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Foreword

The volume contains a selection of seventeen survey and research articles
from the July 1996 Warwick European algebraic geometry conference. These
papers give a lively picture of current research trends in algebraic geometry,
and between them cover many of the outstanding hot topics in the modern
subject. Several of the papers are expository accounts of substantial new
areas of advance in mathematics, carefully written to be accessible to the
general reader. The book will be of interest to a wide range of students and
nonexperts in different areas of mathematics, geometry and physics, and is
required reading for all specialists in algebraic geometry.

The European algebraic geometry conference was one of the climactic
events of the 1995-96 EPSRC Warwick algebraic geometry symposium, and
turned out to be one of the major algebraic geometry events of the 1990s.
The scientific committee consisted of A. Beauville (Paris), F. Catanese (Pisa),
K. Hulek (Hannover) and C. Peters (Grenoble) representing AGE (Algebraic
Geometry in Europe, an EU HCM-TMR network) and N.J. Hitchin (Ox-
ford), J.D.S. Jones and M. Reid (Warwick) representing Warwick and British
mathematics. The conference attracted 178 participants from 22 countries
and featured 33 lectures from a star-studded cast of speakers, including most
of the authors represented in this volume.

The expository papers Five of the articles are expository in intention:
among these a beautiful short exposition by Paranjape of the new and very
simple approach to the resolution of singularities; a detailed essay by Ito
and Nakamura on the ubiquitous ADE classification, centred around simple
surface singularities; a discussion by Morrison of the new special Lagrangian
approach giving geometric foundations to mirror symmetry; and two deep
and informative survey articles by Behrend and Siebert on Gromov-Witten
invariants, treated from the contrasting viewpoints of algebraic and symplec-
tic geometry.

Some main overall topics Many of the papers in this volume group
around a small number of main research topics. Gromov-Witten invariants

vii



viii Foreword

was one of the main new breakthroughs in geometry in the 1990s; they can
be developed from several different starting points in symplectic or algebraic
geometry. The survey of Siebert covers the analytic background to the sym-
plectic point of view, and outlines the proof that the two approaches define
the same invariants. Behrend's paper explains the approach in algebraic geo-
metry to the invariants via moduli stacks and the virtual fundamental class,
which essentially amounts to a very sophisticated way of doing intersection
theory calculations. The papers by Paoletti and Wilson give parallel applica-
tions of Gromov-Witten invariants to higher dimensional varieties: Wilson's
paper determines the Gromov-Witten invariants that arise from extremal
rays of the Mori cone of Calabi-Yau 3-folds, whereas Paoletti proves that
Mori extremal rays have nonzero associated Gromov-Witten invariants in
many higher dimensional cases. The upshot is that extremal rays arising in
algebraic geometry are in fact in many cases invariant in the wider symplectic
and topological setting.

Another area of recent spectacular progress in geometry and theoretical
physics is Calabi-Yau 3-folds and mirror symmetry. This was another major
theme of the EuroConference that is well represented in this volume. The pa-
per by Voisin, which is an extraordinary computational tour-de-force, proves
the generic Torelli theorem for the most classical of all Calabi-Yau 3-folds,
the quintic hypersurface in P4. The survey by Morrison explains, among
other things, the Strominger-Yau-Zaslow special Lagrangian interpretation
of mirror symmetry. Beauville's paper gives the first known construction of a
Calabi-Yau 3-fold having the quaternion group of order 8 as its fundamental
group. The paper by Batyrev proves that the Betti numbers of a Calabi-Yau
3-fold are birationally invariant, using the methods of p-adic integration and
the Weil conjectures; the idea of the paper is quite startling at first sight (and
not much less so at second sight), but it is an early precursor of Kontsevich's
idea of motivic integration, as worked out in papers of Denef and Loeser. Sev-
eral other papers in this volume (those of Ito and Nakamura, Mukai, Shioda
and Wilson) are implicitly or explicitly related to Calabi-Yau 3-folds in one
way or another.

Other topics The remaining papers, while not necessarily strictly related
in subject matter, include some remarkable achievements that illustrate the
breadth and depth of current research in algebraic geometry. Shioda ex-
tends his well-known results on the Mordell-Weil lattices of elliptic surfaces
to higher genus fibrations, in a paper that will undoubtedly have substantial
repercussions in areas as diverse as number theory, classification of surfaces,
lattice theory and singularity theory. Faber continues his study of tauto-
logical classes on the moduli space of curves and Abelian varieties, and gives
an algorithmic treatment of their intersection numbers, that parallels in many
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respects the Schubert calculus; he obtains the best currently known partial
results determining the class of the Schottky locus. Gizatullin initiates a
fascinating study of representations of the Cremona group of the plane by bi-
rational transformations of spaces of plane curves. Eyssidieux gives a study,
in terms of Gromov's Kahler hyperbolicity, of universal inequalities holding
between the Chern classes of vector bundles over Hermitian symmetric spaces
of noncompact type admitting a variation of Hodge structures. Kiichle and
Steffens' paper contains new twists on the idea of Seshadri constants, a notion
of local ampleness arising in recent attempts on the Fujita conjecture; they
use in particular an ingenious scaling trick to provide improved criteria for
the very ampleness of adjoint line bundles.

Manetti's paper continues his long-term study of surfaces of general type
constructed as iterated double covers of P2. He obtains many constructions
of families of surfaces, and proves that these give complete connected compo-
nents of their moduli spaces, provided that certain naturally occuring degen-
erations of the double covers are included. This idea is used here to establish
a bigger-than-polynomial lower bound on the growth of the number of con-
nected components of moduli spaces. In more recent work, he has extended
these ideas in a spectacular way to exhibit the first examples of algebraic
surfaces that are proved to be diffeomorphic but not deformation equivalent.

The Fourier-Mukai transform is now firmly established as one of the most
important new devices in algebraic geometry. The idea, roughly speaking, is
that a sufficiently good moduli family of vector bundles (say) on a variety X
induces a correspondence between X and the moduli space X. In favourable
cases, this correspondence gives an equivalence of categories between coherent
sheaves on X and on X (more precisely, between their derived categories).
The model for this theory is provided by the case originally treated by Mukai,
when X is an Abelian variety and X its dual; Mukai named the transform by
analogy with the classical Fourier transform, which takes functions on a real
vector space to functions on its dual. It is believed that, in addition to its
many fruitful applications in algebraic geometry proper, this correspondence
and its generalisations to other categories of geometry will eventually pro-
vide the language for mathematical interpretations of the various "dualities"
invented by the physicists, for example, between special Lagrangian geom-
etry on a Calabi-Yau 3-fold and coherent algebraic geometry on its mirror
partner (which, as described in Morrison's article, is conjecturally a fine mod-
uli space for special Lagrangian tori). Mukai's magic paper in this volume
presents a Fourier-Mukai transform for K3 surfaces, in terms of moduli of
semi-rigid sheaves; under some minor numerical assumptions, he establishes
the existence of a dual K3 surface, the fact that the Fourier-Mukai transform
is an equivalence of derived categories, and the biduality result in appropriate
cases.
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The paper of Ito and Nakamura is the longest in the volume; it combines a
detailed and wide-ranging expository essay on the ADE classification with an
algebraic treatment of the McKay correspondence for the Kleinian quotient
singularities C2/G in terms of the G-orbit Hilbert scheme. The contents of
their expository section will probably come as a surprise to algebraic geo-
meters, since alongside traditional aspects of simple singularities and their
ADE homologues in algebraic groups and representation of quivers, they lay
particular emphasis on partition functions in conformal field theory with mod-
ular invariance under SL(2, Z) and on Hi factors in von Neumann algebras.
Their study of the G-Hilbert scheme makes explicit for the first time many
aspects of the McKay correspondence relating the exceptional locus of the
Kleinian quotient singularities C2/G with the irreducible representations of
G; for example, the way in which the points of the minimal resolution can be
viewed as defined by polynomial equations in the character spaces of the cor-
responding irreducible representations, or the significance in algebraic terms
of tensoring with the given representation of G. Ito and Nakamura and their
coworkers are currently involved in generalising many aspects of the G-orbit
Hilbert scheme approach to the resolution of Gorenstein quotient singulari-
ties and the McKay correspondence to finite subgroups of SL(3, C), and this
paper serves as a model for what one hopes to achieve.

Thanks to all our sponsors The principal financial support for the Euro-
Conference was a grant of ECU40,000 from EU TMR (Transfer and Mobility
of Researchers), contract number ERBFMMACT 950029; we are very grate-
ful for this support, without which the conference could not have taken place.
The main funding for the 1995-96 Warwick algebraic geometry symposium
was provided by British EPSRC (Engineering and physical sciences research
council). Naturally enough, the symposium was one of the principal activi-
ties of the Warwick group of AGE (European Union HCM project Algebraic
Geometry in Europe, Contract number ERBCHRXCT 940557), and finan-
cial support from Warwick AGE and the other groups of AGE was a crucial
element in the success of the symposium and the EuroConference. We also
benefitted from two visiting fellowships for Nakamura and Klyachko from the
Royal Society (the UK Academy of Science). Many other participants were
covered by their own research grants.

The University of Warwick, and the Warwick Mathematics Institute also
provided substantial financial backing. All aspects of the conference were
enhanced by the expert logistic and organisational help provided by the
Warwick Math Research Centre's incomparable staff, Elaine Greaves Coelho,
Peta McAllister and Hazel Graley.

Klaus Hulek and Miles Reid, November 1998



Birational Calabi-Yau n-folds
have equal Betti numbers

Victor V. Batyrev

Abstract

Let X and Y be two smooth projective n-dimensional algebraic
varieties X and Y over C with trivial canonical line bundles. We use
methods of p-adic analysis on algebraic varieties over local number
fields to prove that if X and Y are birational, they have the same
Betti numbers.

1 Introduction

The purpose of this note is to show how to use the elementary theory of
p-adic integrals on algebraic varieties to prove cohomological properties of
birational algebraic varieties over C. We prove the following theorem, which
was used by Beauville in his recent explanation of a Yau-Zaslow formula for
the number of rational curves on a K3 surface [1] (see also [3, 12]):

Theorem 1.1 Let X and Y be smooth n-dimensional irreducible projective
algebraic varieties over C. Assume that the canonical line bundles f%- and
Qiy are trivial and that X and Y are birational Then X and Y have the
same Betti numbers, that is,

Hl(X, C) ^ IT(Y, C) for all i > 0.

Note that Theorem 1.1 is obvious for n = 1, and for n = 2, it follows from
the uniqueness of minimal models of surfaces with K > 0, that is, from the
property that any birational map between two such minimal models extends
to an isomorphism [5]. Although n-folds with K, > 0 no longer have a unique
minimal model for n > 3, Theorem 1.1 can be proved for n = 3 using a result
of Kawamata ([6], §6): he showed that any two birational minimal models
of 3-folds can be connected by a sequence of flops (see also [7]), and simple
topological arguments show that if two projective 3-folds with at worst Q-
factorial terminal singularities are birational via a flop, then their singular
Betti numbers are equal. Since one still knows very little about flops in
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dimension n > 4, it seems unlikely that a consideration of flops could help
to prove Theorem 1.1 in dimension n > 4. Moreover, Theorem 1.1 is false in
general for projective algebraic varieties with at worst Q-factorial Gorenstein
terminal singularities of dimension n > 4. For this reason, the condition in
Theorem 1.1 that X and Y are smooth becomes very important in the case
n > 4. We remark that in the case of holomorphic symplectic manifolds some
stronger result is obtained in [4].

I would like to thank Professors A. Beauville, B. Fantechi, L. Gottsche,
K. Hulek, Y. Kawamata, M. Kontsevich, S. Mori, M. Reid and D. van Straten
for their interest, fruitful discussions and stimulating e-mails.

2 Gauge forms and p-adic measures

Let F be a local number field, that is, a finite extension of the p-adic field Qp

for some prime p G Z. Let R C F be the maximal compact subring, q C R
the maximal ideal, Fq = R/q the residue field with |Fq| = q = pr. We write

for the standard norm, and || • ||: F —• R>o for the multiplicative p-adic norm

Here Ord is the p-adic valuation.

Definition 2.1 Let X be an arbitrary flat reduced algebraic S-scheme, where
S = Speci?. We denote by X(R) the set of S-morphisms S —• X (or sections
of X -» 5). We call X(R) the set of R-integral points in X. The set of
sections of the morphism X xs SpecF —> SpecF is denoted by X(F) and
called the set of F-rational points in X.

Remark 2.2 (i) If X is an affine 5-scheme, then one can identify X(R)
with the subset

{x G X(F) | f(x) e R for all / e T{X, Ox)} C X(F).

(ii) If A* is a projective (or proper) AS-scheme, then X(R) = X(F).

Now let X be a smooth n-dimensional algebraic variety over F. We assume
that X admits an extension X to a regular 5-scheme. Denote by Q.'x the
canonical line bundle of X and by fi w 5 the relative dualizing sheaf on X.

Recall the following definition introduced by Weil [11]:
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Definition 2.3 A global section u G T{X, fiw5) is called a gauge form if
it has no zeros in X. By definition, a gauge form u defines an isomorphism
Ox = NXJS, sending 1 to a;. Clearly, a gauge form exists if and only if the
line bundle fi#/5 is trivial.

Weil observed that a gauge form u determines a canonical p-adic measure
, on the locally compact p-adic topological space X(F) of F-rational points

in X. The p-adic measure d/x̂  is defined as follows:
Let x e X(F) be an F-point, t\,... ,tn local p-adic analytic parameters

at x. Then t\,..., tn define a p-adic homeomorphism 9: U —• An(F) of an
open subset U C X(F) containing x with an open subset 9(U) C An(F). We
stress that the subsets U C X(F) and 9(JA) C An(F) are considered to be
open in the p-adic topology, not in the Zariski topology. We write

where g = g(t) is a p-adic analytic function on 9{U) having no zeros. Then
the p-adic measure d ^ on U is defined to be the pullback with respect to 9
of the p-adic measure ||p(t)||dt on 9(U), where dt is the standard p-adic Haar
measure on An(F) normalized by the condition

dt = 1.
R)

It is a standard exercise using the Jacobian to check that two p-adic mea-
sures d/x ,̂ d/x̂ , constructed as above on any two open subsets W ,U" C X(F)
coincide on the intersection W D U".

Definition 2.4 The measure d/io, on X(F) constructed above is called the
Weil p-adic measure associated with the gauge form u.

Theorem 2.5 ([11], Theorem 2.2.5) Let X be a regular S-scheme, u a
gauge form on X, andd^ the corresponding Weil p-adic measure on X(F).
Then

where X(Fq) is the set of closed points of X over the finite residue field Fq.

Proof Let

(p: X(R) -> X(Fq) given by x \-+ x € X(Fq)

be the natural surjective mapping. The proof is based on the idea that if
x € X(Fq) is a closed Fq-point of X and #1,.. . ,gn are generators of the
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maximal ideal of x in Ox,x modulo the ideal q, then the elements # i , . . . , gn

define a p-adic analytic homeomorphism

where (p"x(x) is the fiber of <p over x and An(q) is the set of all i?-integral
points of An whose coordinates belong to the ideal q C R. Moreover, the
p-adic norm of the Jacobian of 7 is identically equal to 1 on the whole fiber
ip~l(x). In order to see the latter we remark that the elements define an etale
morphism g: V —> An of some Zariski open neighbourhood V of x G X. Since
ip^ix) C V(R) and g*(dtu A • • • A dtn) = JILJ, where h is invertible in V, we
obtain that h has p-adic norm 1 on ip'1^). So, using the p-adic analytic
homeomorphism 7, we obtain

= dt = —
) Q

for each xG X(Fq). D

Now we consider a slightly more general situation. We assume only that
X is a regular scheme over 5, but do not assume the existence of a gauge
form on X (that is, of an isomorphism Ox — ^x/s)- Nevertheless under
these weaker assumptions we can define a unique natural p-adic measure d/i
at least on the compact X(R) C X(F) - although possibly not on the whole
p-adic topological space X(F)\

Let Wi, . . . , Uk be a finite covering of X by Zariski open 5-subschemes such
that the restriction of ^/S on each Id is isomorphic to C^ . Then each U{
admits a gauge form u^ and we define a p-adic measure d//* on each compact
Ui(R) as the restriction of the Weil p-adic measure d/z^ associated with a;, on
Ui(F). We note that the gauge forms uji are defined uniquely up to elements
Si e T(Ui, Ox)- On the other hand, the p-adic norm ||si(a;)|| equals 1 for any
element Si G T(Ui,Ox) and any irrational point x € Ui(R). Therefore, the
p-adic measure on Ui(R) that we constructed does not depend on the choice
of a gauge form c^. Moreover, the p-adic measures d/x̂  on Ui(R) glue together
to a p-adic measure d/x on the whole compact X(R), since one has

Ui(R) D Uj(R) = (Ui D Uj)(R) for z, j = 1 , . . . , k

and

U • • • U Uk(R) = (Wi U • • • U Uk){R) = X{R).

Definition 2.6 The p-adic measure constructed above defined on the set
X(R) of i?-integral points of an 5-scheme X is called the canonical p-adic
measure.
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For the canonical p-adic measure d/x, we obtain the same property as for
the Weil p-adic measure

Theorem 2.7

Jx(R) Qn

Proof Using a covering of X by some Zariski open subsets Wi,. . . ,!&, we
obtain

/ /
X(R) h uix{R) h<i2 (u^

and

\X(Fq)\ = XK(Fq)| " E K̂ i n

It remains to apply Theorem 2.5 to every intersection Uix D • • • D Uis. D

Theorem 2.8 Let X be a regular integral S-scheme and Z C X a closed
reduced subscheme of codimension > 1. Then the subset Z{R) C X(R) has
zero measure with respect to the canonical p-adic measure d/x on X(R).

Proof Using a covering of X by Zariski open affine subsets Wi , . . . ,%, we
can always reduce to the case when X is an afBne regular integral 5-scheme
and Z C X an irreducible principal divisor defined by an equation / = 0,
where / is a prime element of A = T(X, Ox)-

Consider the special case X = Ag = Spec R[XU • • •, Xn] and Z = A^"1 =
SpecR[X2,. •., Xn], that is, / = X\. For every positive integer m, we denote
by Zm(R) the subset in An(R) consisting of all points x = (xi,..., xn) E Rn

such that x\ G qm. One computes the p-adic integral in the straightforward
way:

J J fj
Zm{R)

On the other hand, we have

—.

oo

Z(R) = f| Zm{R).
m = l
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Hence

r r
dx = lim / dx = 0,

/ ,Z{R) m^oo

and in this case the statement is proved. Using the Noether normalization
theorem reduces the more general case to the above special one. D

3 The Betti numbers

Proposition 3.1 LetX andY be birational smooth projective n-dimensional
algebraic varieties over C having trivial canonical line bundles. Then there
exist Zariski open dense subsets U C X and V CY such that U is isomorphic
to V and codimx(X \ [/), codimy(Y \V)>2.

Proof Consider a birational rational map <p: X --•> Y. Since X is smooth
and Y is projective, (p is regular at the general point of any prime divisor
of X, so that there exists a maximal Zariski open dense subset U C X with
codimx(X \ U) > 2 such that ip extends to a regular morphism (pom. U —+Y.
Since yfuoy is proportional to ux, the morphism (p0 is etale, that is, <p0 is
an open embedding of U into the maximal open subset V C Y where tp~l

is denned. Similarly (p~x induces an open embedding of V into [/, so we
conclude that tp0 is an isomorphism of U onto V. D

Proof of Theorem 1.1 Let X and Y be smooth projective birational
varieties of dimension n over C with trivial canonical bundles. By Propo-
sition 3.1, there exist Zariski open dense subsets U C X and V C Y with
codimx(X \ U) > 2 and codimy (Y \ V) > 2 and an isomorphism (p: U —• V.

