conformal field theories (27, 25).12 In this section, we review two of those
mathematical statements, presented here as definitions. As the discussion is
a bit technical, some readers may prefer to skip to the next section, where
we formulate our new definition of geometric mirror pairs inspired by the
Strominger—Yau-Zaslow analysis. Throughout this section, we let X and ¥
be Calabi-Yau manifolds of dimension n.

The first prediction one extracts from physics about a mirror pair is a
simple equality of Hodge numbers.

Definition 2 We say that the pair (X,Y) passes the topological mirror test
if AP V(X) = RYY(Y) and KM (X) = A* V(Y.

Many examples of pairs passing this test are known; indeed, the observa-
tion of this “topological pairing” in a class of examples was one of the initial
pieces of evidence in favor of mirror symmetry [19]. Subsequent constructions
of Batyrev and Borisov [8, 16, 9] show that all Calabi-Yau complete inter-
sections in toric varieties belong to pairs which pass this topological mirror
test.

For simply connected Calabi~Yau threefolds, the Hodge numbers h'! and
h"~1! determine all the others, but in higher dimension there are more.
Naively one expects to find that ~A77(X) = h"P4(Y). However, as was dis-
covered by Batyrev and collaborators {11, 10], the proper interpretation of
the numerical invariants of the physical theories requires a modified notion
of “string theoretic Hodge numbers” h%¥; once this modification has been
made, these authors show that h%?(X) = hy; (Y for the Batyrev-Borisov
pairs (X,Y) of complete intersections in toric varieties. The class of pairs
for which this modification is needed includes some of those given by the
Greene-Plesser construction [27] for which mirror symmetry of the confor-
mal field theories has been firmly established in physics, so it would appear
that this modification is truly necessary for a mathematical interpretation of
mirror symmetry. Hopefully, it too will follow from the geometric character-
ization being formulated in this paper.

12Tn low dimension where a string theory interpretation is possible, this would become
the “classical” mirror symmetry which one would also want to extend to a “quantum”
mirror symmetry if possible.
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Going beyond the simple topological properties, a more precise and de-
tailed prediction arises from identifying the quantum cohomology of one
Calabi-Yau manifold with the geometric variation of Hodge structure of the
mirror partner (in the case that the Calabi—Yau manifolds have no holomor-
phic 2-forms). We discuss this prediction in considerable detail, in order to
ensure that this paper has selfcontained statements of the conjectures being
proposed within it (particularly those in Sections 4 and 5 below relating the
“old” and “new” mathematical versions of mirror symmetry).

To formulate this precise prediction, let X be a Calabi—Yau manifold with
h*°(X) = 0, and write MEpr(X) for the moduli space of triples (g;;, B, J)
modulo diffeomorphism, where J is a complex structure for which the metric
gi; is Kéhler. The map MEp(X) — MEpp(X) is finite-to-one, so this
is another good approximation to the conformal field theory moduli space.

Moreover, there is a natural map MEpp(X) — M (X) to the moduli space
of complex structures on X, whose fiber over J is K¢(X7)/ Aut(Xs), where

Ke(Xg) = {B+iw € H2(X,C/Z) lw € K:J}

is the complezified Kdhler cone!® of X; (K7 is the usual Kéhler cone), and
Aut(X7) the group of holomorphic automorphisms of X 7.

The moduli space of complex structures M, (X) has a variation of Hodge
structure defined on it which is of geometric origin: roughly speaking, one
takes a universal family m: X — M (X) over the moduli space and con-
structs a variation of Hodge structure on the local system R"m,Zx by con-
sidering the varying Hodge decomposition of H"*(X 7,C). The local system
gives rise to a holomorphic vector bundle F := (R"mZx) ® O (x) With a
flat connection V: F — Q}MCX(X) ® F (whose flat sections are the sections
of the local system), and the varying Hodge decompositions determine the
Hodge filtration

F=F>F'>.-->F >{0},
a filtration by holomorphic subbundles defined by
Flg = H"(X7)®-- @ HP"(Xy),
which is known to satisfy Griffiths transversality
V(F?) C Q}\,,cx(x) ® FPL,

Conversely, given the bundle with flat connection and filtration, the complex-
ified local system R™m,Cyx can be recovered by taking (local) flat sections, and

13We are following the conventions of [40] rather than those of [38, 39].
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the Hodge structures can be reconstructed from the filtration. However, the
original local system of Z-modules is additional data, and cannot be recovered
from the bundle, connection and filtration alone.