By standard arguments, one can choose a finitely generated Z-subalgebra
1Z C C such that the projective varieties X and Y and the Zariski open
subsets U C X and V C Y are obtained by base change * x$ SpecC from
regular projective schemes X and y over S := Spec 1Z together with Zariski
open subschemes U C X and V c ^ over S. Moreover, one can choose K
in such a way that both relative canonical line bundles fiJ/5 and Qy/S are
trivial, both codimensions codim^(A' \ U) and codimy(y \ V) are > 2, and
the isomorphism ip: U —> V is obtained by base change from an isomorphism
<1>: # - > V over S.

For almost all prime numbers p G N, there exists a regular i?-integral
point 7r G S XspecZ SpecZp, where R is the maximal compact subring in a
local p-adic field F; let q be the maximal ideal of R. By an appropriate
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choice of n £ S Xspecz SpecZp, we can ensure that both X and y have good
reduction modulo q. Moreover, we can assume that the maximal ideal I (if)
of the unique closed point in

5 := Spec R A S xSpecZ SpecZp

is obtained by base change from some maximal ideal J(W) c 71 lying over the
prime ideal (p) C Z.

Let UJX and cjy be gauge forms on X and y respectively and uu and uy
their restriction to U (respectively V). Since <1>* is an isomorphism over <S,
<&*uy is another gauge form on U. Hence there exists a nowhere vanishing
regular function h € T(U, O*x) such that

The property co6ivax{X\U) > 2 implies that h is an element of T(X, 0%) =
11*. Hence, one has ||fc(a;)|| = 1 for all x € X(F), that is, the Weil p-adic
measures on U(F) associated with $*UJV and uu are the same. The latter
implies the following equality of the p-adic integrals

/ dfJLX = dfJLy.
JU{F) JV(F)

By Theorem 2.8 and Remark 2.2, (ii), we obtain

/ dux = / dfix = / dfj,x
JU(F) JX{F) JX(R)

and

/ dfly= I d/iy= /
Jv(T) Jy{?) Jy

/

Jy{R)

Now, applying the formula in Theorem 2.7, we arrive at the equality

qn qn

This shows that the numbers of Fq-rational points in X and y modulo the
ideal J(W) C 1Z are the same. We now repeat the same argument, replacing
R by its cyclotomic extension 1Z^ C C obtained by adjoining all complex
(qr — l)th roots of unity; we deduce that the projective schemes X and y
have the same number of rational points over Fq , where Fq is the extension
of the finite field Fq of degree r. We deduce in particular that the Weil zeta
functions
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and

are the same. Using the Weil conjectures proved by Deligne [9] and the
comparison theorem between the etale and singular cohomology, we obtain

" Po(t)P2(t)'"P2n(t)

and

t)=Ql(t)Qs(t)'"Q2n-l(t)
} Qo(t)Q2(t)..-Q2n{t) '

where Pi(t) and Qi(t) are polynomials with integer coefficients having the
properties

deg Pi (t) = dim H* {X, C), deg Q* (t) = dim H* (Y, C) for all z > 0. (2)

Since the standard Archimedean absolute value of each root of polynomials
Pi(t) and Qi(t) must be q~i/2 and Pi(0) = Qi(0) = I for all i > 0, the equality
Z(X,p,t) = Z(y,p,t) implies Pi(t) = Q{(t) for all i > 0. Therefore, we have
dim Hl(X, C) = dim Hl(F, C) for alH > 0. •

4 Further results

Definition 4.1 Let <p: X —> F b e a birational map between smooth alge-
braic varieties X and Y. We say that ip does not change the canonical class,
if for some Hironaka resolution a: Z —» X of the indeterminacies of y? the
composite aoip extends to a morphism (3: Z -^>Y such that /?*f2y = a*f^.

The statement of Theorem 1.1 can be generalized to the case of birational
smooth projective algebraic varieties which do not necessarily have trivial
canonical classes as follows:

Theorem 4.2 Let X and Y be irreducible birational smooth n-dimensional
projective algebraic varieties over C. Assume that the exists a birational ra-
tional map ip\ X --•> Y which does not change the canonical class. Then X
and Y have the same Betti numbers.
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Proof We repeat the same arguments as in the proof of Theorem 1.1 with
the only difference that instead of the Weil p-adic measures associated with
gauge forms we consider the canonical p-adic measures (see Definition 2.6).
Using the birational morphisms a: Z —> X and (3: Z —» y having the prop-
erty

P lLy/s = a ux/si

we conclude that for some prime p £ N, the integrals of the canonical p-adic
measures \ix and \xy over X(R) and y(R) are equal, since there exists a dense
Zariski open subset U C Z on which we have of^ix = (3*fJLy. By Theorem 2.7,
the zeta functions of X and y must be the same. •

Another immediate application of our method is related to the McKay
correspondence [10].

Theorem 4.3 Let G C SL(n, C) be a finite subgroup. Assume that there
exist two different resolutions of singularities onW:= Cn/G:

f:X->W, g:Y->W

such that both canonical line bundles QJ- an^ ^y are trivial. Then the Euler
numbers of X and Y are the same.

Proof We extend the varieties X and Y to regular schemes over a scheme
S of finite type over Spec Z. Moreover, one can choose S in such a way that
the birational morphisms / and g extend to birational 5-morphisms

F: X^W, G:y-+W,

where W is a scheme over S extending W. Using the same arguments as
in the proof of Theorem 1.1, one obtains that there exists a prime p e N
such that Z(X1p,t) = Z(y,p,t). On the other hand, in view of (2), the
Euler number is determined by the Weil zeta function (1) as the degree of the
numerator minus the degree of the denominator. Hence e{X) = e(Y). •

With a little bit more work one can prove an even more precise statement:

Theorem 4.4 Let G C SL(n, C) be a finite subgroup and W := Cn/G. As-
sume that there exists a resolution

f:X->W

with trivial canonical line bundle Ofy • Then the Euler number of X equals
the number of conjugacy classes in G.
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Remark 4.5 As we saw in the proof of Theorem 3.1, the Weil zeta functions
of Z{X,p,t) and Z(y,p,t) are equal for almost all primes p G SpecZ. This
fact being expressed in terms of the associated L-functions indicates that the
isomorphism H^X.C) = #*(y,C) for alH > 0 which we have established
must have some deeper motivic nature. Recently Kontsevich suggested an
idea of a motivic integration [8], developed by Denef and Loeser [2]. In
particular, this technique allows to prove that not only the Betti numbers,
but also the Hodge numbers of X and Y in 1.1 must be the same.
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A Calabi-Yau threefold with
non-Abelian fundamental group

Arnaud Beauville*

Abstract

This note, written in 1994, answers a question of Dolgachev by
constructing a Calabi-Yau threefold whose fundamental group is the
quaternion group H%. The construction is reminiscent of Reid's un-
published construction of a surface with pg = 0, K2 = 2 and TTI = if85
I explain below the link between the two problems.

1 The example

Let H$ = {± l ,±z ,± j , ±k} be the quaternion group of order 8, and V its
regular representation. We denote by Hs the group of characters x'- Hs —>• C*,
which is isomorphic to Z2 x Z2. The group Hs acts on P(V) and1 on S2 V; for
each x £ #8, we denote by (S2 V)x the eigensubspace of S2 V with respect to
X, that is, the space of quadratic forms Q on P(V) such that h- Q = x(h)Q
for all h e H8.

Theorem 1.1 For each x £ #8; let Qx be a general element of (S2 V)x. The
subvariety X ofP(V) defined by the 4 equations

Qx = 0 forallxeHs

is a smooth threefold, on which the group H% acts freely. The quotient X :=
X/Hs is a Calabi-Yau threefold with 7Ti(X) = Hs.

Let me observe first that the last assertion is an immediate consequence
of the others. Indeed, since X is a Calabi-Yau threefold, we have hl'°(X) =
h2>°{X) = x{Ox) = 0, hence hl>°(X) = /i2>°(X) = x(Ox) = 0. This implies

* Partially supported by the European HCM project "Algebraic Geometry in Europe"
(AGE).

XI use Grothendieck's notation, that is, P(V) is the space of hyperplanes in V.
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h3>°(X) = 1, so there exists a nonzero holomorphic 3-form u on X\ since its
pullback to X is everywhere nonzero, UJ has the same property, hence X is
a Calabi-Yau threefold. Finally X is a complete intersection in P(V), hence
simply connected by the Lefschetz theorem, so the fundamental group of X
is isomorphic to H%.

So the problem is to prove that H8 acts freely and X is smooth. To do this,
we will need to write down explicit elements of (S2V)X. As an #8-module,
V is the direct sum of the 4 one-dimensional representations of H8 and twice
the irreducible two-dimensional representation p. Thus there exists a system
of homogeneous coordinates (Xi,Xa, Xp, Xyj Y, Z; Y7, Z') such that

9 ' (XijXa, Xp, Xyj Y, Z; Y', Z') =
(X1,a(g)Xa, p(g)X0,7(5)X7; p(g)(Y, Z); p(g)(Y', Z')).

To be more precise, I denote by a (respectively /?, 7) the nontrivial char-
acter which is +1 on i (respectively j , k), and I take for p the usual represen-
tation via Pauli matrices:

P(k)(Y,z) = (->/=iz,->/=

Then the general element Qx of (S2 V)x can be written

Qx = t\Xl + t\X\ + t\Xl + t\X> -f tl5(YZ' - Y'Z),
Qa = tfXiXa + tJ-fyXy + t%YZ + t°Y'Z' + t%(YZ' + ZY1),

Qp = t{XxXp + 1$XaX7 + t%{Y2 -f Z2) +1{{Y12 + Z/2)
Q 7 = *7XiX7 -f tjXaX/, + tKr2 - z2) + t](y/2 - z'2)

For fixed t := (#) , let ^ t be the subvariety of P(Vr) defined by the equa-
tions Qx = 0. Let us check first that the action of Hg on Xt has no fixed
points for t general enough. Since a point fixed by an element h of Hs is also
fixed by h2, it is sufficient to check that the element — 1 G H$ acts without
fixed point, that is, that Xt does not meet the linear subspaces L+ and L_
defined by Y = Z = Y' = Z' = 0 and Xx = Xa = Xp = X1 = 0 respectively.

Let x = (0,0,0,0; F, Z; Y7, Z') e Xt n L_. One of the coordinates, say Z,
is nonzero; since Qi(x) = 0, there exists k € C such that Y' = A:Y, Z' = A;Z.
Substituting in the equations Qa(x) = Qp{x) = Q^x) = 0 gives

( £ + ^fc + ^A:2)YZ = (tf + t$k -f tffc2)(Y2 + Z2) =

which has no nonzero solutions for a generic choice of t.
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Now let x = (Xi,Xa, Xp, X7; 0,0; 0,0) e Xt n Z/+. As soon as the t? are
nonzero, two of the X-coordinates cannot vanish, otherwise all the coordi-
nates would be zero. Expressing that Qp = Q1 = 0 has a nontrivial solution
in (Xp,X7) gives X% as a multiple of X$, and similarly for Xp and X*. But
then Qi(x) = 0 is impossible for a general choice of t.

Now we want to prove that Xt is smooth for t general enough. Let Q =
® X G # 8 ^ 2 "̂)x» then t := (£*) is a system of coordinates on Q. The equations
Qx = 0 define a subvariety X in Q x P(V), whose fibre above a point t G Q
is Xt. Consider the second projection p: X —> P(V). For x € P(V), the fibre
p~1(x) is the linear subspace of Q defined by the vanishing of the Qx, viewed
as linear forms in t. These forms are clearly linearly independent as soon
as they do not vanish. In other words, if we denote by Bx the base locus
of the quadrics in (S2 V)x and put B = \JBX, the map p: X —> F(V) is a
vector bundle fibration above P(V) \B; in particular X is nonsingular outside
p~1(B). Therefore it is enough to prove that Xt is smooth at the points of

Bnxt.
Observe that an element x in B has two of its X-coordinates zero. Since

the equations are symmetric in the X-coordinates we may assume Xp = X1 =
0. Then the Jacobian matrix

(SH takes the form

2t\X1 2t\Xa 0 0
a t?Xi 0 0

o o t%Xi 4xa
V 0 0 t\Xa i[Xx

For generic t, this matrix is of rank 4 except when all the X-coordinates of x
vanish; but we have seen that this is impossible when t is general enough. •

2 Some comments
As mentioned in the introduction, the construction is inspired by Reid's ex-
ample [R] of a surface of general type with pg = 0, K2 = 2, TTI = H8. This is
more than a coincidence. In fact, let 5 be the hyperplane section^Xi = 0 of
X. It is stable under the action of Hg (so that Hg acts freely on 5), and we
can prove as above that it is smooth for a generic choice of the parameters.
The surface 5 := S/H& is a Reid surface, embedded in X as an ample divisor,
with h°(X, Ox{S)) = 1. In general, let us consider a Calabi-Yau threefold X
which contains a rigid ample surface, that is, a smooth ample divisor S such
that h°(Ox{S)) = 1. Put L := OX{S). Then S is a minimal surface of gen-
eral type (because Ks = L\S is ample); by the Lefschetz theorem, the natural
map TTI(5) -> TTI(X) is an isomorphism. Because of the exact sequence

0 -> Ox —>L —>Ks->0,
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the geometric genus pg(S) := h°(Ks) is zero.
We have Kg = L3; the Riemann-Roch theorem on X yields

12

Since L • c2 > 0 as a consequence of Yau's theorem (see for instance [B],
Cor. 2), we obtain K2

S < 5.
For surfaces with p9 = 0 and i f | = 1 or 2, we have a great deal of informa-

tion about the algebraic fundamental group, that is the profinite completion
of the fundamental group (see [B-P-V] for an overview). In the case Kg = 1,
the algebraic fundamental group is cyclic of order < 5; if K\ — 2, it is of
order < 9; moreover the dihedral group D% cannot occur. D. Naie [N] has
recently proved that the symmetric group ©3 can also not occur; therefore
the quaternion group Hs is the only non-Abelian group which occurs in this
range.

On the other hand, little is known about surfaces with p9 = 0 and K$ =
3,4 or 5. Inoue has constructed examples with TTI = H8 x (Z2)n, with n =
K2 — 2 {loc. cit.)\ I do not know if they can appear as rigid ample surfaces in
a Calabi-Yau threefold.

Let us denote by X the universal cover of X, by L the pullback of L to X,
and by p the representation of G on H°(X, L). We have Tr p(g) = 0 for g ^ 1
by the holomorphic Lefschetz formula, and Trp(l) = x{L) = \G\ x(L) = \G\.
Therefore p is isomorphic to the regular representation. Looking at the list
in loc. cit. we get a few examples of this situation, for instance:

• G = Z5, X = a quintic hypersurface in P4;

• G = (Z2)3 or Z4 x Z2, X = an intersection of 4 quadrics in P7 as above;

• G = Z 3 x Z 3 , I = a hypersurface of bidegree (3,3) in P2 x P2.

Of course, when looking for Calabi-Yau threefolds with interesting TTI,
there is no reason to assume that it contains an ample rigid surface. Observe
however that if we want to use the preceding method, in other words, to find
a projective space F(V) with an action of G and a smooth invariant linearly
normal Calabi-Yau threefold X C P(Vr), then the line bundle 0^(1) will be
the pullback of an ample line bundle L on X, and by the above argument the
representation of G on V will be h°(L) times the regular representation. This
leaves little hope to find an invariant Calabi-Yau threefold when the product
h°(L)\G\ becomes large.
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Algebraic Gromov-Witten invariants

K. Behrend

Abstract
We present an introduction to the algebraic theory of Gromov-

Witten invariants, as developed in collaboration with Yu. Manin and
B. Fantechi in [4], [3] and [2]. We try to make these three articles
more accessible. Proofs are generally omitted and there is little new
material.
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1 Introduction

Gromov-Witten invariants are the basic enumerative geometry invariants of
a (nonsingular projective) algebraic variety W. Given a family F i , . . . , Fn of
algebraic cycles on W, one asks how many curves of fixed genus and degree
(or homology class) pass through F i , . . . , Fn. The answer is given by the
associated Gromov-Witten invariant. (If there is an infinite number of such
curves, the Gromov-Witten invariant is a cycle in the moduli space of marked
curves, rather than a number.) Isolating the properties satisfied by these
invariants (formulated here as Axioms I-VIII) has had tremendous impact on
enumerative geometry in recent years. Moreover, Gromov-Witten invariants
tell us the correct way of counting curves. In simple cases (for example,
W = Pn) the Gromov-Witten invariant simply gives the actual number of
curves through F i , . . . , Fn if F i , . . . , Fn are moved into general position. But
such a naive interpretation of Gromov-Witten invariants is impossible in
general, and so one should think of Gromov-Witten invariants as the ideal
number of curves through F i , . . . , Fn.

Gromov-Witten invariants are defined as certain integrals over moduli
spaces of maps from curves to W. Integrating over the usual fundamental
class of the moduli space is problematic and can give the wrong result, be-
cause the moduli space might be of higher dimension than expected. This
necessitates the construction of a so-called virtual fundamental class. This
is the key step in the definition of Gromov-Witten invariants. Before the
virtual fundamental classes were understood, Gromov-Witten invariants had
only been constructed in special cases.

It turns out that the Gromov-Witten invariants of W (over C) only de-
pend on the underlying symplectic structure of W. (The only aspect one does
not see from the symplectic point of view is the motivic nature of Gromov-
Witten invariants.) The history of Gromov-Witten invariants in symplectic
geometry is actually much older than in algebraic geometry. Classically, one
perturbed the almost complex structure on W, instead of constructing a vir-
tual fundamental class. For an exposition of this theory and its development,
see the article by Siebert in this volume, which also explains the fact that the
invariants constructed in symplectic geometry equal the algebraic ones.

The necessity of virtual fundamental classes for the definition of Gromov-
Witten invariants in algebraic geometry was felt from the very beginning (see
the seminal papers [10] and [11]). Before the general construction, several
special cases had been studied in detail, usually in genus zero, or for W a
homogeneous space. For more information on the results obtained and the
history of this part of the subject, see the survey [7].

The theory of virtual fundamental classes explained in this article is due
to B. Fantechi and the author (see [3]). Our work was inspired by a talk
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of J. Li at the Santa Cruz conference on algebraic geometry in the summer
of 1995. In his talk, Li reported on work in progress with G. Tian on the
subject of virtual fundamental classes. At the time, that approach relied on
analytic methods, for example, the existence of the Kuranishi map. Our work
[3] grew out of an attempt to understand Li and Tian's work, to construct
virtual fundamental classes in an algebraic context, and, most of all, to give
the construction as intrinsically as possible. But, of course, our construction
owes its existence to theirs. See [12] for the approach of Li and Tian.

Full details of the theory explained here can be found in the series of
papers [4], [3] and [2]. In this article, we stress the geometric meaning of
Gromov-Witten invariants and skip most proofs.

Our approach uses graphs to keep track of the moduli spaces involved.
The graph theory we use here is much simpler than that of [4], for two rea-
sons. Firstly, we restrict to 'absolutely stable' graphs (in the terminology of
[4]). We lose a lot of invariants this way, but we gain a high degree of simpli-
fication of the formalism. However, even this simplified formalism contains
all invariants I^n{/3) envisioned in [11]. The other aspect we do not go into
here is that graphs form a category. Using the full power of the categorical
(or 'operad') approach, the number of axioms for Gromov-Witten invariants
can be distilled down to two (from the eight we need here), but only at the
cost of a lot of formalities.

Introducing graphs here has two purposes. Firstly, we believe that graphs
(as presented here) actually simplify the theory of Gromov-Witten invariants,
and make their properties more transparent. For example, the use of graphs
splits the famous 'splitting axiom' into three much simpler axioms. We also
hope that presenting a simplified graph theoretical approach here will make
[4] and [2] more accessible.

Our approach also relies heavily on the use of stacks. Again, stacks are
introduced to simplify the theory; still, a few remarks seem in order. There
are two ways in which stacks appear here, and two different kinds of stacks
that play a role.

First of all, the moduli stacks involved are Deligne-Mumford stacks, which
are algebraic geometry analogues of orbifolds. Thus, if one works over C
and uses the analytic topology, such stacks are locally given as the quotient
of an analytic space by the action of a finite group (except that the stack
'remembers' these group actions in a certain sense). A good way to think
of a Deligne-Mumford stack is as a space (of points) together with a finite
group attached to each point. (So if the stack is the quotient of a space by
a finite group, the points of the stack are the orbits, and the group attached
to an orbit is the isotropy group of any element of the orbit.) If the stack is
a moduli stack, its points correspond to isomorphism classes of the objects
the stack classifies, and the group attached to such an isomorphism class is
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the automorphism group of any object in the isomorphism class. The space
of isomorphism classes is called the underlying coarse moduli space.

Deligne-Mumford stacks behave in many respects just like schemes. For
example, their cohomological and intersection theoretic properties are iden-
tical to those of schemes, at least if one uses rational coefficients. Care is
needed a just one place, when integrating a cohomology class over a Deligne-
Mumford stack (which is not a scheme). Then fractions may appear (even
if one integrates integral cohomology classes). More generally, one has to
use fractions when doing proper pushforwards of homology or Chow cycles, if
the morphism one pushes forwards along is not representable (i.e., has fibers
which are stacks, not schemes).

For example, if our Deligne-Mumford stack X has one point, with finite
group G attached to it (notation X = BG\ we can view it as the quotient
of a point by the action of G), then the Euler characteristic of X (i.e., the
integral of the top Chern class of the tangent bundle, in this case the integral

To calculate such an integral JXUJ over a Deligne-Mumford stack X, one
has to find a proper scheme X' together with a generically finite morphism
/ : X1 —> X, and then one has fxu> = (1/deg/) Jx, f*u. In the above
example X = BG, we may take X' to the one-point variety and then X' —> X
has degree # G and so JBQ1 = (1/ # G) Jp} 1 = 1/ # G.

When explaining the general theory, it is not necessary to calculate a
nonrepresentable proper pushforward explicitly, and so for this purpose we
may as well pretend that all moduli stacks are spaces (i.e., schemes). We
do this often, so that even if it says moduli space somewhere, it is implicitly
understood that moduli stack is meant.

One reason that we must work with moduli stacks to do things properly,
is that the corresponding coarse moduli spaces do not have universal fami-
lies over them, whereas the construction of Gromov-Witten invariants uses
universal families in an essential way.

The second way in which stacks appear is in the construction of virtual
fundamental classes. Of course, one could construct the virtual fundamental
class without using stacks, but we believe that stacks is the natural language
for formulating the construction. The stacks used in this theory are so-called
cone stacks, which are Artin stacks of a particular type. Artin stacks are
more general than Deligne-Mumford stacks in that the groups attached to
the points of the stack can be arbitrary algebraic groups, not just finite groups.
These groups are too big to sweep under the carpet so easily, so that it is
better not to pretend that Artin stacks are spaces, and we therefore include
a 'heuristic' definition of cone stacks. (Cone stacks are special, since their
groups are always vector groups.) The most important cone stack is the
'intrinsic normal cone'. It is an invariant of any Deligne-Mumford stack, and
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even for schemes it is an interesting object, which is nontrivial as a stack.

2 What are Gromov-Witten invariants?

Let k be a field1 and W a smooth projective variety over k. We shall define the
Gromov-Witten invariants of W, taking values in the cohomology of moduli
spaces of curves.

2.1 Cohomology theories

So before we can begin, we have to choose a cohomology theory,

H*: (smooth proper DM stacks/k) —> (vector spaces over A)

X i—> H*{X)

This needs to be a 'graded generalized cohomology theory with coefficients
in a field A of characteristic zero, with cycle map, such that P1 satisfies epu'.
It should be defined on the category of smooth and proper Deligne-Mumford
stacks over k. The precise definition can be found in [8].

Remark (for pedants) In [8], the cohomology theory is of course defined
on the category of smooth and proper varieties, but the generalization of the
definitions in [8] to Deligne-Mumford stacks is not difficult. The only point
is that, strictly speaking, the category of (smooth, proper) Deligne-Mumford
stacks is a 2-category, and so the cohomology theory is a functor from a 2- to
a 1-category (i.e., a usual category). This means that it factors through the
associated 1-category of the 2-category of Deligne-Mumford stacks, i.e., the
category in which one passes to isomorphism classes of morphisms. In other
words, one pretends that the category of Deligne-Mumford stacks is a usual
category.

Rather than recalling the precise definition of a generalized cohomology
theory with the required properties, we give a few examples.

1. If the ground field k is C and the coefficient field A is Q, then let

H*(X) = # B ( X ) = Betti cohomology of X.

This can be defined in several ways.

1 Because the theory is somewhat limited in positive characteristic (see footnote 4) the
most important case is char k = 0.
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The easiest case is when X has a moduli space X. Then we can simply
set

the usual (singular) cohomology of the underlying topological space with the
analytic topology. All the X that we consider have moduli spaces.2

More generally, one can consider [X(C)], the set of isomorphism classes
of the groupoid X(C), in other words, the set of isomorphism classes of the
objects the stack classifies. It comes with a natural topology, because the
quotient of any groupoid exists in the category of topological spaces. The
space [X(C)] is thus the quotient of the topological groupoid associated to
any presentation of X (with the analytic topology). Then we have

H^X) = H;ing([X(C)],Q).

The canonical definition is the following. To the algebraic C-stack X
we associate a topological stack Xtop (a stack on the category of topological
spaces with the usual Grothendieck topology). This has an associated site (or
topos) of sheaves X^p. (By abuse of notation we denote the usual topology
by the subscript et.) The Betti cohomology of X is then the cohomology of
this topos

HB(X) = H (Ae tr,Q).

This can also be defined in terms of geometric realizations.

2. Let I be a prime not equal to the characteristic of k and consider the
coefficient field A = Qi. Then we may take the £-adic cohomology of X:

H*(X) = H*t(X) = H*(XeUQe) =]}mH*(XtA,Z/en).
n

Here X = X x*. k and Xet denotes the etale site of X.

3. In the case char A; = 0, we may take A = k and consider algebraic de
Rham cohomology

2Note, however, that the existence of the moduli spaces is a nontrivial, additional fact,
that we never need.
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4. We may also take Chow cohomology

where the coefficient field is A = Q. The Chow rings one needs for this
definition were constructed by Vistoli [13].

2.2 Moduli stacks of curves

Gromov-Witten invariants take values in the cohomology of moduli stacks of
curves. To list the axioms of Gromov-Witten invariants efficiently, we need
slightly more general moduli spaces than the well-known M^n. These are
indexed by modular graphs.

Definition 2.1 A graph r is a quadruple (FT, VTJr, dT) where FT is a finite
set, the set of flags, VT is another finite set, the set of vertices, d: FT —• VT is
a map and j T : FT —> FT an involution. We use the notation:

ST = {/ G FT | jf = / } , the set of tails of r.

#r = {{ / i , / 2} C F T | / 2 = j /x , /x ^ / 2 } , the set of edges.

For every vertex v G V, the set FT(v) = d" 1 ^) ^s the se^ °^ flags of v and
# -Fr(^) the valency of i>.

We draw graphs by representing a vertex as a dot, and edge as a curve
connecting vertices, and a tail as a half open curve, connected only to a
vertex at its closed end. (The map d specifies which vertex a flag is connected
to.) Drawing graphs in this manner suggests an obvious notion of geometric
realization of a graph. This is the topological space obtained in the way just
indicated. The geometric realization of a graph r is denoted by |r|.

Definition 2.2 A modular graph is a pair (r,g), where r is a graph and
g: VT —> Z>0 a map. We use the terminology:

g(v) is the genus of the vertex v.

x(r) = x(lrl) — 5 3 #(v) 1S ̂ e Euler characteristic of the graph r.

If the geometric realization |r| of r is nonempty and connected then

9(T) = Yl 9(v) +dim#1(|r|, Q) = 1 - x(r)

is the gemts of r. A graph of genus zero is a tree, and a possibly discon-
nected graph all of whose connected components are trees is called a forest.
A nonempty connected graph without edges is called a star. Note that a star
has exactly one vertex.
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The Deligne-Mumford moduli stacks we are interested in are indexed by
modular graphs. But we do not associate a moduli stack to every modular
graph, only to the stable modular graphs.

Definition 2.3 The modular graph r is stable if each vertex is stable, i.e., if

2g(v) + # FT(v) > 3 for all v £ VT.

We are now ready to define the moduli stacks of curves. First, for a
nonnegative integer g and a finite set 5 such that 2g + # S > 3, we define the
stack Mg^s to be the moduli stack of stable curves of genus g with marked
points indexed by S.

Thus each point of M9is corresponds to a pair (C, x), where C is a nodal
curve of arithmetic genus g (i.e., a connected but possibly reducible curve
with at worst nodes as singularities) and x is an injective map x: S —> C,
which avoids all nodes. The pair (C, x) is moreover required to be stable,
meaning that for every irreducible component C of C we have

2g(C) + #{special points of C"} > 3.

Here g(C) is the geometric genus of C', and a point is special if it is in the
image of x or is a node of C. If both branches of a node belong to C", then
this node counts as two special points.

If we choose an identification S = { 1 , . . . ,n} , then we get an induced
identification

where the Mg,n are the moduli stacks of stable marked curves introduced by
Mumford and Knudsen [9], and for n = 0 the stacks of stable curves defined
by Deligne and Mumford [5].

Definition 2.4 The moduli stack associated to a stable modular graph r is
now simply defined to be

veVT

It may seem surprising that the involution jT does not enter here. The
usefulness of this definition will become clear later.

Let (C, x) be a stable marked curve. We obtain its associated modular
graph by associating

• to each irreducible component C" of C a vertex of genus g{C') (geometric
genus, that is, the genus of its normalization),
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• to each node of C an edge connecting the vertices corresponding to the
two branches of the node,

• to each marked point of C a tail attached to the vertex corresponding
to the component containing the marked point.

If r is the modular graph associated to (C,x), we say that (C,x) is of de-
generation type r. Note that r is connected and g(r) = g(C) (arithmetic
genus).

If r is a stable modular graph which is nonempty and connected, there
exists a morphism

"Mr >~M9(T),ST,

defined by associating to a K--tuple of stable marked curves (Cv, (xi)i^Fv)vevT

the single curve (C, (xi)i€sT) obtained by identifying any two marks Xi that
correspond to an edge of r. This morphism is finite and its image is the stack
of curves of degeneration type r or worse. It is of generic degree # Aut'(r)
onto the image; here Aut'(r) is the group of automorphisms of r fixing the
tails.

If one fixes g and n and considers all connected stable modular graphs
r such that g(r) = g and ST = { 1 , . . . ,n} , then one gets in this way the
stratification of Mg,n by degeneration type.

2.3 Systems of Gromov—Witt en invariants
Fix a smooth projective variety W over k. We use the notation

v m/\+ / r- u /D- TT/ ^\ ^ W > 0 ^or a n ampleH2(Wy = < (p e HomfPicW,Z) : v ' — , / Tjr.
ZK ' y v ' } mvertible sheaves L on W

Of course, if k = C, then H2(W)'{' contains the semigroup of effective cycle
classes in H2(W, Z) (or, in general, the semigroup of effective cycle classes in

and we would not lose anything by restricting to this subsemigroup.

Definition 2.5 A system of Gromov-Witten invariants for W is a collection
of (multi-)linear maps3

* —>JT(MT), (1)

3To take Tate twists into account, one has to twist in a certain way, explained below,
in the context of the grading axiom. So what we say here is only true up to Tate twists.
Of course in the most important case, the Betti case, this is of no concern.
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for every stable modular graph r and every4 H2{W)+ marking (3: VT

)+ of r , satisfying the list of eight axioms below.

Before listing the axioms, we say a few words about the geometric inter-
pretation of Gromov-Witten invariants. For this, assume that we are over C
and use singular cohomology. For purposes of intuition, it is better to dualize.
So using Poincare duality we identify H* with iJ* and get

Note that, as the notation suggests, we are thinking of the I^(P) as multilinear
maps (and we have chosen an identification ST = { 1 , . . . , n}).

To explain what /^(/3)(7i,. . . , jn) should be, choose cycles F i , . . . , Fn C
W in sufficiently general position representing the homology classes 7 1 , . . . , 7n-

Consider all triples (C, £ , / ) , where

• C = (Cv)vevT is a family of connected curves.

• x = (xi)ieFT is a family of 'marks', i.e., for each i G FT the mark X{ is
a point on the curve Cd(i). We also demand that (C, x) be a family of
stable marked curves.

• / = (fv)vevT is a family of maps fv: Cv —> W such that

1. for each edge {ii,z2} of r we have fd{xi){xh) = fd(i2){xi2),

2. for all v G K we have /*[Cy = /3(v),

3. for all i £ ST we have that fd(i)(%i) € IV

Let T be the 'space' of all such triples up to isomorphism. (An isomorphism
from a triple (C, x, / ) to a triple (D, y, #) is a K--tuple (p = ( v̂)VGVr of
isomorphisms of curves ipv: Cv —• Z v̂ such that <Pd(i)(xi) = V% f°r a ^ ^ G FT

and gv°<Pv = fv for all v G K-)
We have a morphism tp: T —> M r , which simply maps a triple (C, x, / ) to

the first two components (C, x). The 'naive' definition of IT(P) is then

Remark For simplicity, assume that r is connected. To a triple (C, x, / )
we may associate, as above, a single marked curve (C, x) by identifying the

4 If char k > 0, then choose a very ample invertible sheaf L on W and consider only
j3 G i?2(^) + s u c n that /3(L) < char k. This ensures that all maps considered are separable,
which is needed for all the arguments (as stated here) to go through. However, one does
not get 'as many' Gromov-Witten invariants as in characteristic zero.
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two marks corresponding to each edge of r, obtaining a stable marked curve
of degeneration type r or worse. The K-tuple of maps / induces a map
/ : C-+W.

Let T be the space of triples (Z), y, g), where (D, y) is a stable marked curve
of degeneration type r and g: D —> W a morphism such that g{yi) G F* for all
i = 1 , . . . , n, and #*[£),,] = /3(v) for all v £ K- (Here Dv is the component of D
corresponding to v.) Then we have a rational map T —> T of degree # Aut'(r).
(It is not defined everywhere, as we do not allow worse degeneration types
than T in f .)5

So a slightly more naive but less abstract definition of IT(P) would be

Note that in the most important case, where r is a star, the factor # Aut'(r)
is equal to 1.

For example, assume that T is finite (usually the case of interest). Then

is the 'ideal' number of solutions to an enumerative geometry problem.6

More precisely, passing to (C,x, / ) as before and then to / (C) , we get a
curve in W passing through F i , . . . , Fn. If F i , . . . , Fn are sufficiently generic,
then one would hope that this process sets up a bijection between points of T
and the curves of degeneration type r (or worse) through F i , . . . , Fn. Thus (if

the hope is justified) —r—7^—r/^(/?)(7i,..., 7n) is the number of such curves
# Aut (T)

intersecting F i , . . . , Fn.
For example, let W = F2 be the projective plane. Then H2(W)+ = Z>o,

and one writes d = /?. Assume d > 2 and let n = 3d — 1. Let r be the star
of genus zero with n tails: ST = Fr = { 1 , . . . , n}. So we have

7r
v(/3) = %n{d): iT(P2)®* —+ iT(M0,n).

If we consider the homology class of a point in P2, call it 7, and consider
Jo[n(d)(7xn), where 7 x n stands for the n-tuple ( 7 , . . . , 7), then the correspond-
ing 'space' T is a discrete set of points (if the n points F i , . . . , Fn representing
7 are in sufficiently general position).

5Allowing more degenerate curves in T would not make sense, because Dv would no
longer be well defined.

6The word 'ideal' is essential here. In many cases, the Gromov-Witten invariant differs
from the actual curve count.
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One sees easily, that T corresponds one-to-one to the rational curves of
degree d through F i , . . . , Fn. Thus

— 4k J r a t i ° n a l curves of degree d through 1
\ n points in general position J '

For example, the number of conies through 5 points is 70,5(2)(7x5) = 1,
and the number of rational cubics through 8 points is 70,8(3)(7x8) = 12.

In view of this 'intuitive definition' the following eight axioms that we
require of Gromov-Witten invariants are all very natural. Note, however,
that there are two problems with this definition. First of all, T must be
compactified in order for (p* in homology to make sense. This can be dealt
with using stable maps (see below). A more serious problem is that in general
it is not possible to put the I\ into sufficiently general position to assure that
T is smooth and of the 'correct' dimension. This necessitates the construction
of a 'virtual fundamental class' in T, which is a homology class in the correct
degree, whose image in Mr is taken to be the Gromov-Witten invariant.

The reasons for using this axiomatic approach are largely historical. Kont-
sevich and Manin [11] introduced these axioms before Gromov-Witten invari-
ants were rigorously defined. Today there are several natural constructions
of invariants satisfying the axioms. We present one of these later.

One should note that the axioms do not determine the invariants uniquely.
For example, one can set all the I equal to zero (except for those forced to
be nonzero by the axiom concerning mapping to a point). Certain re-scalings
are also possible.

The axioms do comprise all properties used to construct quantum coho-
mology out of the Gromov-Witten invariants, and certainly imply all char-
acteristic properties of Gromov-Witten invariants that do not involve change
of the variety W.

2.4 Axioms for Gromov-Witten invariants

I. The grading axiom

This says that

Ir(P):H*{V)*s*[2x(T)dimW] —-> H*(MT)[2(3(T)(UW)}

respects the natural grading on both vector spaces.7 Here [ • ] denotes shifts
of grading: if H* = 0 Hk is a graded vector space then H*[m] is the graded

7If one is concerned about Tate twists, one needs to also twist by (x(T) dim W) on the
left and (/3(T)(UW)) on the right.
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vector space such that (H*[m])k = Hk+m. In other words, Ir{@) raises degrees
by 2(/3(r)(uw) — x(T) dim W). We use the notation

ft*) = E w
vevT

and uw is the canonical line bundle on W.
The idea behind this axiom is that the moduli 'space' T of triples, al-

luded to in the section on geometric intuition, has an expected dimension. It
is computed using deformation theory (assuming that there are no obstruc-
tions). Even if there are obstructions, one still requires that IT(P) changes the
grading by this expected dimension (minus X^de&7i)> which is then called
'virtual dimension'.

The reasoning behind this is that one wants Gromov-Witten invariants
to be invariant under continuous (or better, algebraic) deformations of the
whole situation, like all good enumerative geometry numbers are. So one
supposes that one could deform the situation into sufficiently general position
for the obstructions to vanish and the space T to actually attain the expected
dimension.

Note however, that in general it is not possible to deform the variety W
algebraically to make it sufficiently generic in this sense.

For the computation of the expected dimension see Section 4.7. See also
Remark 3.3

II. Isomorphisms

Let (p: a —> r be an isomorphism of H2(W)+-marked stable modular graphs.
Then we get induced isomorphisms Vs* —> VST and Ma —> MT and the
isomorphism axiom requires the diagram

H*(V)*S* ^ H*(Mr)

i i
H*(V)*S* ^ H*(Ma)

to commute.
This axiom leads to a covariant behavior of the Ig,n{P) with respect to the

action of the symmetric group on n letters. It is motivated by the expectation
that the ideal number of curves through the cycles F i , . . . , r n should not
depend on the labelling of the cycles.