The moduli space of complex structures M (X) can be compactified to
a complex space M, to which the bundles F? and the connection V extend;
however, the extended connection V acquires regular singular points along
the boundary B, which means that it is a map

V:F— QY logB) ® F.

The residues of V along boundary components describe the monodromy trans-
formations about those components, the same monodromy which defines the
local system. At normal crossings boundary points there is always an asso-
ciated monodromy weight filtration, which we take to be a filtration on the
homology group H,(X).

The data of the flat connection and the Hodge filtration are encoded in
the conformal field theory on X (at least for a sub-Hodge structure containing
F™ 1.1 Since mirror symmetry reverses the roles of base and fiber in the
map

Mer(X) — Me(X),

one of the predictions of mirror symmetry will be an isomorphism between
this structure and a similar structure on K¢(X7)/ Aut(Xyz).

In fact, the conformal field theory naturally encodes a variation of Hodge
structure on K¢(X7)/ Aut(X ). To describe this mathematically, we must
choose a framing, which is a choice of a cone

oc=Rye' +---+Rye” C H¥(X,R)

which is generated by a basis €', ..., e of H%(X,Z)/torsion and whose
interior is contained in the Kéahler cone of X. The complexified Kahler part
of the semiclassical moduli space then contains as an open subset the space

My(o) .= (H*(X,R) +i0)/H*(X, Z),

elements of which can be expanded in the form 3 (-2% log g;) €7, leading to
the alternate description

Ma(@) = {(q1,-.-,¢) | 0 < |g;] < 1}.

MNote that F™ appears directly in the conformal field theory, and F™~!/F™ appears
as a class of marginal operators in the conformal field theory. Thus, the conformal field
theory contains at least as much of the Hodge theoretic data as is described by the smallest
sub-Hodge structure containing F™~!, and quite possibly more.
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The desired variation of Hodge structure will be defined on a partial com-
pactification of this space, namely

Ma(o) = {(a1,---,a) | 0 < |gs] < 1},

which has a distinguished boundary point 0 = (0, ..., 0).
The ingredients we need to define the variation of Hodge structure are the
fundamental Gromov-Witten invariants'®> of X, which are trilinear maps

®): H*(X,Q) ® H(X,Q)® H*(X,Q) - Q.

Heuristically, when A, B and C are integral classes, <I>?,(A, B,C) should be
the number of generically injective!® holomorphic maps 1/: CP! — X in class
n, such that ¥(0) € Z4, ¥(1) € Zp, ¥(o0) € Zc for appropriate cycles
Z4, Zg, Zc Poincaré dual to the classes A, B, C. (The invariants vanish
unless deg A + deg B + deg C' = 2n.) From these invariants we can define the
Gromov-Witten maps T';: H*(X) — H**2(X) by requiring that
_ <I>?,(A, B,C)
=" 5 C
for B € H**-%(X), C € H*(X). (This is independent of the choice of C.)
These invariants are usually assembled into the “quantum cohomology
ring” of X, but here we present this structure in the equivalent form of a
variation of Hodge structure over M4(c) degenerating along the boundary.
To do so, we define a holomorphic vector bundle £ := (@ H**(X)) ® Oz, o)
and a flat'? connection V: & — Q3 (log B) ® £ with regular singular points
along the boundary B = M(c) — M4(c) by the formula'®

Fn (A) B

1 [ ‘ 1
V:=% Zdlogq,-@ad(e’)"' Z dlog(l—Q")®Fn ’
= 0#neH2(X,Z)

where ¢" = Hq;;"(n)’ and where ad(e’): H*(X) — H*2(X) is the adjoint
map of the cup product pairing, defined by ad(e?)(A) = ¢ U A. We also
define a “Hodge filtration”

gP = ( @ He,e(X)) ®OHA(¢T)’

0<e<n—p

15These can be defined using techniques from symplectic geometry [49, 36, 50] or from
algebraic geometry (32, 31, 15, 14, 13, 34].