III. Contractions

Let (p: a —> r be a contraction of stable modular graphs. This means that
there exists an edge {/, / } of a which, at the level of geometric realizations,
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is literally contracted to a vertex by (p. It also implies a certain compati-
bility between the genera of the vertices involved. There are two cases to
distinguish.

Case (a) The edge {/, / } is a loop with vertex v. Then if v' is the
corresponding vertex of r to which our edge is contracted, we have g(vf) =
g(v) + 1.

Case (b) The edge {/, / } has two different vertices v\ and v2. In this
case we let v be the vertex of r obtained by merging the vertices v\ and v2

via the contraction (p. The requirement is that g(v) = g(vi) + g(v2).
All other vertices of r have the genus of the corresponding vertex of a.
In either case we get an induced morphism <1>: Ma —> MT, defined as

follows.

<S>: Ma —> MT

(C, . . . )

Case (a)

Here C stands for the component of the V^-tuple of stable marked curves
corresponding to the vertex v. This curve has two marked points, indexed
by / and / . The morphism <1> identifies them with each other, creating a
node in the curve C and losing two marked points in the process. This curve
obtained from C by creating an additional node we call C and then C is
the component of the V^--tuple of stable marked curves corresponding to the
index v'.

Case (b)

$: Ma —> MT

Here C\ and C2 are the components of the V^-tuple of stable marked curves
corresponding to the vertices v\ and i>2, respectively. On C\ there is a marked
point indexed by / , and on C2 there is a marked point indexed by / , and
C\ II C2/xf = xj refers to the curve obtained by identifying these two points
in the disjoint union of these two curves. In the process one loses two marked
points, which is OK, because the graph also lost two flags.

In either case, the image of $ is a 'boundary' divisor in MT. Usually, $ is
a closed immersion. Only if exchanging the two flags / and / can be extended
to an automorphism of a inducing the identity on r (i.e., always in Case (a),
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almost never in Case (b)) is <3> a degree two cover followed by an immersion.
In Case (a) the image of <$ can also intersect itself.

The axiom now demands that for each ^{W)^ marking /? on r, the
diagram

H*(MT)

I* '

commutes. Here the vertical map on the left is the canonical isomorphism
coming from the fact that the contraction ip does not affect the tails of the
graphs involved.

The sum in the lower horizontal map is taken over all maps

that are compatible with /?. This means

• in Case (a), that (3'{w) = (3(w) for all w G Va. In particular that
/?» = P(v'),

• in Case (b), that 0'(w) = 0(w) for all w ^ vu v2, and 0'(vi) + (3'(v2) =
0(v).

Note that in Case (a) there is only one summand and in Case (b) there is
a finite number of summands.

The meaning of this axiom is very simple. For example, in Case (b) it
says that the number of curves in class /? that have two components is the
sum over all pairs (/?i,/?2) such that f3\ + /?2 = 0 of the number of curves
that have two components whose first component is of class fi\ and whose
second component is of class /32. (The invariant /^(/3) might be a 1-cycle in
MT and $* would intersect it with the boundary divisor Ma and so count
the number of curves in the family I^(P) that have two components, where
the generic member has one.) In case $ is generically two to one, $* involves
a multiplication by a factor of two, which reflects the ambiguity in marking
the two points lying over the node.

IV. Glueing tails

Let r be a stable modular graph and {/, / } an edge of r. Let a be the
modular graph obtained from r by 'cutting the edge' {/ , /}• This means
that all the data describing a is the same as the data describing r, except for
the involution j . In the case of r, the set {/, / } is an orbit of j r and in the
case of a it is the union of two orbits of j a .
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In this situation we have a 'morphism of stable modular graphs of type
cutting edges' r —• a and an 'extended isogeny of type glueing tails' a -> r.
For the definitions of these terms see [4]. The direction of the arrow join-
ing a and r depends on the context. Part I of [4] takes the 'morphism of
stable modular graphs' approach to describe the morphisms between mod-
uli spaces. In Part II, where Gromov-Witten invariants are given a graph
theoretic treatment, the 'extended isogeny' viewpoint is needed.

Anyway, to state our axiom, the direction of the arrow joining a and r is
not relevant. What is important to note is that a has two tails more than r,
and therefore we have

= H*(W)®ST ® H*(W x W).

The axiom now requires the diagram

£ S' ^ H*(MT)

= H*(W)®S° ^ 2 H*(Ma)

to commute. Here p: W x WST —> WSr is the projection onto the second
factor, and A: W —> W x W is the diagonal. This diagram is required to
commute for any H2(W)+ marking /? one can put on VT = Va.

Note that the image of I \ x • • • x Fn under A* op* is A x Fi x • • • x Fn,
where A takes up the two first components in WST. SO Ia(P) o A* op* should
count the number of marked curves whose first two marks map to the same
point in W. These are exactly the curves that IT(P) should count.

V. Products

Let r and r' be two stable modular graphs and a the stable modular graph
whose geometric realization is the disjoint union of the those of r and r'. We
write a — r x r ' (and not r I I r ' ) . For H2{W)+ markings (3 on r and /?' on r'
we denote by /? x (3' the induced # 2 (W) + marking on a. The product axiom
requires that under such conditions the diagram

H*(MT)®H*(MT,)

i
H*{Ma)

always commutes. Here the vertical maps are the isomorphisms induced by
the isomorphisms Ws° = WST X WS^ and ~MG = ~MT x MT/.

This axiom expresses the expectation that the number of solutions to the
enumerative geometry problem (r, (3) multiplied by the number of solutions of
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the problem (r', f3') is the number of pairs solving the 'composite enumerative
geometry problem'.

VI. Fundamental class

Let a be a stable modular graph and / G Sa a tail of a. Let r be the modular
graph obtained by simply omitting / . We assume that r is still stable.

Remark Since there is a canonical way of associating a stable modular
graph to any modular graph (called its 'stabilization'), one might wonder if
there is also an axiom that applies in the case that r is not stable. The
answer is that such an axiom would follow from the others and is therefore
not necessary. To see this, assume that the stabilization of r is not empty.
Then the process of removing the tail from a and stabilizing the graph thus
obtained can also be described (albeit not uniquely) as an edge contraction
followed by a tail omission that does not lead to an unstable graph.8

In this situation we get a morphism

defined in the following way: take the curve corresponding to the vertex of the
tail / , which has a marked point on it indexed by / . Omit this point Xf and
stabilize the marked curve thus obtained. To stabilize means to contract (blow
down) the component on which Xf lies, if it becomes unstable by omitting
Xf. (This can only happen in case this component is rational.) It is proved
in [9] that Ma —• Mr is the universal curve corresponding to the vertex of / .
More on stabilization in the next section.

Our axiom inquires that the diagram

* ^ 2 H*(MT)

P* t 1 *•
H*(W)*S* ^ 3 H*(Ma)

commutes for every H2{W)+ marking (3 one can put on Va = VT. Note
that a has exactly one tail more than r and that therefore we can identify
WSa — W x WST and p is the projection onto the second factor.

The geometric meaning of this axiom is that if one of the homology classes
7i» • • • > In, say 71, is [W], then the space T\ obtained for 7 1 , . . . , 7n is a curve
over the corresponding space T for 72 , . . . , 7n- This is because for x\ to be in
W is no condition, so it can move anywhere on C leading to 7\ —> T being
the universal curve.

8It is precisely for this reason that the notion of 'isogeny' of stable graphs is introduced
in Part II of [4]. If one were to use only the morphisms defined in Part I, one would not
be able to decompose a tail omission that necessitates stabilization in this way.
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VII. Divisor

The setup is the same as in Axiom VI for the fundamental class. The divisor
axiom says that for every line bundle L G Pic(W) (and every (3) the diagram

H*(MT)

ci(L) | T **

H*{W)*S* ^ H*(Ma)

commutes. Here the vertical map on the left is

H*(W)9ST —+ H*{W)®H*{W)®ST

7 i—> ci(L)®7.

This axiom expresses the expectation that modifying an enumerative prob-
lem by adding a divisor D (such that L = O{D)) to the list F i , . . . , Fn mul-
tiplies the number of solutions by /3(L), because for a curve C of class /? to
intersect D is no condition, and in fact the additional marking on C can be
any of the (3{L) points of intersection of C with D.

VIII. Mapping to point

This axiom deals with the case that (3 = 0. Let r be a nonempty connected
stable modular graph. Over the moduli space MT there are universal curves,
one for each vertex of r, obtained by pulling back the universal curves from
the factors of MT. If v G VT is a vertex of r then the associated universal
curve Cv has sections (#/), one for each flag / G FT(v). Now define a new
curve C over MT by identifying Xf with xj for each edge {/, / } of r. We call
C the universal curve over MT. It has connected fibers since the geometric
realization of r is connected. Denote the structure morphism by TT : C —> M r .

Consider the direct product of MT and W, with projections labelled as in
the diagram

M r x W -£-> W

li

We get an induced homomorphism

p: H*(W) —f F*(3ifT)

7 •—» «.(p*(7)Uctop(fl17r.OaHrHr)).

Here T̂ y stands for the tangent bundle of W and ctop for the highest Chern
class, which in this case will be of degree g(r) dim W.
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The mapping to point axiom now states that

/T(0): H*(W)*Sr —* H*(MT)

is given by

This axiom expresses the fact that in this case

T = ~Mr x r i n - - - n r n ,

since a constant map to W has to map to I \ fl • • • nF n . Note that for g{r) > 1
the factor ctop(R

17TWtO^Tw) is put in to satisfy the grading axiom. It is a sort
of excess intersection term coming from the fact that there are obstructions
in this case. More on this later (see Section 4.6).

Remark Axioms I-VIII imply the axioms listed in [11], except for the m o
tivic axiom. This follows from the construction we give below. Axioms III,
IV and V (contractions, glueing tails and products) imply the splitting and
genus reduction axioms.

3 Construction of Gromov-Witten invariants

3.1 Stable maps

Gromov-Witten invariants are constructed as integrals over moduli spaces,
namely, moduli spaces of stable maps. The notion of stable map is a natural
generalization, due to Kontsevich, of stable curve (Deligne and Mumford
[5]) and stable marked curve (Knudsen and Mumford [9]). Let us recall the
definition.

Definition 3.1 Fix a smooth projective A;-variety W. A stable map (to W)
over a A;-scheme T, of genus g G Z>o, class /? € H2(W)+ and marked by a
finite indexing set S is:

1. a proper flat curve C —> T such that every geometric fiber Ct is con-
nected, one dimensional, has only ordinary double points (i.e., nodes)
as singularities and arithmetic genus 1 — xiPct) = 9\

2. a family (xi)ies of sections X{\ T —» C such that for every geometric
point t e T, the points (xi(t))ies are distinct, and not equal to a node;
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3. a morphism f:C—>W such that for every geometric point t 6 T,
denoting the restriction of / to the fiber Ct by ft: Ct —> W, we have
/3(L) = deg/*(L) for all L € PicW (or written more suggestively,

such that, for every geometric point t £ T, the normalization C of every
irreducible component of Ct satisfies:

ft(C) is a point = > 2#(C") + #{special points of C'} > 3;

here a special point is one that that lies over a mark X{ or a node of Ct.
A morphism of stable maps (/?:. (C, x , / ) —> (C',x' ,f) over T is a T-iso-

morphism </?: C —> C such that y?(x») = x- for alH G 5 and /'(y?) = /•

Let M9js(W, /?) denote the fc-stack of stable maps of type (#, 5, /9) to W.
Just like an algebraic space, or a scheme, or a variety (all over A:), a stack
is defined by giving its set of T-valued points for every A;-scheme T, except
that the set of T-valued points is not a set, but a category, in fact a category
in which all morphisms are isomorphisms, in other words a groupoid. So the
moduli stack Mg^s{W,f3) is given by

~Mg,s{W, 0)(T) = category of stable maps over T of type (g, 5, /?) to W,

for every A:-scheme T.
The concept of stable maps was invented to make the following theorem

true.

Theorem 3.2 (Kontsevich) The k-stack Mg,s{W,0) is a proper algebraic
Deligne-Mumford stack.9

The Deligne-Mumford property signifies that the 'points' of M9is{W,l3)
have finite automorphism groups. The properness says two things. First, that
every one dimensional family in Mg^(W,P) has a 'limit', and secondly that
this limit is unique. This translates into two facts about stable maps, namely
first of all that every stable map over T — {£}, where T is one dimensional,
extends to a stable map over T. For this to be true one has to allow certain
degenerate maps, namely those with singular curves. The amazing fact is
that by including exactly the degenerate maps which are stable, one picks out
exactly one extension to T from all the possible extensions of the stable map
over T — {£}. This makes the 'limit' unique, and hence the stack Mg^(W, (3)
proper.

For a proof of this theorem we refer to [7].

9At least if char k = 0 or if j3(L) < char(fc) for some ample invertible sheaf L on W.
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Note For each i s 5 there is an evaluation morphism

eVi: MgtS{W,0) —• W

(C,x,f) ,— f(Xi).

These moduli stacks are now taken as building blocks to define moduli
stacks of stable maps associated to graphs.

So let (T,/?) be a stable modular graph with an H2(W)+ marking. The
associated moduli stack we construct is denoted by M(W,T), abusing nota-
tion by leaving out /?. We list three conditions on these moduli stacks that
determine them completely.

1. Stars If r is a star, i.e., a graph with only one vertex v, and set of
flags 5, which are all tails, then

2. Products If r and a are stable modular graphs with H2(W)+ mark-
ings, and a x r denotes the obvious stable modular graph with H2(W)+

marking whose geometric realization is the disjoint union of the geometric
realizations of a and r, then

M(W,r x a) := M(W, r) x M(W, a).

3. Edges If r has two tails i\ and 22, and a is obtained from r by
glueing these two tails to an edge (so that conversely, r is obtained from a
by cutting an edge), then M(W, a) is defined to be the fibered product

M(W, a) —> W
1 U

) eViLlT2 WxW

It is not difficult to see that M(W, r) is well defined by these conditions for
every stable modular graph r with #2(W)+ marking. Moreover, all M(W,T)
are proper Deligne-Mumford stacks.

Note There exists an evaluation morphism ev;: M(W, r) —> W for each tail
i G ST, and the product of these is the evaluation morphism ev: M(W,T) —>

For future reference, we now construct the universal curve on M(W,T).

Fix a vertex i; G K- By construction, there exists a projection morphism
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and we can pull back the universal stable map. This gives us a curve Cv over
M(W, r) together with a morphism fv: Cv —> W, and sections x{: M(W, r) —>
C* for all i G FT(v).

We glue the Cv according to the edges of r (i.e., identify X{ with £jT(*)) to
get a curve C —• M(W, r) called the universal curve, even though its fibers
are only connected if \r\ is. There are induced sections (xi)iesT of C and an
induced morphism / : C —>W.

Stabilization

Let r = (r,/3) be a stable modular graph with #2(VK)+ structure. There
exists a morphism

~M{W, T) —> M r

given by 'stabilization'. To define it, it suffices to consider the case that r is
a star. So we are claiming that there exists a morphism

In other words, we take a stable map (C, x, / ) and forget about the map / ,
retaining only the marked curve (C, x). The problem is that (C, x) might not
be stable, so to get a point in M9js we need to associate to (C, x) a stable
marked curve, in a natural way.

This is done as follows. Let IT : C —> T be a curve with a family of sections
x: T —> C, x = (xi)tes. Then its stabilization is defined to be the curve

where

L = UJC/T

Here UC/T is the relative dualizing sheaf twisted by the Cartier divisor given
by the images of the sections Xi in C. Note that there is a natural map
C —> C and so one gets induced sections in O\

One proves that C together with these induced sections is a stable marked
curve, and one calls it (C, x)stab. For details of this construction, see [9].

The morphism C —> C just contracts (blows down) all the unstable ra-
tional components any fiber of C —• T might have.
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3.2 The construction: an overview

As usual, let r = (r, /?) be a stable modular graph with vertices marked by
elements of H2(W)+.

Consider the diagram

~M{W,T) -ZU

i stab (2)

In what follows, we construct a rational equivalence class

[M(W,T)}VM € Adim{WtT)(M(W,T))

called the virtual fundamental class of M(W,r). Here A stands for the Chow
group (with rational coefficients) of a separated Deligne-Mumford stack, con-
structed by Vistoli [13]. This class has degree

dim(W;r) = X(r)(dimW - 3) - p(r)(uw) + #ST-#ET,

which is the 'expected dimension' of the moduli stack M(W,T). If M(W)r)
happens to be of dimension dim(W, r) , then [M(W, r)]v i r t = [M(W, r)] is just
the usual fundamental class.

Then the Gromov-Witten invariant

IT(J3): H*(W)9Sr —> H*(MT)

7 ^ IT(P){i)

is defined by

[MT] = stab,(ev*(7) n [M(W, r)]vir t). (3)

Note that this condition defines IT{(3){^) uniquely, because of Poincare duality
on the smooth stack MT.

Alternatively, consider the morphism

TT:

(induced by Diagram 2) which is proper and so we may consider the push-
forward

which is a correspondence MT -w VF5r, so we get IT(f3) through pullback via
this correspondence:
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Hence this construction implies the 'motivic axiom' of [11].
Now all the axioms required of IT(f3) reduce to axioms for

Before we list these, some more remarks.
As in the above discussion of the geometric interpretation of Gromov-

Witten invariants, consider the situation where S = { l , . . . , n } , and
F i , . . . , Fn are dual cycles to the cohomology classes 7 1 , . . . ,7 n € H*(W).
For ease of exposition, let us assume that the F* are actually algebraic sub-
varieties of W. We can now give a more precise definition of the moduli space
T mentioned above. It is defined to be the fibered product

T

1
M(W,T)

— • Fi

-^ W

X

X

i
X

X

rB

w
This will in fact assure that T is proper, and thus we have solved the problem
of compactifying the earlier T.

Now, if the F; are in general position, then T should be smooth of the
expected dimension, which is

n

dim(W, r) — ^ codim^ F*.

In fact, one could use this principle as a definition of general position, defining
F i , . . . , Fn to be in general position if T is smooth10 of this dimension. As
mentioned above, the problem is that one cannot always find F* in general
position.

But let us assume that F i , . . . , Fn are in general position. Then

and

because the virtual fundamental class agrees with the usual one in this case.
So defining Gromov-Witten invariants by (3) leads to the situation anti-

cipated by our geometric interpretation detailed above. In particular, for the
case that M(W, r ) is of dimension dim(W, r) the above heuristic arguments
explaining the motivations of the various axioms give proofs of the axioms.

10In fact, purely of the expected dimension would be enough, if one is willing to count
components of T with multiplicities given by the scheme (or stack) structure. The difference
is the same as that between transversal and proper intersection in intersection theory.
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Remark 3.3 If one prefers cohomology, in the case that M(W, r) of smooth
of the expected dimension dim(W, r ) , one can also think of /T(/3)(7i, • • •, 7n)
as obtained by pulling back 7 1 , . . . ,7 n by the evaluation maps, taking the
cup product of these pullbacks and then integrating over the fibers of the
morphism stab: M(W,r) —> MT. Thus IT(P) should lower the grading by
twice the dimension of the fibers of this map, which is

dim(W,r) - dimMT = X(r)dimW - (3(T)(LUW).

This gives another interpretation of the grading axiom.

3.3 Axioms for J(W, r)

We now list the properties that the

must satisfy in order that the induced Gromov-Witten invariants IT(P) should
satisfy their respective properties. This amounts to five axioms for J(W)r),
and we refer to them by the names given in [4].

I. Mapping to point

Assume that \r\ is nonempty connected and that (5{r) = 0, so that in fact
P(v) = 0 for all v £ VT.

In this situation the universal map f:C—>W factors through the struc-
ture map 7T: C —> M(W, r) of the universal curve, since a map of class zero
maps to a single point in W. We call the resulting map ev: M(W, r) —> W,
since it is also equal to all the evaluation maps. Now the morphism

T7/TT7- \ stabxev -T-T TXrM(W, T) > MT X W

is an isomorphism, since giving a stable map to a point in W is the same as
giving a stable curve and a point in W.

The axiom is that

, r ) = cp(T)dimw(Rlv*Od H Tw) H [M(W, r)].

For future reference, let us give an alternative description of R^OQ
Consider the vector bundle
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Note that we have a Cartesian diagram

C - ^ ~M(W,T)

| 1 stab

C - ^ MT

since in the case of mapping to a point, there is no need to stabilize and thus
the pullback of the universal curve over the moduli space of curves is the
universal curve over the moduli space of stable maps to a point. Thus we can
write the above tensor product as an exterior tensor product:

Note that rankR1-KJ*TW = g(C) dimW = g(r) dimW.

II. Products

Let a and r be stable modular graphs with iJ2(W)+ marking. Recall that we
have

, r x a) = M(W, r) x ~M(W, a).

Our axiom is that

J{W,T xa) = J(W,T) x J(W,a).

III. Glueing tails

Let r be obtained from a by cutting an edge. Recall that then we have a
Cartesian diagram

~M(W,cr) —> W

_ I l A
M(W,T) —> WxW

Since W is smooth, A is a regular immersion, and so the Gysin pullback
A!: A.(M(W,T)) -> A*(M(W,a)) exists. (See [6], Section 6.2 for Gysin
pullbacks in the context of schemes, [13] in the context of stacks.) The axiom
is that

,r) = J(W,a).
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IV. Forgetting tails

Let a and r be as in the fundamental class axiom for Gromov-Witten invari-
ants. Endow both a and r with the same H2(W)+ marking /?. Then we get
an induced morphism of moduli of stable maps

* : M(W,a)—»M(W;T) .

To construct it, it suffices to consider the case of stars. So let a be a star with
set of tails Fa = S — {0,...} and let r have set of tails Fr = S' = {...}.
Then <3> is defined by

$:M9ts(W,l3) —> Mg

The construction of the stabilization is as before. One chooses a very ample
invertible sheaf M onW. Then stabilization replaces the curve n: C —> T by

where L = uJc/T(J2^i) ® /*M03. As before, this amounts to contracting or
blowing down any rational components that become unstable on leaving out
the section XQ.

Now a slightly nontrivial fact is that

is isomorphic to the universal curve over M9is'(W,{3) (see [4], Corollary 4.6).
In the case of general graphs a and r this translates into the fact that the

morphism x$ in the diagram

M(W,a) ^ Cv

* \ _ i
M(W,T)

is an isomorphism. Here Cv is the universal curve over M(W, r) corresponding
to the vertex v = d(0).

In particular, the morphism $ is flat of constant fiber dimension 1. There-
fore the flat pullback homomorphism

) —> A*(M(W,a))

exists. Our axiom is that

) = J(W,a).
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V. Isogenies

This axiom is really four axioms in one. The name of the axiom comes from
the fact that it deals with those operations on a graph that do not affect its
genus.

So let a be a stable modular graph and let r be obtained from a by
contracting an edge or omitting a tail. Assume that r is also stable. Then
choose an H2(W)+ structure on r. In each case, we construct a commutative
diagram

) —> ~M(W,T)

i i stab (4)

where the disjoint sum is taken over certain H2(W)~*~ structures on a.

Case I This is the case where we contract a loop in a to obtain r. Here
there is only one possible H2(W)+ structure on a compatible with that on r.
So \\ M(W1 a) = M(W, a) and the two horizontal maps in (4) are obtained by
glueing two marked points (or sections), as described above. The two vertical
maps are given by forgetting the map part of a triple and then stabilizing.

Case II Here we contract a nonlooping edge of <r, i.e., an edge with two
vertices. Let v be the edge of r onto which this edge is being contracted and
vij V2 the two vertices of this edge in a. For an ordered pair /?i, /?2 £ H2(W)+

such that /?i + /?2 = fi(v), define a marking on a by setting (3(v\) = /?i,
P(v2) = /?2 and for the other vertices of a take the marking induced from
r. Then take the disjoint union over all such pairs (/?i,/?2) of the associated
stack of stable maps M(W, a). This is ]J M(W, a). The maps in (4) are now
defined the same way as in Case I.

Case III This is the case where r is obtained from a by forgetting
a tail. The H2(W)+ structure on a is induced in a unique way from r,
]J M(W, a) = M(W, a) and all the maps in (4) have been explained already.

Case IV In this case r is obtained from a by 'relabelling'. In other words
there is given an isomorphism between a and r. The H2(W)+ structure on a is
induced via this isomorphism from r and ]J[ M(W, a) = M(W> a). Moreover,
the horizontal maps in (4) are isomorphisms.

Now in each case the commutative diagram (4) induces a morphism

h: UM(W, a) - ^ I f f x l T M(W, r)
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and our axiom states that

Note that <J> is a local complete intersection morphism, since both Ma and
Mr are smooth. Therefore the Gysin pullback

<S>!: A,(M(W, r)) —•> A.(Ma x^ M(W, r))

exists. Since all the stacks involved are complete, the morphism h is proper
and so the proper pushforward exists.

Proposition 3.4 The five axioms for J(VF, r) imply the eight axioms for

W).

Proof The -grading axiom follows from the fact that the J(W, r) have the
correct degree. The product, glueing tails and mapping to point axiom for /
follow from the axioms for J with the same name. The forgetting tails axiom
for J implies the divisor axiom for /. Finally, the isomorphisms, contractions
and fundamental class axioms for I all follow from the isogenies axiom (with
the same proof). •

Remark The part of the isogenies axiom dealing with omitting tails
(Case III) follows from the forgetting tails axiom (as can be seen, for ex-
ample, by examining the proof of the isogenies axiom in [2]). So technically,
the axioms for the virtual fundamental classes J(W, r) contain some redun-
dancy.

The reason why the isogenies axiom is stated in this slightly redundant
form is that in this formulation it characterizes an aspect of the operad nature
of J(W, •). (By this, we mean its description as a natural transformation
between functors from a category of graphs to a category of vector spaces.)
The forgetting tails axiom does not feature in the operad picture, but it is
still needed for the divisor axiom (which does not fit naturally into the operad
framework).

3.4 The unobstructed case

In the unobstructed case there is no need for a virtual fundamental class. The
usual fundamental class of the moduli stack will do the job.

Definition 3.5 We say that a stable map / : (C, x) —> W is trivially un-
obstructed, if H\C, f*Tw) = 0.
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Definition 3.6 A smooth and projective variety W is convex if for every
morphism / : P1 -> W we have Hx(¥\ f*Tw) = 0.

Examples of convex varieties are projective spaces Pn, generalized flag
varieties G/P (were G is a reductive algebraic group and P a parabolic sub-
group), and in fact any variety for which the tangent bundle is generated by
global sections.

The following proposition is not difficult to prove.

Proposition 3.7 IfW is convex, then all stable maps of genus 0 to W are
trivially unobstructed.

Because of this, the 'tree level' system of Gromov-Witten invariants for
convex varieties may be constructed without recourse to virtual fundamental
classes. By the tree level system we mean all the invariants 7T(/3), where the
graph r is a forest.

Theorem 3.8 Let W be convex. Then for every forest r the stack M(W,T)

is smooth of dimension

dim(W, r ) = X(T)(dim W-3)- /3(T)(LJW) + # ST - # ET.

Moreover, the system of fundamental classes (where r runs over all stable
forests with i?2(W0+ marking)

J(W,T) = [M(W,T)]

satisfies the above five axioms.11

Proof Details of the proof can be found in [4]. Essentially, what is going
on is that the definition of trivially unobstructed is of course precisely the
condition needed to assure that the obstructions vanish,12 which implies that
the moduli stack is smooth. (More about obstruction theory in a later sec-
tion.) The first four axioms for 3 follow from basic properties of Chern classes
and Gysin pullbacks. For the last axiom one has to note also that h is an
isomorphism generically. •

It is explained in [11] and [7] how to construct the quantum cohomology
algebra of W from the tree level system of Gromov-Witten invariants.

If one wants to count rational curves through a number of points in general
position on a convex variety, then the cycles F i , . . . , Fn are all just points, and

11 Of course only those instances of the axioms for which all graphs involved are forests.
12The obstructions may also vanish if Hl{C,f*Tw) + 0, but Hl(C,f*Tw) = 0 is the

only 'general' condition that always assures vanishing of the obstructions.
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it follows from generic smoothness, that (at least in characteristic zero) the
points can be put into general position. Therefore these special Gromov-
Witten invariants actually solve numerical geometry problems (i.e., they are
enumerative).

For the case of generalized flag varieties G/P all cohomology is algebraic
and so all Gromov-Witten invariants can be defined in terms of algebraic
cycles F i , . . . ,F n . Using results of Kleiman one can then prove that it is
possible to move F i , . . . , Fn into general position. Therefore these tree level
Gromov-Witten invariants are enumerative. For more details see [7].

Let us now give a few examples of stable maps that are not trivially
unobstructed.

1. Consider stable maps to W = Pr . If / : (C,x) —» Pr is such a map,
then we may pull back the exact sequence

0 —-> O —> O( l ) r + 1 —> Tpr —> 0

to C to get the surjection

f*O(l)r+l —• /Tpr —> 0

and the surjection

H\CJ*O(l))r+l —• ff^C/Tpr) —+ 0.

So if C is irreducible and deg / = deg /*O(1) > 2#(C) - 2, then / is trivially
unobstructed.

Thus the 'good' elements of M^n(Pr , d) (i.e., those corresponding to irre-
ducible C) are trivially unobstructed for sufficiently high degree d > 2g — 2.
If we knew that MPjn(Pr, d) is irreducible, then its generic element would be
trivially unobstructed, and the virtual fundamental class would be equal to
the usual one. But whether MP)Tl(P

r,d) is irreducible is far from clear. Any-
way, the Gromov-Witten axioms involve the boundary of MPjn(Pr,d) in an
essential way, and so this unobstructedness result is not of much help.

2. For g > 0 already the constant maps are not trivially unobstructed.
As we already saw in the two mapping to point axioms, the moduli stack
Mg,n(W,0) has higher dimension than expected. On the other hand,
Mgin(W, 0) = Mg<a x W is smooth, so there are no obstructions. Constant
maps are unobstructed, but not trivially so.

The fact that Mp>n(W, 0) has higher dimension than expected, leads to
boundary components of M^n(W,/3) with /? f̂  0 having higher dimension
than expected. For example, consider W — Pr and the graph r with two
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vertices vo and vi, one edge connecting VQ and v\, and g(vo) = 0, g(v{) = g.
Let d(v0) = d^0 and d(yx) = 0. Then

and so

dim M(Pr, r ) = r + d(r + 1) + 30 - 4

whereas the expected dimension is r + d(r -f 1) H- (3 — r)g — 4. The stack
M(P r , r ) is a boundary component in Mfl)o(Pr

5^), whose 'good' component
attains the expected dimension r + d ( r + l ) + (3—r)g—3 in the range d > 2p—2.
So if d > 2g — 2 and r# > 1 this boundary component has larger dimension
than the 'good' component.

3. Let W be a surface and E C W a rational curve with negative self-
intersection E2 = —n. Let / : P1 —> E C VF be a morphism of degree d ̂  0.
Pulling back the sequence

0 —* TE —> TV —> A T W —* 0

via / , we get the sequence

0 — f*TE — /*TW —> /*iVE / w —* 0. (5)

Now deg(JVJE/w) = E2 = —n and so f*NE/W = O(—dn). Moreover, Tpi =
0(2) and so / * T E = C3(2d). Therefore, we get from the long exact cohomology
sequence associated to (5) that

1 J*TW) =

= dn-1.

So if d > 1 or n > 1, then / is not trivially unobstructed. Since the 'boundary'
of the moduli space usually contains maps of degree larger than 1, we must
deal with maps that are not trivially unobstructed as soon as the surface W
has —1 curves.

4 Virtual fundamental classes

4.1 Construction of J(W,T), an overview

We will give an overview of how to construct the virtual fundamental classes
J(W, r). Many points are discussed in greater detail in the following sections.
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This is where Artin stacks appear for the first time, and so we have to
stop pretending that stacks are just spaces. Otherwise many facts would
seem counterintuitive. But the only Artin stacks involved are of a particularly
simple type, namely quotient stacks associated to the action of a vector bundle
on a scheme of cones.

As usual, let r be a stable modular graph with an H2(W)~*~ marking on
the vertices. Consider the universal stable map of type r

C -A W

M(W,T)

From this diagram we get the complex R7r*f*Tw, which is an object of
J D ( M ( W , r ) ) , the derived category of (9-modules on M(W,r). In fact we
may realize Rir*f*Tw as a two-term complex [Eo —» Ei] of vector bundles on
~M(W,T). Then we have ker(£0 -» Ex) = nJ*Tw and coker(£0 -> Ex) =
R'TTJ+TW.

In this context, the basic facts of obstruction theory are that for a mor-
phism / : C —> W, the vector space H°(C, f*Tw) classifies the infinitesimal
deformations of / and Hl(f*Tw) contains the obstructions to deformations
of / . Thus the complex R-K*f*Tw is intimately related to the obstruction
theory of M(W,r).

To Rir*f*Tw we get an associated vector bundle stack (£, which is simply
given by the stack quotient <£ = [EI/EQ] (but is an invariant of the isomor-
phism class of Rnmf*Tw in the derived category).

The next ingredient is the intrinsic normal cone. If X is any scheme (or
algebraic space, or Deligne-Mumford stack), it has an associated intrinsic
normal cone, which, as the name indicates, is an intrinsic invariant of X, but
is constructed from the normal cones coming from various local embeddings
of X. The intrinsic normal cone is denoted <£x and it is a cone stack, i.e., a
stack that is etale locally over X of the form [C/E], where E —> C is a vector
bundle over X operating on a cone over X. (As above, [C/E] denotes the
associated stack quotient.)

The intrinsic normal cone <£x is constructed as follows. We choose a local
embedding i: X -̂> M, where M is smooth. Then we get an action of the
vector bundle I*TM on the normal cone CX/M and the essential observation is
that the associated stack quotient [CX/M/^TM] is independent of the choice
of the local embedding i: X —• M. Thus the various [CX/M/^TM] coming
from local embeddings of X glue together to give the cone stack €x over X.
A basic fact about €x is that it is always purely of dimension zero.

For our application we will use the relative intrinsic normal cone. This is
an intrinsic invariant of a morphism X —> Y and is denoted £x/y- It has the
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property that for every local embedding

X -U M

\ I
Y

of X into a scheme which is smooth over Y, it is canonically isomorphic to

£X/Y =

In our case we consider the morphism M(W1r) —* 9Jtr, where %JtT has
the same definition as M r , except that the stability requirement is waived.
So Mr is an open substack of 9JtT, and 97lT is not of finite type, or Deligne-
Mumford, or even separated, but still smooth. The map M(W,T) —> 9DTT is
given by forgetting / in a triple (C, x, / ) , but not stabilizing. We define

Finally, we remark that there is a natural closed immersion of the cone
stack <£ into the vector bundle stack <£ over M(W,T). This is because
R7r*f*Tw is what is called a (relative) obstruction theory for M(W,r) over

We now consider the pullback diagram

~M(W,T) —> a

_ I i
M(W,T) - ^ <E

where 0 is the zero section of the vector bundle stack (£. We obtain the virtual
fundamental class as the intersection of the cone stack <£ with the zero section
of <£.

J(W,T) = [M(W,r)]virt = 0![£].

We should point out, though, that lacking an intersection theory for Art in
stacks, we cannot apply this construction directly. Therefore we choose
as above a two-term complex of vector bundles [E$ —> E\] representing
Rn*f*Tw' Then £ C <E induces a cone C C E\ and we define

4.2 Cones and cone stacks

We explain the basics of the theory of cones and cone stacks. For proofs see
[3]. Let X be a Deligne-Mumford stack (or algebraic space, or scheme) over
k, where k is our ground field. Later, X will be our moduli stack.
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Cones

Let us recall the definition of a cone over X.
Consider a graded quasicoherent sheaf of Ox-algebras

such that 5° = Ox, S1 is coherent and S is locally generated by S1. Then
the affine X-scheme13 C = Spec 5 is a cone over X.

The augmentation S —> 5° defines a section 0: X —• C, the vertex of
the cone C —> X. The morphism of O^-algebras 5 —» 5[x] mapping a
homogeneous element 5 G S{ of degree i to sz* defines a morphism A1 x C
—• C, which we call the A1-action on C. It is an action in the sense that
(A/i) • c = A(/i • c), 1 • c = c and 0• c = 0. Another, longer, but more descriptive
name for this map could be the 'multiplicative contraction onto the vertex'.

Example (Abelian cones) Let T be a coherent C^-module. Then we get
an associated cone by

Note that for a A;-scheme T we have C{F)(T) = Hom(^T, OT), so that C(.F)
is a group scheme over X. A cone obtained in this way is called an Abelian
cone.

If C is any cone, then Sym 5 1 —• 0 Sl defines a closed immersion C c-^
C(51). We denote C(S'1) by A(C) and call it the Abelian hull of C. It contains
C as a closed subcone and is the smallest Abelian cone with this property.

Example (Vector bundles) Let E —> X be a vector bundle and £ the
corresponding Ox-module of sections. Then E = C(£v) is an Abelian cone.
Note that a cone C —> X is smooth if and only if it is a vector bundle.

Example (Normal cones) Let i : X - > 7 b e a closed immersion (or more
generally a local immersion), with ideal sheaf / . Then

Cx/Y = Specx(0/7/"+1)
n>0

is the normal cone of X in Y. Its Abelian hull,

NX,Y = C(I/I2)

is the normal sheaf oi X in Y. Note that i is a regular immersion if and only
if CX/Y is Abelian (i.e., Cx/y = NX/Y) which in turn is equivalent to CX/Y
being a vector bundle.

13It should be noted that whenever we talk of X-schemes or schemes over a stack X, we
actually mean stacks over X that are relative schemes over X.
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Vector bundle cones

Now consider the following situation. Let E be a vector bundle and C a cone
over X, and let d: E —> C be a morphism of cones (i.e., an X-morphism that
respects the vertices and the Abactions). Passing to the Abelian hulls we get
a morphism E —• A(C) of cones over X, which is necessarily a homomorphism
of group schemes over X, so that E acts on A(C). If C is invariant under the
action of E on A(C), so that we get an induced action of E on C, then we
say that C is an E-cone.

Example Let i: X —> M be a closed immersion, where M is smooth (over
fc). Then CX/M is automatically an z*TM-cone.

We now come to a construction that may seem intimidating, if one is not
familiar with the language of stacks. We will try to explain why it shouldn't
be.

Whenever we have an E-cone C, we associate to it the stack quotient
[C/E]. At this point it is not very important to know what [C/E] is, only to
understand the main property, in fact the defining property of [C/E], namely
that the diagram of stacks over X

(6)

is Cartesian and co-Cartesian.14 Here a and p are the action and projection,
respectively.