16We have built the “multiple cover formula” [3, 35, 54] into our definitions.

17The flatness of this connection is equivalent to the associativity of the product in
quantum cohomology.

18] am indebted to P. Deligne for advice [20] which led to this form of the formula.
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which satisfies V(E7) C Qi (log B) ® £P7!. This describes a structure we
call the framed A-variation of Hodge structure with framing 0. To be a bit
more precise, we should refer to this as a “formally degenerating variation
of Hodge structure,” since the series used to define V is only formal. (More
details about such structures can be found in [43]; cf. also [20].) There are also
some subtleties about passing from a local system of complex vector spaces
to a local system of Z-modules which we shall discuss in Section 5 below.
The residues of V along the boundary components ¢; = 0 are the adjoint
maps ad(e?); the corresponding monodromy weight filtration at 0 is simply

Hoo(X) € Hoo(X)® Hi1(X) C -+ C (HoolX) @+ - @ Hpn(X)).

Under mirror symmetry, this maps to the geometric monodromy weight filtra-
tion at an appropriate “large complex structure limit” point in M., (see [41]
and references therein). Note that the class of the 0-cycle is the monodromy-
invariant class in Heyen(X); thus, its mirror n-cycle will be the monodromy-
invariant class in H,(Y).

Although the choice of a “framing” may look unnatural, the relationship
between different choices of framing is completely understood [38] (modulo
a conjecture about the action of the automorphism group on the Kahler
cone). Varying the framing corresponds to varying which boundary point
in the moduli space one is looking at, possibly after blowing up the original
boundary of the moduli space in order to find an appropriate compactification
containing the desired boundary point.

We finally come to the definition which contains our precise Hodge theo-
retic mirror prediction from physics.

Definition 3 Let X and Y be Calabi-Yau manifolds with h%°(X), h20(Y) =
0. The pair (X,Y) passes the Hodge theoretic mirror test if there exists

(1) a partial compactification Mcy(Y) of the complex structure moduli space
of Y,

(2) a neighborhood U C Mcx(Y) of a boundary point P of Mx(Y),
(8) a framing o for H*(X), and
(4) a “mirror map” p: U — Mu(c) mapping P to 0,

such that u* induces an isomorphism between E™! and F™! extending to
an isomorphism between subvariations of Hodge structure of the A-variation
of Hodge structure with framing o, and the geometric formally degenerating
variation of Hodge structure at P.
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The restriction to a subvariation of Hodge structure (which occurs only
when the dimension of the Calabi~Yau manifold is greater than three) seems
to be necessary in order to get an integer structure on the local system com-
patible with the complex variation of Hodge structure. (We will return to
this issue in Section 5.) It seems likely that this is related to the need to pass
to “string theoretic Hodge numbers,” which may actually be measuring the
Hodge numbers of the appropriate sub-Hodge structures.

The property described in the Hodge theoretic mirror test can be recast
in terms of using the limiting variation of Hodge structure on Y to make
predictions about enumerative geometry of holomorphic rational curves on X.
In this sense, there is a great deal of evidence in particular cases (see [41, 25]
and the references therein). There are also some specific connections which
have been found between the variations of Hodge structure associated to
mirror pairs of theories [44], as well as a recent theorem [23] which proves that
the expected enumerative properties hold for an important class of Calabi-
Yau manifolds.

Note that if (X,Y) passes the Hodge theoretic mirror test in both di-
rections, then it passes the topological mirror test (essentially by definition,
since the dimensions of the moduli spaces are given by the Hodge numbers
hb! and A"11).

4 Geometric mirror pairs

We now wish to translate the Strominger-Yau-Zaslow analysis into a def-
inition of geometric mirror pairs (X,Y), which we formulate in arbitrary
dimension. (As mentioned earlier, the arguments of [53] cannot be applied
to conclude that all mirror pairs arise in this way, but it seems reasonable
to suppose that a T-duality argument—applied to conformal field theories
only—would continue to hold.) The most straightforward such definition
would say that X is the compactification of the complexified moduli space
of special Lagrangian n-tori on Y. However, as indicated by our conjectures
of Section 2, at present we do not have adequate technical control over the
compactification to see that it is a Calabi—Yau manifold. So we make instead
an indirect definition, motivated by the following observation: if we had such
a compactified moduli space X, then for generic £ € X there would be a
corresponding special Lagrangian n-torus 7, C Y, and we could define an
incidence correspondence

Z =closure of {(z,y) € X xY |y € T,.}.