Recall that for an action of a group (like E) on a space (like C), the
quotient C/E is defined to be the object (if it exists) which makes the diagram
(6) co-Cartesian, i.e., the pushout. (This applies to many categories, not just
(schemes/A').) If it turns out that (6) is also Cartesian, then C/E is the
best possible kind of quotient, since to say that (6) is Cartesian means that
the quotient map C —> C/E is a principal ^-bundle (or torsor, in different
terminology).

The construction of stacks like [C/E] should be viewed as a purely formal
process which supplies such ideal quotients if they do not exist. On a certain
level, this is analogous to the construction of the rational numbers from the
integers. If a certain division 'doesn't go', one formally adjoins a quotient.

Applying this viewpoint to our situation, where we are trying to divide
cones by vector bundles, we may say that the division C/E 'goes' (or that

ExC ^ ^

pi
C —f

c
i

[C/E]

14Note that everything is happening over X\ E is a relative group over X (so its fibers
over X are groups), C is a relative cone over X (so its fibers over X are 'usual' cones), the
action of E on C is relative to X and so in particular, the product E x C is a product over
X.
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E divides C) if there exists a cone such that when inserted for [C/E] in (6)
it makes (6) Cartesian and co-Cartesian. If E does not divide C, then we
formally adjoin the quotient. Of course, one has to introduce an equivalence
relation on these formal quotients. So if C is an E-cone and C an £"-cone,
and there exists a Cartesian diagram

Ef —> C"

1 i (7)
E —> C

where C —> C is a smooth epimorphism, then we call the quotients [C/E]
and [C'/Ef] isomorphic. This may be motivated by noting that if we have
a diagram (7) then there exists a vector bundle F such that C = C'/F and
E = E'IF and thus we should have

[C/E]=m
By this process one enlarges the category of cones over X, and obtains a

category where quotients of cones by vector bundles always exist. The one
convenience one has to give up in the process is that of having a category of
objects. The stacks that we obtain in this way form a 2-category, where there
are objects, morphisms, and isomorphisms of morphisms. But for the most
part we ignore that effect, to keep things simple.

Of course one has to do some work to prove that one can still do geometry
with these new objects [C/E]. If one does this, then the quotient map C —>
[C/E] turns out to be an honest principal i£-bundle. So over each point x
of X the fiber [C/E]x is the quotient [Cx/Ex]. This is a usual cone divided
by a usual vector bundle, but the quotient map Cx —> [Cx/Ex] is a principal
Ex-bundle, which means that the fibers of Cx —> [Cx/Ex] are all copies of Ex

(but not canonically).
It also makes sense to speak of the dimension of [C/E]. Since the fibers

of the morphism C —> [C/E] are vector spaces of dimension rank E we have
dim[C/E] = dim C - rank E.

Two extreme cases might be worth pointing out: if E = X, then [C/E] =
C. If C = X, then [C/E] = [X/E] is the stack over X whose fiber over x eX
is [{#•}/£,;], a point divided by a vector space. One also uses the notation
BEX = \pt/Ex] and BE = [X/E]. So in the naive picture of a stack as a
collection of points with groups attached, BE has points {x \ x G X} and
groups (Ex)xex- Note that dim .BE = dimX — rank£.1 5

15The appearance of negative dimensions for Artin stacks is completely analogous to the
appearance of fractions when counting points of finite Deligne-Mumford stacks.
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Cone stacks

We have to take one more step to get the category of cone stacks. We need to
localize, meaning that we want to call objects cone stacks if they locally look
like the [C/E] we just constructed. For the applications we have in mind,
this step is not really necessary, since in the end all cone stacks we use will
turn out to be of the form [C/E]. But for the general theory of the intrinsic
normal cone it would be an awkward restriction to require cone stacks to be
global quotients. So we make the following definition.

Definition 4.1 Let <£ —• X be an algebraic stack with vertex 0: X —> € and
Abaction 7: A1 x <£ —> <£. Then £ is a cone stack if, etale locally on X,
there exists a vector bundle E over X and an i£-cone C over X such that
€ = [C/E] as stacks over X with Abaction and vertex.

Every such C is called a local presentation of <£. If one can find local
presentations C which are vector bundles (so that locally <£ = [EI/EQ]} for a
homomorphism of vector bundles Eo —• E\, then (£ is called a vector bundle
stack.

4.3 The intrinsic normal cone

As before, let X be a Deligne-Mumford stack over A;.
A local embedding of X is a diagram

U - ^ M

X

where i is etale, / a closed immersion and M is smooth.
A morphism of local embeddings is a commutative diagram

U' -A M'
1 I
U -U M

where C/' —>• C/ is an etale X-morphism and M' —> M is smooth.
Given such a morphism of local embeddings we get a commutative diagram

1 I I
f'*TM'/M —• Cu'/M' —• CU/M\U'



K. Behrend 57

The rows axe exact sequences of cones. The square on the right is Carte-
sian and Cu'/M' —> CU/M\U' is a smooth epimorphism. All these are basic
properties of normal cones and tangent bundles.

As explained above, in this situation the quotients [CU/MIPTMWU1 and
[CU'/M'/J^TM1] are canonically isomorphic. Thus all these locally defined
cone stacks (one for each local embedding) glue together to give rise to a
globally defined cone stack on X (note that X can be covered by etale U —> X
that are embeddable into smooth varieties). This cone stack is called the
intrinsic normal cone of X and is denoted by <£x-

Proposition 4.2 The stack €x is a cone stack of pure dimension16 zero. For
any local embedding we have

£x\U = [Cu/M/f*TM}.

Proof It is a general property of normal cones that they always have the
dimension of the ambient variety. So we have dim CU/M — dim M and there-
fore

dim[C[7/M//*TM] = dim CU/M ~ rank f*TM = dim M - dim M = 0. •

Remark One can do the same construction with normal sheaves NU/M
stead of normal cones CU/M- Then one gets the intrinsic normal sheaf
of X. Moreover, Cx C 9tx is a closed substack and Vlx is the Abelian hull
of €x (this notion also makes sense for cone stacks).

Let Lx be the cotangent complex of X and r>_iL^ its truncation at —1.
Again, this is nothing deep, over a local embedding it is simply given by the
two term complex

{T>-XLX)\U = [i i P - rnM],

where / is the ideal sheaf, and the map is the map appearing in the second
fundamental exact sequence of Kahler differentials.

One can prove that the stack 9Tx only depends on the quasi-isomorphism
class of T>_ILX, in other words it is an invariant of the object r>_iLx €
obDl^k°](Ox)' In fact, one can define for every Mm G obD[^0](Ox) an
associated Abelian cone stack £(M#). To do this, write (locally over X)
M* = [M-1 - • M°] with M° free. Then pass to C{M°) -> C(M~l), the
associated Abelian cones, and let <£(M#) be the stack quotient (£(M#) =
[C(M~1)/C(M0)]. This construction globalizes and is functorial. Alternative
notations are €(Af) = hl/h\M9Sf)y used in [3] or C(Af) - ch(M*v), in [1],
Expose XVII.

16 Absolute dimension over fc, not dimension over X
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The following are a few basic results on the intrinsic normal cone. None
of them are deep or difficult to prove, they just reformulate known results
about normal cones and tangent bundles.

Proposition 4.3 The following are equivalent.

1. X is a local complete intersection,

2. <Lx is a vector bundle stack,

3. cx = nx.

IfX is smooth then £x = 9lx = BTX.

Proposition 4.4 £XxY — £x x £y (absolute product, over k).

Proposition 4.5 Let f:X—>Y be a local complete intersection morphism.
Then there is a short exact sequence of cone stacks

Here VIX/Y — £(LX/Y)I which ls a vector bundle stack. The notion of
short exact sequence of cone stacks is a straightforward generalization of the
notion of short exact sequence of cones. What it means is that the cone stack
on the right may be viewed as the quotient of the cone stack in the middle
by the action of the vector bundle stack on the left.

For example, if / is smooth we have an exact sequence

BTX/Y ^ £x —> /*€y,

and if / is a regular immersion we have

Nx/Y —> £x —> f*£y-

4.4 The intrinsic normal cone and obstructions

We will now look at the 'fiber' of the intrinsic normal cone over a point of
X. So let p: Spec A: - > I b e a geometric point of X (which just means that
k is an algebraically closed field, not necessarily equal to the ground field, by
abuse of notation). Pulling back the intrinsic normal cone <£x

 y i a P> we get
a cone stack over Spec k.

If we look at cone stacks over an algebraically closed field, they are neces-
sarily given as the quotient [C/E] associated to an J^-cone C, where E is just
a vector space. In this case the quotient of C by the image of d: E —• C exists,
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and choosing a complementary subspace for kerd in E, we get a Cartesian
diagram

E - ^ C

ker d —• C/ im d

showing that, as cone stacks, [C/E] is isomorphic to the the quotient of
C = C/imd by kerd acting trivially. So for studying this cone stack, we
may as well replace d: E —> C by 0: ker d —• C" and assume from the start
that E acts trivially on C, i.e., that the map d: E —> C is the zero map.
Then we have that [C/E] = BE x C, where BE is the quotient of the point
Spec k by the vector space E.

Considering such a cone stack BE x C over Spec fc, we may interpret the
cone C as the 'coarse moduli space' of BE x C. Any stack has a coarse
moduli space associated to it; it is the set of isomorphism classes of whatever
the objects are that the stack classifies. The vector space E is the common
automorphism group of all the objects that the stack classifies.

Now let us determine what these objects and automorphisms are, for the
case of p*£x- Before dealing with the intrinsic normal cone, though, let
us consider the intrinsic normal sheaf. We have p*Vlx = P*£(T>_ILX) =

Recall the 'higher tangent spaces'

of X at p. For example, T£ p = Hom(fix5&) is the usual Zariski tangent
space. It classifies first order deformations of p, i.e., (isomorphism classes of)
diagrams

Specfc —• Spec k [e]

P \ iv'
X

where k[e] is the ring of dual numbers (meaning that e2 = 0). The first higher
tangent space Txp is the obstruction space, and classifies obstructions.

Now

pV>_!Lx s [h-ifr'Lx) - ^ h°{p*Lx)}

and so

p'Vlx = BT°x<p x Tx,.
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Thus the intrinsic normal sheaf classifies obstructions, with deformations as
automorphism group. Since the intrinsic normal cone is a closed substack of
yix, we get that

p*Cx = BT%j x Cx,P,

where Cx,P C Txp is some cone of obstructions.
To describe what kind of obstructions the intrinsic normal cone classifies,

let us recall what an obstruction is. Let A' —> A be an epimorphism of local
Artinian A:-algebras with kernel k (i.e., a small extension). Let T = Spec A
and X" = Spec A! and assume given an extension x of p to A, i.e., a diagram

Spec A; —• T

X

In this situation we get a canonical morphism x*Lx —• LT, by the contra-
variant nature of the cotangent complex. Prom the morphism T —> V we get
a morphism LT —• k of degree 1. It is essentially the morphism from LT to
LT/T'- Composing, we get a morphism x*Lx —* k of degree 1, in other words
an element of

Ext\x*Lx, k) ^ > E x t V L x , k) = T ^ ,

which is called the obstruction of {A1 —> A,x). The justification for this
terminology is that it vanishes if and only if x extends to A!, i.e., if and only
if there exists x': T' —> X making the diagram

X

commute.
In more concrete terms the obstruction of (A' —» A, x) can be described

as follows. Choose a local embedding / : U —> M of X at p, where £/ and M
are affine. Let / be the corresponding sheaf of ideals, which we identify with
an ideal in the affine coordinate ring of M. Then we have

Tjt, = coker(P7*TM - (

Now given x: T —> X it is possible to choose x" :T'-*M such that

T —• 2*

C/ -U M
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commutes, since M is smooth. This diagram of two closed immersions induces
a morphism on the level of ideals, namely / —> kei(A' —• A) = k. This element
of 7V induces the obstruction in T% p (which is independent of the choice of
/ and M and x").

The small extension A' —> A is curvilinear \i it is isomorphic to k\t]/ts+l —>
fc[t]/£s for some 5 > 1. This notion gives the answer to our question of what
are the obstructions classified by the intrinsic normal cone:

Proposition 4.6 Every element of Txp obstructs some small extension. It
obstructs a small curvilinear extension if and only if it is in Cx,P C T\p.

Proof See [3], Proposition 4.7. •

4.5 Obstruction theory
Let us start with an example. Consider the Cartesian diagram

(8)

where / is a morphism between smooth varieties. Thus X is a fiber of / . This
is a typical intersection theory situation. One defines a cycle class on X by
[X]virt — wl[V]. This class is called the specialization of [V] at w. The class
pf jvirt -1S g r s t of a n j n ^ eXpected degree, namely dim V — dim W, even if X
actually has larger dimension. Moreover, it leads to numerical data which is
independent of the parameter w € W. In the case that dim V = dim W this
means that the degree of the zero cycle [X]virt is independent of w. For an
explanation of what it means if dim V > dim VF, see [6], Chapter 10.

Because of this invariance of numerical data defined in terms of [X]vlrt,
this class is a sensible one to use for questions in enumerative geometry. Let
us recall the construction of wl [V] (or at least how the definition is reduced
to the linear case). One replaces Diagram (8) by the following:

X —• Cx/v

i I (9)

X -±* Tw{w) x X

Here Cx/v is the normal cone and the normal bundle of w: Spec A; —* W
pulled back to X is Tw(w) x X, the tangent space to W at w times X. Then
[AT** = 0l[Cx/v).

X -

i
Spec k —

-* V

if

% w
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Now we also have a Cartesian diagram

X

i
X

— •

0

lCx/v/v*Tv}
i

[Tw{w)x/v*Tv

(10)

which is obtained from (9) simply by dividing through (in the stack sense)
by v*Ty. Now note that [Cx/v/v*T\r] = £x is just the intrinsic normal cone
of X and € = [Tw(w)x/v*Tv] is a vector bundle stack on X into which €x
is embedded.

If there was an intersection theory for Artin stacks (or just cone stacks),
then certainly 0![Cx/v] = 0g[(£x]> where the first 0 is the zero section from
(9). So we can characterize the virtual fundamental class of X in terms of
the intrinsic normal cone of X, which is completely intrinsic to X and the
vector bundle stack <£, which is, of course, not intrinsic to X, but has to do
with the obstruction theory of X.

In fact, <E = v*[f*Tw/Tv], and because [Tv -> f*Tw] = Tfyw is the
tangent complex of / , we have that (E = v*£(Lv/w)- So <£ can be thought of
as the linearization of / . Moreover, h°(v*TV/w) = Tx classifies the first order
deformations of X, and hl(v*Tv/w) contains the obstructions to deforming
X.

So we have replaced the ambient morphism / , which defined a virtual
fundamental class on X, by this vector bundle stack (£, which serves the same
purpose. Now if X is a moduli space (oKstack), then it might be hopeless to
try to embed X globally into a smooth space (or stack) but such an (E can
sometimes still be found; in fact, it comes naturally from the moduli problem
that X solves.

The two essential properties of (E are

1. <£ is a vector bundle stack, i.e., it is locally defined in term of a complex
of two vector bundles [E~l —* E°). Such a complex is referred to as
being perfect of amplitude contained in [—1,0]. In other words, it is an
object of D$*(OX).17

2. The intrinsic normal cone €x is embedded as a closed subcone stack
into <E.

This motivates the following definition.

17Note that the superscript [—1,0] does not refer to the object of the derived category
having cohomology in the interval [—1,0], but to its perfect amplitude being in that interval.
The latter is stronger than the former.
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Definition 4.7 Let E be an object of D^f\Ox)- A homomorphism
</?: E —» Lx (and by abuse of language also i£ itself) is called a perfect
obstruction theory for X if

1. h°((p) is an isomorphism,

2. h~l((p) is surjective.

It is not difficult to prove that the two conditions on <p are equivalent
to the morphism 9Tx —> £ (where (E = £(-£?)) induced by y? being a closed
immersion. Moreover, if p : Spec A: —> X is a geometric point of X, then an
obstruction theory induces an isomorphism

and a monomorphism

so, in a sense, E reflects the deformation theory of X and contains the ob-
structions of X.

As an example, let C be a pre-stable curve, W a smooth projective variety
and / : C —• W a morphism. Then H°(C,f*Tw) classifies the infinitesimal
deformations of / . The obstructions are contained in Hl(C,f*Tw)- To see
this, let Ua be an affine open cover of C. By the infinitesimal lifting prop-
erty the morphism / can be extended over each Ua- Over the overlaps Uap
two extensions differ by an infinitesimal deformation, i.e., a section of f*T\y
over Uap. The vanishing of this Cech 1-cocycle with values in f*Tw means
extendability of / .

These observations can be translated into the following statement. Let
X = Mor(C, W) be the scheme of morphisms from C to W. Then there is a
perfect obstruction theory on X given by (i?7r*/*7V)v —• Lx, where

CxX - ^ W

- I
X

is the universal map. Note that since TT : C x X —• X has one dimensional
fibers, the complex (i?7r*/*Tv^)v is indeed perfect of amplitude 1.

This is in fact the obstruction theory we want to use to construct the
virtual fundamental class on M(W,r). But a deformation of a stable map
may deform the curve C as well as the map / : C —> W. So we note that the
morphism M(W, r) -^ 9JlT that forgets the map (and does not stabilize) has
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fibers of the form Mor(C, W). So we would like to adapt the above theory to
this relative situation.

Working in the relative rather than the absolute setting has the advantage
that the obstruction theory is much simpler. Also, many of the axioms we will
have to check involve the relative setting of M(W, r) over MT. So the relative
obstruction theory is better suited for proving the axioms of Gromov-Witten
theory. (Note, however, the difference between MT and 97tr. It is the main
difficulty in proving the axioms.)

The reason why the relative obstruction theory works, is that the base
SPtT is smooth.

So we replace the base Spec A; by Y, where Y is any smooth algebraic
fc-stack of constant dimension n. It does not even have to be of Deligne-
Mumford type. Let X -» Y be a morphism which makes X a relative Deligne-
Mumford stack over Y. This just means that any base change to a base Y\
where Y' is a scheme, makes the flbered product X1 a Deligne-Mumford stack.

Embedding X locally into stacks that are smooth and relative schemes
over y, one defines just as in the absolute case the intrinsic normal cone
£X/Y and its Abelian hull Vtx/Y- A complex of C^-modules E that is locally
quasi-isomorphic to a two term complex of vector bundles, together with a
map in the derived category E —• LX/Y is called a perfect relative obstruction
theory, if it induces a closed immersion of cone stacks £X/Y —* £(^)-

It follows from [3], Proposition 2.7 that the relative intrinsic normal cone
£X/Y is 'just' the quotient of the absolute intrinsic normal cone <£x by the
natural action of the tangent vector bundle stack Ty of Y. The same is
true for the intrinsic normal sheaves. Moreover, in our application, the rela-
tionship between the vector bundle stacks given by the relative and absolute
obstruction theories, respectively, is also the same. This implies that the
virtual fundamental class defined in the relative setting is the same as that
defined in the absolute setting.

Let us make more precise the sense in which a relative obstruction theory
E —» LX/Y governs the obstructions of X over Y.

Let

T -1+ X

i i (11)
r —• y

be a commutative diagram, where T —» V is a square zero extension of
(affine) schemes, with ideal N (i.e., a closed immersion with ideal sheaf N
such that AT2 = 0). Such a diagram induces an obstruction o E Ext1 (#*£*, N),
which vanishes if and only if a map T" —> X completing Diagram (11) exists.
Moreover, if the obstruction o vanishes, then all arrows T' —> X complet-
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ing (11) form a torsor under Ext°(x*E, N), i.e., there exists a natural action
of Ext0 (a:* 15, N) on the set of such arrows T" —> X, which is simply transitive.