By definition, the projection Z — X would have special Lagrangian n-tori
as generic fibers. As we saw earlier, the analysis of [53] suggests that generic
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fibers of the other projection Z — Y will also be special Lagrangian n-tori.
Furthermore, we should expect that as we vary the metrics on X and on Y,
the fibrations by special Lagrangian n-tori can be deformed along with the
metrics. (In fact, it is these dependencies on parameters which should lead to
a “mirror map” between moduli spaces.) Thus, we formulate our definition
using a family of correspondences depending on t € U for some (unspecified)
parameter space U.

Definition 4 A pair of Calabi-Yau manifolds (X,Y) is o geometric mirror
pair if there is a parameter space U such that for each t € U there exist

(1) a correspondence Z, C (X x Y) which is the closure of a submanifold
of dimension 3n,

(2) maps 7: X — Z; and T: Y — Z; which serve as sections for the
projection maps Zy — X and Z; — Y, respectively,

(3) a Ricci flat metric g;j(t) on X with respect to which generic fibers of
the projection map Z, — Y are special Lagrangian n-tori, and

(4) a Ricci flat metric §i;(t) on'Y with respect to which generic fibers of the
projection map Z; — X are special Lagrangian n-tori.

Moreover, for generic z € Z;, the fibers through z of the two projection maps
must be canonically dual as tori (with origins specified by 7 and 7).

In a somewhat stronger form of the definition, we might require that U
be sufficiently large so that the images of the natural maps U — Mpg;.(X)
and U — Mg;(Y') to the moduli spaces of Ricci flat metrics on X andon Y
are open subsets of the respective moduli spaces. It is too much to hope that
these maps would be surjective. The best picture we could hope for, in fact,
would be a diagram of the form

Mpic(X) 2 Ux SEuvBuyc Mg (Y)

in which Ux € Mgi.(X) and Uy C Mpi(Y) are open subsets (near certain
boundary points in a compactification, and contained within the set of metrics
for which the semiclassical approximation is valid). The fibers of mx will
have dimension Al!(X), and if the induced map is the mirror map each
fiber of mx must essentially be the set of B-fields on X, i.e., it must be
a deformation of the real torus H2(X,R/Z). This is compatible with the
approximate formula!® in [53] for a family of metrics on Y, produced by
varying the B-field on X.

We expect that geometric mirror symmetry will be related to the earlier
mathematical mirror symmetry properties in the following way.

19The “tree level” formula given in [53] is subject to unspecified instanton corrections.
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Conjecture 3 If (X,Y) is a geometric mirror pair, then the parameter space
U and the data in the definition of the geometric mirror pair can be chosen
so that

(1) (X,Y) passes the topological mirror test;*°

(2) mx: U = Mpic(X) lifts to a generically finite map 7x: U — Ux C
Srr(X);

(3) my: U — Mpi(Y) lifts to a generically finite map 7y: U — Uy C
Mer(Y); and

(4) if h*°(X) = B*°(Y) = 0, then there are boundary points P € M (Y),
P' € My(X) and framings o of H*(X) and o’ of H*(Y) with partial
compactifications Ux C Ma(0)x Mex(X) and Uy C M (Y)xMy(a")
such that the composite map (Tx ).«(Ty)* extends to a map p~! x p' which
consists of mirror maps in both directions (in the sense of Definition 3).
In particular, (X,Y) passes the Hodge theoretic mirror test.

Even in the case h2%(X) # 0, there is an induced map (7x).(7y)* which
should coincide with the mirror map between the moduli spaces.

If X has several birational models X, then all of the semiclassical moduli
spaces MEpr(X D) give rise to a common conformal field theory moduli space
(see [1], or for a more mathematical account, [39]). If we follow a path between
the large radius limit points of two of these models, and reinterpret that
path in the mirror moduli space, we find a path which leads from one large
complex structure limit point of M (Y) to another. On the other hand, the
calculation of [2] shows that the homology class of the torus? in a special
Lagrangian T"-fibration does not change when we move from one of these
regions of M, (Y) to another. Thus, the moduli space of special Lagrangian
tori 7™ must themselves change as we move from region to region. It will be
interesting to investigate precisely how this change comes about.

5 Mirror cohomology and the
weight filtration
The “duality” transformation which links the two members X and Y of a geo-

metric mirror pair does not induce any obvious relationship between H!(X)
and H*}(Y), so it may be difficult to imagine how the topological mirror

20(1) is a consequence of (4) if h20(X) = h20(Y) = 0.
21Recall that this is the monodromy-invariant cycle.
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test can be passed by a geometric mirror pair. However, at least for a re-
stricted class of topological cycles, such a relationship can be found, as part
of a more general relationship between certain subspaces of Heyen(X) and
H.(Y).

Fix a special Lagrangian T"-fibration on Y with a special Lagrangian
section, and consider n-cycles W C Y with the property that W is the closure
of a submanifold W, whose intersection with each nonsingular 7" in the
fibration is either empty, or a subtorus of dimension n — & (for some fixed
integer & < n). That is, we assume that W can be generically described as
a T"*-bundle over a k-manifold, with the tori 7% * linearly embedded in
fibers of the given T™-fibration. We call such n-cycles pure.

For any pure n-cycle W C Y, there is a T-dual cycle® WY C X (=
Mp(T™,Y)) defined as the closure of an n-manifold Wy satisfying

the annihilator of W NT™ in (T™)* if WNT" #0,

\4 *

Wo NI {(0 otherwise,
for all smooth fibers (T™)* in the dual fibration. Since the annihilator of
an (n — k)-torus is a k-torus, we see that WV is generically described as a
T*-bundle over a k-manifold, and so it defines a class in Hox(X). This is our
relationship between the space of pure n-cycles on Y and the even homology
on X.

Taking the T-duality statements from physics very literally, we are led
to the speculation that pure special Lagrangian n-cycles have as their T-
duals certain algebraic cycles on X; moreover, the moduli spaces containing
corresponding cycles should be isomorphic.?® (Roughly speaking, the T*-
fibration on the corresponding algebraic k-cycle should be given by holding
the norms of some system of complex coordinates on the k-cycle fixed, while
varying their arguments.) We have already seen the simplest cases of this
statement in the Strominger—Yau—Zaslow discussion: the special Lagrangian
n-cycles which consist of a single fiber (i.e., & = 0) are T-dual to the 0-cycles of
length one on X, while a special Lagrangian n-cycle which is the zero section
of the fibration (i.e., & = n) is T-dual to the 2n-cycle in the fundamental class.
This new construction should extend that correspondence between cycles to a

22In physics, when a T-duality transformation is applied to a real torus, a D-brane
supported on a subtorus is mapped to a D-brane supported on the “dual” subtorus (of
complementary dimension); this can be mathematically identified as the annihilator. Here,
we apply this principle to a family of subtori within a family of tori.

23 As the referee has pointed out, our “purity” condition is probably too strong to be
preserved under deformation, but one can hope that all nearby deformations of a (pure)
special Lagrangian n-cycle are reflected in deformations of the corresponding algebraic
cycle.
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broader class (albeit still a somewhat narrow one, since pure cycles are quite
special).

In fact, the correspondence should be even broader. If we begin with
an arbitrary irreducible special Lagrangian n-cycle W on Y whose image
in Mo,(T™,Y) has dimension k, then W can be generically described as
a bundle of (n — k)-manifolds over the image k-manifold. The T-dual of
such a cycle should be a coherent sheaf £ on X having support a complex
submanifold Z of dimension k whose image in My ,(T™,Y) is that same k-
manifold. Thus, to the homology class of W in H,(Y') we associate the total
homology class in Heyven(X) of the corresponding coherent sheaf .24 Note that
since the support has complex dimension k, this total homology class lies in
Ho(X) ® Hy(X) @ -+ ® Ha(X).

The homology class of the generic fiber of W within T™ should determine
the subtori whose T-duals would sweep out Z; when that homology class is r
times a primitive class, the corresponding coherent sheaf should have generic
rank 7 along Z. For example, a multisection of the special Lagrangian T
fibration which meets the fiber r times should correspond to a coherent sheaf
whose support is all of X and whose rank is r.