The obstruction o is obtained as follows. A fundamental fact about the
cotangent complex is that is classifies extensions of algebras, i.e., that

Extalgy(T, N) = Ext1 (Lr/y, N).

Thus T —• X" gives a morphism of degree one LT/Y —• N. Composing with
the natural maps X*LX/Y ~~> LT/Y

 a n d X*E ~^ X*LX/Y
 w e get a morphism of

degree one x*E —> A/", in other words an element o € Ext1(x*E, N).

Note In the case that X —> Y is a morphism of smooth schemes, we can
take the identity Lm

x,Y ~~* ^x/y a s relative obstruction theory for X over Y.
Pulling this relative obstruction theory back to a fiber of X —> Y, we get the
absolute obstruction theory of the fiber described earlier.

4.6 Fundamental classes

Since the relative case is no more difficult than the absolute one, we assume
from the start that we have a perfect relative obstruction theory E for X over
Y. To define the associated virtual fundamental class we need to assume that
E has global resolutions, i.e., that E is globally quasi-isomorphic to a two term
complex [E~l —• E°] of vector bundles over X. This condition is satisfied for
the relative obstruction theory of M(W) r) (see [2], Proposition 5). Then the
stack (E = £(E) associated to E is isomorphic to [Ei/Eo], where Ei denotes
the dual bundle of E~\ Since €x is a closed subcone stack of <£, it induces a
closed subcone C of E\ and we define

[X]virt = [x,E] = o[
El[C] e A d i m y + r a n k £ ; (x) ,

which is a class in Vistoli's Chow group with rational coefficients. This class
is independent of the global resolution chosen to define it. The fact that
this class is in the expected degree dim Y + rank E follows immediately from
the fact that the relative intrinsic normal cone has pure dimension d imF
(which corresponds to the fact that the absolute intrinsic normal cone has
pure dimension zero).

Example 4.8 If X is smooth over F , then h°(E) ^ h\LX/y) = ^X/Y is
locally free. Hence E~l —> E° has locally free h° and /i"1, and so the same
holds for the dual tp: Eo -+ Ev Also, £X/Y = BTX/Y *-+ [Ei/Eo] identi-
fies BTX/Y with Bkenp, which is isomorphic to [imip/Eo], and so the cone
induced by <£x in E\ is equal to map. Hence

= Ctop(cokeiip)P\[X)
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In the above example of Mor(C, W) we have

Proposition 4.9 If X has the expected dimension dimY" + rank 1£; then X
is a local complete intersection and [C, E] = [X], the usual fundamental class.

Proof For simplicity, let us explain the absolute case Y = pt. Let k be
algebraically closed and A a localization of a finite type A;-algebra at a max-
imal ideal. Write A = (k[x\,..., #n]/(/ i , • • •, /r))(xi,...,xn), let m be the maxi-
mal ideal of k[xu • • •, 3n](*i,."..,*„) and / = (fu ..., fr) C k[xu • • •, xn](xli...iXn).
Then the truncation at —1 of the cotangent complex of A is I/I2 —•
tok[xi,...,xn] ® A and if we tensor it over A with k we get I/m —» m/m2 and so
there is an exact sequence

0 —> T1(A)V —> I / m l —• m/m2 —-> T°(A)V — . 0,

where Tl(A) is the i-ih tangent space of A at the maximal ideal.
After projecting Spec A into its tangent space at the origin, which only

changes A by an etale map, we may assume that I C m2. This entails that
I/ml -> m/m2 is the zero map and hence T°(A)W = m/m2 and Tl{A)y =
I/ml. Clearly, xi,..., xn is a basis of m/m2. By Nakayama's lemma we may
also assume that / l 5 . . . , fr form a basis of I/ml. Hence n = dimT°(^4) and
r = T\A).

Now clearly, dim A >n — r. If equality holds, then / i , . . . , fr is a regular
sequence for k[x\,..., av](xl>...jXr)

 a n d s o A is Cohen-Macaulay and a local
complete intersection.

Now assume given a perfect obstruction theory E* for A. Then T°(J4) =
h°(E*v ® fc) and TX(A) *-> ^ ( J S ^ ® fc). Hence n-r > mnkE9 and so
dim A > r&nkE*. By the previous argument dim A = rank I?* implies that A
is a local complete intersection. Moreover, dim A = rank E* implies n — r =
rank£" and Tl(A) = hl(E*y ® k). This, in turn, implies that Em -> L^ is an
isomorphism and so [X, Em] = [X]. D

Corollary 4.10 / / the expected and actual dimension are both zero, then
[X]viTt counts the number of points of X with their scheme (or stack) theoretic
multiplicity.

Remark If X can be embedded into a smooth scheme M and E* is an
absolute obstruction theory for X then we have (in the notation above)
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where s(C) is the Segre class of C and c denotes the total Chern class. The
subscript denotes the component of degree rankE*. (See [6], Chapter 6.)
Now we have

c(Bi)n«(C) = c(E1)c(Eo)-
1c(Eo)ns(C)

= c(E.)-1c(E0)ns(C)
= c(E.)-1c{i*TM)ns(Cx/M)

where c*(X) is the canonical class of X (see [ibid.]). Hence

Thus the intrinsic normal cone may be viewed as the geometric object un-
derlying the canonical class. As such it glues (which cycle classes usually do
not) and is thus also defined for nonembeddable X.

4.7 Gromov-Witten invariants
As always, let W^bea smooth projective A:-variety and r a stable modular
graph with an iJ2(W)+ marking /?.

As indicated, we use the Artin stacks

where 9Jtg,s is the stack of 5-marked pre-stable curves of genus g. Pre-stable
means that the singularities are at worst nodes and all marks avoid the nodes.
Note that 3JtT is smooth of dimension

We consider the morphism

~M(W,T) —> OTr

(C,xJ) .—> (C,x),

where no stabilization takes place. Note that the fiber of this morphism over
a point of 97tr corresponding to a curve C is an open subscheme of the scheme
of morphisms Mor(C, W).

As before, let TT: C —• M(W,T) be the universal curve and f:C—*W
the universal map. Then we have a perfect relative obstruction theory (even
though this was only explained in the absolute case)
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and hence a virtual fundamental class

J(W,T) =

in A*(M(W, T)) of degree dim(r) + rank i?7r*/*7V.
Let us check that this is the degree we claimed [M(W, r)]v i r t to have:

dim(r)

= dim(Wir).

This calculation justifies the grading axiom for Gromov-Witten invariants.

Theorem 4.11 The classes J(Wir) satisfy all five axioms required.

Proof The mapping to point axiom follows from the Example 4.8. For the
proofs of the other axioms see [2]. One has to prove various compatibilities
of virtual fundamental classes. These follow from the properties of normal
cones proved by Vistoli [13]. •

Corollary 4.12 The Gromov-Witten invariants IT((3) defined in terms of
J(W, r ) satisfy all eight axioms required.

4.8 Complete intersections
These ideas can easily be adapted to construct the tree level system of
Gromov-Witten invariants for possibly singular complete intersections.

So let W £ Pn be a complete intersection, i: W —> Pn the inclusion mor-
phism. Then [z*Tjpn —• Nw/w*] is the tangent complex of W. So as obstruction
theory for ~M(W,T) -> WlT we may take (Rn*f*[i*Tvn -> Nw/¥n])v. This will
be a perfect obstruction theory if we restrict to the case where r is a forest,
because then the higher direct images under TT of f*i*Tpn and f*Nw/wn vanish.
So we get the tree level system of Gromov-Witten invariants of W.

As an example, consider a cone over a plane cubic, which is a degenerate
cubic surface in P3. There is a one dimensional family of lines on this cubic,
namely the ruling of the cone. On the other hand, the expected dimension
of the space of lines on a cubic in P3 is zero. Therefore the Gromov-Witten
invariant /o,o(l) is a number, which turns out to be 27. So the 'ideal' number
of lines on a cubic is 27, even in degenerate cases.
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Kahler hyperbolicity and variations
of Hodge structures

Philippe Eyssidieux

There is a well-known duality, pervasive throughout the theory of Her-
mitian symmetric spaces, sending a symmetric space of compact type to its
noncompact dual (see, for example, [9], Chap. VIII, §4 and Chap. XI, p. 354);
whereas the former is a projective variety, the latter can be realized as a
bounded domain in Cn. For example, the Grassmannian Grass(p,p + q) =
SU(p+g)/S(U(p) x \](q)) has as its dual the quotient SU(p, q)/S(\J(p) x U(tf)),
which is the bounded symmetric domain {Z G Cp>9 | tZZ — Iq < 0}. A ge-
ometric statement concerning a Hermitian symmetric space of compact type
often has an associated 'dualized' statement about its noncompact dual. I
formulate such a dual pair of problems and discuss some aspects of the version
on a Hermitian symmetric space of noncompact type.

Let ft be a Hermitian symmetric space of noncompact type that has a
compact dual (that is, a bounded symmetric domain). Let AQ be the evenly
graded commutative real algebra generated by the Chern-Weil forms of homo-
genous holomorphic Hermitian vector bundles on ft] then AQ is isomorphic
to the real cohomology algebra of the compact dual of ft. Setting deg c» = 2i
defines a grading on the polynomial algebra BQ = AQ[C\, . . . , c»,... ].

Let T = (M, p, i) be a triple consisting of a connected n-dimensional
complex compact manifold M, a representation p of TTI(M) in the isometry
group Autfi and a /9-equivariant holomorphic immersion i: M c—> ft from
the universal covering space M of M into ft. Typical examples arise from
complex submanifolds of Hermitian locally symmetric manifolds uniformized
by ft. Since every homogenous vector bundle Vfo on ft descends to a vector
bundle VM on M, there is a canonical morphism i*: BQ, —> if*(M, R) defined
by 2*Ci(Vh) = Ci(VM),i*Ci = c%(M). Evaluation on the fundamental class of
M defines a linear form er: B^1 —> R. I call such a triple an n-dimensional
positive cycle of ft.

Define the closed convex cone of universal Chern numbers inequalities to
be K£ = {a e BQ1; eT(ct) > 0 for all T}. Consider the following problem:

Problem Describe completely the closed convex cone KQ. Construct opti-
mal universal inequalities, and describe the cases of equality. A specialization

71
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of the latter question is of interest: describe the optimal inequalities whose
cases of equality are the totally geodesic submanifolds of Q/T for F a discrete
cocompact subgroup of Aut Q.

The dual problem is easy to describe. To the compact dual ft, we associate
the algebra A& generated by the Chern-Weil forms of homogenous vector
bundles on fi and we set B& = >1Q[CI, . . . , d , . . . ], with degc* = 2i. Then BQ

and Bfi are isomorphic. We define the n-dimensional positive cycles as the
n-dimensional projective algebraic submanifolds of £2. The cone if? is defined

as before. The structure of K£ D A^ is known when Q is a Grassmannian:
this is the content of the Fulton-Lazarsfeld theorem on universal inequalities
for ample vector bundles [5].

However, there are also very significant differences between the problems
of describing universal Chern numbers inequalities for Q, and 0. In the latter
case, every projective algebraic manifold M (of sufficiently small dimension)
may occur as the first term of a cycle (M,p,z). In the case of interest, the
projective manifolds M that occur are of general type and have large funda-
mental groups.

I cannot formulate any reasonable conjecture describing KQ, and I only
explain how to construct some interesting elements. There are various ways
of constructing elements of KQ. For instance, because Chern-Weil theory en-
ables us to compute Chern numbers as integrals of differential forms, starting
from curvature tensors (whose explicit form is well known, see for instance
[14]), explicit computations can be performed. The computational complex-
ity of the problem grows so quickly with n that more subtle approaches are
necessary.

In the situation of interest, ft carries many homogeneous flat complex
vector bundles which in addition underly a complex variation of Hodge struc-
ture. This structure pulls back to the universal covering M of M and then
descends to M. The universal inequalities we will discuss in this article will
be deduced fromjhe study of these complex variations of Hodge structures.
In the case that M is a totally geodesic complex submanifold of ft, we call the
resulting variation of Hodge structure a locally homogeneous variation and its
period map a homogeneous period map.

More generally, we can consider complex variations of Hodge structures
on M with their period map M —> D, where D is the associated Griffiths
period domain. See [3] for this construction and [7] for a thorough study of
the homogenous domain D.

The manifold M is almost never compact. Fortunately, if the period map
does not contract curves, the metric properties of the period map M —» D
ensure that M admits a Kahler form u which is Lipschitz equivalent to the
pullback of any given Kahler form on M and is the de Rham coboundary
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of a smooth 1-form which is bounded with respect to u. Such a Kahlerian
compact manifold M is called weakly Kdhler hyperbolic.

This structure makes it possible to apply Gromov's methods from [8] to
the L2 cohomology with values in the variation of Hodge structure on the
universal cover and the main result from [4] follows.

Main Theorem Let M be a compact weakly Kdhler hyperbolic manifold,
and suppose that (M,V, F*,5) is a complex polarized variation of Hodge
structures (VHS for short). Denote by Kr

P the holomorphic vector bundle
on M given by Kr

P = Fp~r/Fp-r+1 <g) Qr and by Kp the complex

Then (-l)dimc^X(M,Km
P) > 0.

Via the Riemann-Roch theorem, these give inequalities for the Chern
classes, which I call Arakelov type inequalities. Going back to homogeneous
variations over a bounded domain D = fi, one obtains nontrivial elements
of KQ. In the general case, one has to work with Ap, the algebra gener-
ated by the Chern forms of homogeneous Hermitian vector bundles, and with
BD = AD[CI, . . . ]. I define a positive n-dimensional cycle of D to be a triple
T = (M, p, i) with M a connected n-dimensional complex compact manifold,
p: TTI(M) —•> Aut(D) a representation and i: M —> D a p-equivariant holo-
morphic horizontal immersion; the cone Kp is defined as the dual cone of
the convex cone generated by irreducible positive cycles. The Arakelov type
inequalities define nontrivial elements in this cone. An interesting feature is
that, for a general Griffiths domain, these Arakelov type inequalities cannot
be deduced from the explicit formulas for the curvature, even when n — 1.
Another interesting phenomenon is that one can construct cases of equality
for some of them that are locally homogenous. I conjecture that in fact every
case of equality is locally homogenous (I call the corresponding positive cycles
geodesic cycles). I can only prove this when the geodesic cycles satisfy some
strong rigidity properties.

We describe the organization of this article. Section 1 reviews Gromov's
notion of Kahler hyperbolicity, and vanishing theorems for L2 cohomology.
Section 2 recalls the definition of a VHS and sketches the proof of the Main
Theorem; for more details, see [4], on which my talk at the Warwick Euro-
Conference was based. The rest of the article is devoted to a systematic
investigation of the cases of equality in the main theorem, which was lacking
in [4]. Section 3 describes locally homogenous VHS on irreducible symmetric
domains along the lines of Zucker's article [17] and gives a criterion derived
from a formula of Kostant that identifies the cases of equality in the main the-
orem among them (Proposition 3.5.2). This criterion leads in principle to an
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algorithm producing the list of every locally homogenous VHS that gives rise
to a case of equality in the main theorem. In this spirit, Appendix A.2 gives
an algorithm to determine every such locally homogenous VHS uniformized
by a classical domain. Section 4 establishes a part of the conjecture that every
nontrivial case of equality of the universal inequalities among Chern numbers
of Theorem 2.2.1 is actually a locally homogenous VHS, and describes the
strong rigidity properties satisfied by certain of these examples (a list is given
in Appendix A.3), which gives some more evidence for the gap phenomenon
conjectured by N. Mok and the author (see [12], §4 and the introduction to
[13]).

I thank the editors and referees for help in improving the exposition.

1 Harmonic bundles and Kahler
hyperbolicity

1.1 Kahler hyperbolicity
Recall the following definition of Gromov [8]: let (M,u) be a compact Kahler
manifold and M —• M its universal covering. (M, u) is Kdhler hyperbolic if
the Kahler form UJ pulled back to M is the de Rham coboundary of a bounded
smooth 1-form. This notion depends on the chosen Kahler class. The basic
examples are Kahler manifolds admitting a Riemannian metric of strictly
negative sectional curvature (for any Kahler form) and submanifolds of Her-
mitian locally symmetric manifolds of noncompact type (for the restriction
of the symmetric Kahler form). I need the following variant: M is said to be
weakly Kdhler hyperbolic if M carries a bounded smooth 1-form a whose de
Rham coboundary da is a Kahler form Lipschitz equivalent to the pullback
of some (and hence every) Kahler form on M.

1.2 The Lefschetz—Gromov vanishing theorem
Let (X, g) be a complete Riemannian manifold and V a flat vector bundle
endowed with a flat connection D and a Hermitian metric ft, not necessarily
flat. Let L2 dRp(X, g, V, ft) be the Hilbert space of square integrable p-forms
on X with values in V whose distributional de Rham coboundary is still
square integrable. Define the L2 de Rham complex as the following complex
of topological vector spaces:

L2 dR°(X, g, V, ft) -!> L2 dR^X, <?, V, ft) - ^ . . . -^> L2 dRdimX(X, g, V, ft).

The cohomology of this complex is called the L2 cohomology of (X, g)
with values in (V,h), and denoted by H^{X^g,V,h). It is obviously a bi-
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Lipschitz invariant. Gromov [8], 1.2.B, p. 273, asserts that the L2 cohomology
of the universal covering of a compact Kahler hyperbolic manifold (M, a;) with
values in the trivial flat vector bundle (or any unitary flat vector bundle)
vanishes in degree ^ dime M.

As observed in [4], Theoreme 1, Gromov's proof also extends to VHS
(see below). In fact, the same proof also holds for Higgs bundles equipped
with a harmonic metric. Recall ([16]) that a Higgs bundle on a complex
manifold M is a holomorphic vector bundle V together with a holomorphic
map 0: V -> V ® Sll

M with 0 A 0 = 0 in End(V) ® Sl2
M. Not all such bundles

admit harmonic metrics; one needs that the underlying flat bundle is semi-
simple. Such Higgs bundles are called harmonic Higgs bundles. Variations of
Hodge structures provide examples, as we see below.

Proposition 1.2.1 Let M be a compact weakly Kahler hyperbolic manifold.
Then the L2 cohomology of its universal covering with coefficients in the pull-
back of a harmonic Higgs bundle on M endowed with its harmonic metric
(cf. [16]) vanishes in degrees ^ dime M.

Note that on M the harmonic metric is Lipschitz equivalent to a Hermitian
metric constructed by parallel transport of a Hermitian metric on some fibre
if and only if the (real) monodromy group is compact, which is rarely the
case.

2 Variations of Hodge structures

2.1 Definition
Definition 2.1.1 Let M be a complex manifold. A quadruple (M, V, F*, S)
is called a complex polarized variation of Hodge structure if V is a flat bundle
of finite dimensional complex vector spaces with a flat connection D, F* a
decreasing filtration of V 0 OM by holomorphic subbundles indexed by the
integers, and S a flat nondegenerate sesquilinear pairing such that

1. The C°° vector bundle V associated to V decomposes as a direct sum

2. S(Hp, Hr) = 0 for p ^ r, and (-1)PS is positive definite on Hp;

3. D 1 ' 0 ^ c Fp~l ® n}£.

The numerical vector {dime Hr}re% is called the Hodge vector of the VHS.

The subbundle Hp can be given a holomorphic structure by the iso-
morphism Hp —• Fp/Fp+l. Write d£ for the corresponding Dolbeault op-
erator, and set d" = 0pdJJ. Then Dlfi induces a C°°-linear map Vp: HP ->
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Hv~x <g> Q,1 called the Gauss-Manin connection; we set V = 0 p Vp. The
Hermitian metric H = 0p(—1)PS#P is called the Hodge metric. The pair
(V<8)OM, V ) is a Higgs bundle and H is a harmonic metric on the associated
flat bundle V.