We have thus found a mapping from the subspace HL(Y') of n-cycles with
a special Lagrangian representative, to the subspace H2£ (Y') of homology
classes of algebraic cycles (and coherent sheaves). If we consider the Leray
filtration on special Lagrangian n-cycles on Y

Sk = {W € H*(Y) | dimimage W < k},
then this will map to
Hy®(X) @ H3*(X) @ -~ ® Hy¥(X)

(and the pure n-cycles on Y will map to homology classes of algebraic cycles
on Y). But this latter filtration on Heyen(X) is precisely the monodromy
weight filtration of the A-variation of Hodge structures on X, which should
be mirror to the geometric monodromy weight filtration on Y!?> We are thus
led to the following refinement of Conjecture 3.

Conjecture 4 If (X,Y) is a geometric mirror pair then there exists a large
complez structure limit point P € M (Y) corresponding to the mirror part-
ner X, and a subvariation of the geometric variation of Hodge structure de-
fined on HL(Y')* whose monodromy weight filtration at P coincides with the

241t appears from both the K3 case discussed in the next section, and the analysis of [24]
that the correct total homology class to use is the Poincaré dual of ch(£)vtdY.

2This property of the mapping of D-branes has also been observed by Ooguri, Oz and
Yin [48].
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Leray filtration for the special Lagrangian T"-fibration on Y. Moreover, un-
der the isomorphism of Conjecture 3, this maps to the subvariation of the
A-variation of Hodge structure defined on H2& (X)*.

even

The difficulty in putting an integer structure on the A-variation of Hodge
structure stems from the fact that HPP(X) will in general not be gener-
ated by its intersection with H?*(X,Z). However, the algebraic cohomology
H22 (X)* does not suffer from this problem: its graded pieces are generated
by integer (p,p)-classes. If Conjecture 4 holds, it explains why there is a
corresponding subvariation of the geometric variation of Hodge structure on
Y, also defined over the integers. We would thus get corresponding local sys-
tems over Z in addition to the isomorphisms of complex variations of Hodge
structure.

6 Geometric mirror symmetry for
K3 surfaces

The special Lagrangian submanifolds of a K3 surface can be studied directly,
thanks to the following fact due to Harvey and Lawson [29]: given a Ricci
flat metric on a K3 surface Y and a special Lagrangian submanifold M,
there exists a complex structure on Y with respect to which the metric is
Kahler, such that M is a complex submanifold of Y. This allows us to
translate immediately the theory of special Lagrangian T2-fibrations on Y
to the standard theory of elliptic fibrations. In this section, we will discuss
geometric mirror symmetry for K3 surfaces in some detail. (Some aspects of
this case have also been worked out by Gross and Wilson (28], who went on
to study geometric mirror symmetry for the Voisin—Borcea threefolds of the
form (K3 x T?)/Z,.)

If we fix a cohomology class x € H?(Y,Z) which is primitive (i.e., %u 4
H%(Y,Z) for 1 < n € Z) and satisfies y - u = 0, then for any Ricci flat metric
we can find a compatible complex structure for which u has type (1,1) and
% - > 0 (x being the Kéhler form). The class p is then represented by a
complex curve, which moves in a one parameter family, defining the structure
of an elliptic fibration. Thus, elliptic fibrations of this sort exist for every Ricci
flat metric on a K3 surface.?

Our Conjecture 1 is easy to verify in this case: as is well known, the base
of the elliptic fibration on a K3 surface can be completed to a 2-sphere, and

26They even exist—although possibly in degenerate form—for the “orbifold” metrics
which occur at certain limit points of the moduli space: at those points, & is only required
to be semipositive, but by the index theorem k' cannot contain an isotropic vector such
as u, so it is still possible to choose a complex structure such that K- u > 0.
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the resulting map from K3 to S? is proper. In fact, the possible singular fibers
are known very explicitly in this case [30].

To study Conjecture 2, we need to understand the structure of the “com-
plexified” moduli space Mp(T?,Y). Since a flat U(1)-bundle on an elliptic
curve is equivalent to a holomorphic line bundle of degree zero, each point in
Mp(T?,Y) has a natural interpretation as such a bundle on some particular
fiber of the elliptic fibration. Extending that bundle by zero, we can regard
it as a sheaf £ on Y, with supp(£) = image(f). We thus identify Mp(T?,Y)
as a moduli spaces of such sheaves.

Let us briefly recall the facts about the moduli spaces of simple sheaves on
K3 surfaces, as worked out by Mukai [46, 47]. First, Mukai showed that for
any simple sheaf £ on Y, i.e., one without any nonconstant endomorphisms,
the moduli space Mgmple is smooth at [£] of dimension dim Ext'(£,€) =
2 — x(€,€). (The 2 in the formula arises from the spaces Hom(&,£) and
Ext?(€,£), each of which has dimension one, due to the constant endo-
morphisms in the first case, and their Kodaira—Serre duals in the second.)

Second, Mukai introduced an intersection pairing on H*(Y) = H(Y) &
HX(Y) & H4(Y') defined by

(0, 8,7)- (&, 8,7)=(B-8' —a-v —v-)[Y],

and a slight modification of the usual Chern character ch(£), defined by

o(€) = ch(E)\/XA(Y) = (rank £,¢1(€), rank € + %(01(8)2 - 202(5))),

so that the Riemann—Roch theorem reads

X(E,F) =Y _(—1) dim Ext'(£, F) = v(€) - v(F).

=0

In particular, the moduli space Mimpie(v) of simple sheaves with v(€) = v
has dimension

dim Mgimpie(v) =2 = x(£,€) =2—v-v.

In the case of 2-dimensional moduli spaces Mgimpie(v), Mukai goes on to show
that whenever the space is compact, it must be a K3 surface.

The sheaves £ with support on a curve from our elliptic fibration will
have Mukai class v(L) = (0, &, 0) for which v(£) - v(L) = p- p = 0, so the
moduli space has dimension two. That is, our moduli space Mp(T?,Y) is
contained in Miimple(0, 1£,0) as an open subset. Our second conjecture will
follow if we can show that this latter space is compact, or at least admits
a natural compactification. Whether this is true or not could in principle
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depend on the choice of Ricci flat metric on Y. If we restrict to metrics
with the property that Y is algebraic when given the compatible complex
structure for which i defines an elliptic fibration (this is a dense set within
the full moduli space), then techniques of algebraic geometry can be applied
to this problem. General results of Simpson [51] imply that on an algebraic
K3 surface, the set of semistable sheaves with a fixed Mukai vector v forms
a projective variety. This applies to our situation with v = (0, &,0), and
provides the desired compactification. It is to be hoped that compactiflcations
such as this exist even for nonalgebraic K3 surfaces.

The Mukai class v = (0, &, 0) should now be mapped under mirror sym-
metry to the class of a O-cycle, or the corresponding sheaf Op; that Mukai
class is (0,0,1). In fact, the mirror map known in physics [4] does precisely
that: given any primitive isotropic vector v in H*¥(Y'), there is a mirror map
which takes it to the vector (0,0,1). Moreover, it is easy to calculate how
this mirror map affects complex structures, by specifying how it affects Hodge
structures: if we put a Hodge structure on H*'(Y') in which H° and H* have
been specified as type (1, 1), then the corresponding Hodge structure at the
mirror image point has v* /v as its H2.

This is precisely the relationship between Hodge structures on Y and on
Mimpie(v) which was found by Mukai [47)! We can thus identify geometric
mirror symmetry for K3 surfaces (which associates the moduli spaces of 0-
cycles and special Lagrangian T?’s) with the mirror symmetry previously
found in physics. It is amusing to note that in establishing this relationship,
Mukai used elliptic fibrations and bundles on them in a crucial way.

As suggested in the previous section, such a mirror transformation should
act on the totality of special Lagrangian 2-cycles. In fact, it is known that
for at least some K3 surfaces, there is a Fourier—Mukai transform which
associates sheaves on Maimpie(v) to sheaves on Y [7]. The map between their
homology classes is precisely the mirror map.?’ Thus, proving that there
exists such a Fourier-Mukai transform for arbitrary K3 surfaces (including
nonalgebraic ones) would establish a version of Conjecture 4 in this case.
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