For our purposes, the weight of a VHS is not relevant; instead, we are
interested in the length of a VHS, the number pm a x — pmin, where pm a x and
Pmm are the maximum and minimum of the (finite) set of integers p with

The Kahler hyperbolic assumption in Proposition 1.2.1 is well adapted to
nondegenerate VHS by [4], Proposition 4.6.1:

Proposition 2.1.2 Let M be a compact Kahler manifold and (M, V, F*, S)
a VHS on M. Assume that for any connected smooth curve C mapping to
M with 1- dimensional image, the induced VHS on C has a nonzero Gauss-
Manin connection (equivalently, no curve on M is contracted by the Griffiths
period map). Then M is a protective weakly Kahler hyperbolic manifold. Thus
the L2 cohomology H?2JM,V) vanishes in degree ^ dime M.

2.2 Arakelov type inequalities
Set Ep& = ®p+r=P^p=QHP ® Qrs and D" = d" + V . It follows that
D»EP& c £P 'Q + 1 . Furthermore, Deligne proved (cf. [4], Proposition 2.2.1)
that given any Kahler metric, if we take formal adjoints of differential opera-
tors with respect to this Kahler metric and the Hodge metric on V, the usual
Kahler identities hold, for instance 2(D"(D")* + (D")*D")j= DD* + D*D. It
follows that the I? cohomology on the universal covering M with coefficients
in V has a Hodge decomposition.

Theorem 2.2.1 Let M be a compact weakly Kahler hyperbolic manifold and
(M,V, F*,5) a VHS. Denote by Kr

P the holomorphic vector bundle on M
given by Kr

P = Hp~r 0 Qr and by Km
P the complex

O^KOp^UKip^U..._ #dimc M _^ Q

Then ( - l ) d i m c ( M )x(M, Kp) > 0. In terms of Chern numbers, this reads:

Sketch of proof Let G be a countable group, endowed with the counting
measure, and write / or r : G —> U(L2(G)) for its left (respectively right)
regular representation. The commutant of I is a von Neumann algebra W*(G).
Every element a of W*{G) has a unique expression as a = YlgeG a9r(9)>
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ag G C. Set r(a) = ae. The linear form r is a finite trace on W*(G), because
for all a, 6,

r{ab) = r(6a) and a ^ 0 ==> +oo > r(aa*) > 0.

The orthogonal projection p onto a closed G-invariant subspace E of L2(G)
belongs to W*(G) and we may try to define dimciE) = r(p). In fact, this
definition can be extended to any Hilbert space with a left G-action, provided
it can be realized as a G-stable closed linear subspace of L2(G)eN. This
provides a dimension theory for a certain class of unitary representations of
G, similar to the dimension theory of linear algebra over C (the particular
case G = {1}). For instance, E = 0 <=> dimcE = 0. The differences that
have to be stressed in this article are that, when the group is infinite, the
dimension function takes values in R+ and that an admissible G-module of
nonzero G-dimension is infinite dimensional in the usual sense.

We can now explain Atiyah's L2 index theorem (for details, see [1]). Let
D be an elliptic differential operator on the compact connected G°°-manifold
X, and indD its index. Then^D can be lifted to a differential operator D on
the universal covering space X which is invariant under the natural action
of TTI(X). Then the 7Ti(X)-module kerL2(£>) = {u e L2{X)-,Du = 0} has a
well-defined TTI (X)-dimension and

pQkerL2(Z)) - d im^x) kerL2(5*) = IndD.

This theorem is the analogue for infinite coverings of the multiplicative prop-
erty of the usual index under finite coverings.

x(M,Kp) is the usual index of the elliptic complex D" \ Ep>* -> JBP»*+1.
By Atiyah's L2 index theorem, it can be computed as the L2 index of the
lifted elliptic complex on M where the vanishing theorem Proposition 2.1.2
is available. •

3 Locally homogenous variations of Hodge
structures

3.1 Hermitian symmetric spaces of noncompact type
Let Q, be an irreducible Hermitian symmetric space of noncompact type. Its
group of isometries is an almost simple adjoint Lie group Autfi, and we
set g = Lie(Autfi). Let Gc be the simply connected complex semisimple
algebraic group associated to Qc = 9 ®R C. Then Gc has a connected real
form G with Lie algebra g, and Aut Q is the adjoint group G** of G. Let K
be a maximal compact subgroup of G and observe that Q, = G/K. Since fi



78 Kahler hyperbolicity and variations of Hodge structures

is Hermitian symmetric, [ = Lie K has a 1-dimensional center z(l) and splits
as i = z(V) © [t, I]. Thus Z = exp(z(i)) is isomorphic to U(l). We write /i for
the degree of the covering map Z —» Z**.

Now suppose that ZQ G Z^ is an element of order 4. Then ZQ = 8 is a
Cartan involution. Write Q = [ 0 p for the corresponding Cartan decomposi-
tion. Then z0 induces on p = TGKG/K the tensor ± J, where J is the almost
complex structure of fi. We may thus choose z$ inducing J on p. Write
accordingly p ® C = p + 0 p", where p± = ker(adz0 — ±y/~-\).

We can choose a Cartan subalgebra f) of g contained in I. Let A0 C J)J be
the root system for g<c- These roots take purely imaginary values on f). There
exists a partition A0 = A^U Ap for which p c = 0 a G A p $* an(^ "c = ®aeA{ fla-
One can choose an ordering on y/^lt)* such that p + = ©a G A+ 0a, where
A+ = A + D Ap (respectively, A^ = A + D At).

3.2 Homogenous holomorphic vector bundles

We say that a holomorphic vector bundle V —• Q of finite rank is homo-
genous if the natural action of G on Q, lifts to an action on V which preserves
the complex structure. Homogenous holomorphic vector bundles correspond
1-to-l to finite dimensional if-modules. Under this correspondence the holo-
morphic tangent (or cotangent) bundle of fi corresponds to p + (respectively

3.3 Homogenous VHS

There is another natural correspondence between flat homogenous vector bun-
dles on Ct of finite rank and finite dimensional complex linear representations
of G. As observed in [17], an irreducible flat homogenous complex vector
bundle V o n Q can be given the structure of a homogenous VHS.

Let us describe Zucker's construction. V — Ve# is the representation
space of the associated representation p of G. Let Z = Hom(Z, U(l)) = Xo
with Xo the character of Z acting on p + . Decompose V according to the
action of Z: V = © x G £^(x ) - Then V{\) is /^-invariant. Observe that
p(p±V(x)) C V(x ' Xo*1)' Let xv be the highest nontrivial character (with
the convention that Xo > 0). It follows from the irreducibility of p that there
exists an integer Np such that V — ©z=o^(xvXo^)> a n d every summand is
nonzero.

Define a decreasing filtration of V by setting FPV = ®i^pV(xvXo~1^)'
The Lie subalgebra gc = I 0 v^Tp C £c is compactly embedded, and pre-
serves a positive definite Hermitian sesquilinear pairing H (unique up to scalar
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multiple). The decomposition V = ®^oV(xvXolfl) i s orthogonal and pre-
served by I

Since p(p)®ieyenV(XvXo1'1) = ©zodd^XvXo'' '). it Mows that g pre-
serves the Hermitian nondegenerate pairing S = 0Z(—l)'iy|v, -i^ which
polarizes the filtration Fm.

Let x = gK e ft, and set F^VX = p(#) • F*V C Vx, 5X = 5 o p{g)~\
The F* and 5X glue together to yield a holomorphic filtration on V satisfying
Griffiths transversality (because p(p+)Fp C Fp~l) and a polarization 5 of this
filtration. I henceforth refer to this VHS as the irreducible homogenous VHS
associated to p. The number Np is the length of the VHS (see Definition 2.1).

For the reader's convenience, Appendix A.I describes all fundamental
VHS on classical domains.

A simple modification of this construction works for reducible Hermitian
symmetric spaces and yields:

Proposi t ion 3.3.1 Let Q be a Hermitian locally symmetric space of non-
compact type, g the Lie algebra of its automorphism group and p: g —> Ql(V)
a complex linear representation.

There exists a Q-invariant Hermitian form Sp that is nondegenerate (but
indefinite unless p is trivial). Moreover, the constant local system V xtl —> Q
underlies a VHS polarized by Sp which is invariant under a finite covering
group G of the automorphism group of Q, G acting on fi x V by g - (o,v) =
(g-o.g-v).

For every p E fi, we let (p(p) = {F*(V)} be the corresponding Hodge flag.
The group U(SP) acts transitively on Hodge flags and if we fix some origin
o G fi and let U be the stabiliser of the flag defined by o, the set of Hodge flags
can be described as a homogeneous domain Dp = D(\J(SP), <p{o)) = XJ(SP)/ U.
This domain is called the Griffiths domain. The Griffiths period map corre-
sponding to the VHS constructed above is the holomorphic horizontal map
/ : Q —>• Dp described by f(p) := <p(p).

From a homogenous VHS, that is, a VHS on a bounded symmetric domain
fl invariant under some (finite) covering group G of the automorphism group
of (7, one associates a representation p of G in the obvious way, so that
there is a 1-to-l correspondance between homogenous VHS on a bounded
symmetric domain and complex linear representations of the Lie algebra of
its automorphism group.

3.4 Locally homogenous VHS

Let M = ft/F be a Hermitian locally symmetric manifold of noncompact type
with universal covering space the Hermitian symmetric space £1 Say that a
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VHS on M is locally homogenous if its lift to Q is a homogenous VHS. It is
proved in [4] that the partial converse to Theorem 2.2.1 holds:

Theorem 3.4.1 Let M be a compact Hermitian locally symmetric manifold
ofnoncompact type and (MyV,F9,S) a locally homogenous VHS. Recall that
Kp is the holomorphic vector bundle on M given by Kp = Hp~r <g> ftr

M and
K'P the complex 0 -> K°P ̂ U Kl

P ^U > K^CM _^ Q Then

with equality if and only if Kp is acyclic.

Matsushima and Murakami ([11], Theorem 12.3, p. 33) prove that, if p is
an irreducible complex representation of G associated to a nonsingular highest
weight, ir(7ri(M),p) = ff^M, Vp) = 0 unless i = dimc(M). This vanishing
theorem is stronger than the 1? vanishing theorem applied to a Hermitian
locally symmetric space. Furthermore, Theorem 3.4.1 can be deduced, for a
nonsingular weight, from their work, and should be viewed as a weak version
of their theorem holding for singular weights.

3.5 A formula of Kostant

Let p: G —» GL(yp) be an irreducible complex representation. The complex
Kp associated to the homogenous VHS it defines on fi is obviously the com-
plex of homogenous vector bundles associated to the following complex of
if-modules:

K'X(VP): • • • - A'p" ® VixxT) - ^ Ar+1p- ® ^(xx^ 1 ' " ) - • • • ,

where x — XVXQP^
 a n d V^ = ]CaeA+ P(e<*) ® e -« ^ • ^n^s complex computes

the part of the if-module i^*(p+, Vp) on which the central subgroup Z acts
with character x-

Write Wg and W\ = W^q for the Weyl groups of g, respectively I, and
I18G f) and Hi G f) for the weight lattice of g, respectively I in >/—!&*• The
Grothendieck ring of the category of representations of g and I is isomorphic
to the ring Z p I J ^ , respectively Z [ n j ^ . The fact that the Weyl group is
simply transitive on the Weyl chambers yields:

Lemma 3.5.1 ([10]) Denote by WQyi the right coset space W[\Wg. Then
Wo = {w G Wg : wA~ D A+ C Aj}"} -» WQii is a set of representatives.

Set Wo = Ug W0(q) where W0(q) = {w G Wo : \wA~ flA+| = q}.
Let C+ and Cr

+ be positive Weyl chambers for g and L For a dominant
weight A G nfl fl Cfl for g, write E\ for the irreducible g-module with highest
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weight A; similarly, for a dominant weight n G IIi fl C{ for I, write El for the
irreducible [-module with highest weight JJ,.

Let pfl, p\ and pp be half the sum of the positive roots in A+ (respectively,
A+ and A+).

The following is due to Kostant:

Proposition 3.5.2 (see [17],[10]) Let A G Ug n C+.

We need to decompose this formula further according to the action of Z.
First of all, observe that:

Lemma 3.5.3 wpp = pp for all w € W\.

Proof Let £ be a generator of z(\). Clearly {pp,() = c|A+| 7̂  0. Observe
that w • Ap = Ap. It follows that

The Weyl group W\ acts orthogonally on \) (w.r.t. the Killing form of g),
leaving [) fl [I, I] invariant. Thus, z([) = [I, I]1- is also WVmvariant. Since e(w),
equal to —1 to the power the number of reflections in any decomposition of
K; as a product of reflections, does not depend on whether we view w as an
element of W\ or of Wg and is the determinant of the linear transformation
it induces on f) and on [1,1], z(i) is fixed by W\. It follows that (w(pp),() —
(pp, w~lC) = (pP, C), and thus wpp = pp. O

The latter argument implies also that, by means of the identification of
f) and its dual space via the Killing form, pp is identified with a positive
generator of z(l), since [I, i]W[ = {0}. Set u = dim<c(p+)pp//i(pp,Pp). Let
nfl C Ilf- C II[ be the lattice consisting of those weights of I arising from
if-modules, and let A G Ilf- be a dominant weight. Observe that Z acts by
the character Xo o n E\ if a n d only if (A,aJ) = /.

This implies the following:

Corollary 3.5.4 Let X elig be a dominant weight. Then:

u)OeWo(q) s.t
(wo(\+pg)-pg,Z3)=l
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We apply this to p = 0, where V, = 0 and H*(K\ (El)) = K\ (El) =
r Xo Xo

A-Vvp- (I < 0), and call cp the (unique) element of Wo that corresponds to
d i +

In particular W0(0) = {id}, Wo(dimQ) = {cp}. For a possibly reducible
Hermitian symmetric space, elements of Wb(l) are in 1-to-l correspondance
with its irreducible factors.

It follows from Corollary 3.5.4 that for any A G UQ n ~C+
Q that #°(p+, El)

and i J d i m n (p + , El) are irreducible if-modules; these modules are easily iden-
tified. They correspond to the two complexes K^(X) with a single term;
namely K*xv(\) = V(Xv), and

K* -<*+*.*+», (A) = V(XvXo Nx") ® A d i m ^ )p"
XVXo

correspond to the elements w = e G Wo respectively u> = cp. Therefore:

Lemma 3.5.5 The length of the VHS associated to A G II0 n C+ 25

We say that the character x G Z is critical with respect to the dominant
weight A G Ug if some Kq

x (El) is not 0 but Km
t (El) is acyclic. In view of

Theorem 3.4.1, we get the following criterion:

Proposition 3.5.6 Xo ^s critical with respect to A if and only if the following
hold:

1. I = (\,u) mod (JL;

2. I £ {(wo(X + pQ) - P0,u)}woeWo;

This provides us with many nontrivial examples. For example:

Corollary 3.5.7 Let Q be a Hermitian symmetric space of noncompact type.
Set ZC(O) = | Wo | — dim<cfi. Every dominant weight whose associated VHS
has length > Zc(fi) has critical characters. Moreover, every dominant weight
in the series (npQ)n>i or (npfl + (n-f l)A)n>1 XeU n^+ has critical characters.

Since the length of the VHS associated to the dominant root A is given
by the positive linear form l(E\) = (A, (id— c^1)^;), the corollary shows that,
for each bounded symmetric domain Q, only a finite number of weights have
no critical character (I refer to these as the special weights of fl).
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Although I did not find a simple condition for a weight of a classical
domain of type I, II or III to be special, the proposition gives in principle an
algorithm to determine every special weight. See Appendix A.2 for details
and specific examples.

We consolidate our gains in the following result.

Theorem 3.5.8 Let ft be an n-dimensional Hermitian symmetric space of
noncompact type and A a nonspecial weight with critical character XvXoPfl-
Let E% be the highest weight module attached to A. Let G = (ft, V, F - , 5) be
the homogenous VHS attached to E\ (see Proposition 3.3.1).

Then equality occurs in the universal inequality

(-ir(ch(^)Todd(rM))nn[M] > 0

(which, in virtue of Theorem 2.2.1, is valid for every VHS with the same
Hodge vector as G having an immersive period map) if the VHS is a locally
homogenous VHS uniformized by G.

4 Hyperrigid locally homogenous variations
of Hodge structure

4.1 Scalar curvature for a Griffiths period map

Let D = W/U be a Griffiths domain. The Lie algebra of W has a real Hodge
structure of weight 0, polarized by'the Killing form.

On D there is an invariant closed symplectic form u which is not a Kahler
form with respect to its complex structure. In fact, h(X) = OJ{X, JX) is an
indefinite nondegenerate form. However u is positive definite on horizontal
directions.

Let T = (M,p,i) be an irreducible n-dimensional positive cycle. The
form u) restricts to a Kahler metric Uh on M which descends to M. In fact, it
may also be defined as the curvature of the pullback of a certain equivariant
holomorphic line bundle on D. Assume that the Griffiths period map i sends
x e M to eU e D(W,(p) = W/U. Then i*TxM can be identified with
a complex Abelian subspace of Lie(W)"1'1. Let (ei)» be a unitary basis of
this subspace. Using the Gauss equation and the formulas in [7] (for quick
reference, see [14], Corollary 2.2), one easily computes:

Lemma 4.1.1 The scalar curvature of M at x is:

Scal(M,z) = - | | ^ [ e i ^ l l l 2 - S2 = S(A) - S2.
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Viewing TM as a subbundle of the bundle associated to Lie(VF)"1'1 (this
is the horizontal tangent bundle) identifies the term E2 with the square of
the norm of the metric second fundamental form; thus it vanishes identically
on M if and only if T is a geodesic cycle.

If p is a linear representation of W, one constructs the associated VHS
(M, Vp, F*,S), and for every integer P , the complex Kpi

K-p: o _> Fp/Fp~1 ^U Fp-l/Fp-2 ® fij, ^U

. . . X FP-n/FP-n-l (g) Q^ ^ 0.

Lemma 4.1.2 There exists a constant Cp and a function S^ on the space
Eab of n-dimensional complex Abelian subspaces of Lie(W)"1'1 such that, if
T = (M, p, i) denotes an n-dimensional positive cycle, then:

ci(/f J ) ^ " 1 = C£(Scal(M, x) + S^{TXM))UJI at every xeM.

4.2 Hyperrigidity

4.2.1 Definitions

Definition 4.2.1 Let D = W/U be a Griffiths domain and ft = G/K a
Hermitian symmetric space of noncompact type; we say that the homogeneous
period map ft —> D is 0- (respectively l)-hyperrigid if it satisfies Condition 1
(respectively, Conditions 1-2) below:

1. 5(Tft) is the maximal value of the scalar curvature in the space on
n-dimensional Abelian subspaces of

2. There is a linear representation p of W and an integer P such that for
the induced homogenous VHS on ft, the complex Kp is nontrivial but
acyclic, satisfies C% ^ 0 and Sp is maximal at Tft. (This condition
follows automatically if Lie(VF)"1'1 happens to be an irreducible U-
module.)

4.2.2 Rigidity phenomena

The following lemma is elementary:

Lemma 4.2.2 Assume that there is some 0-hyperrigid period map ft —• D
with scalar curvature S, and dim ft = n. Then, for each n-dimensional pos-
itive cycle (M,p,i) of D, one has {SUJ1^ — CI(M)LJ%~~1)[M] > 0 and every
case of equality is a geodesic cycle uniformized by some 0-hyperrigid locally
homogenous period map.
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Now, assume that there is some 1-hyperrigid homogenous period map Q —>
D, with dim Q = n . Denote by F* the Hodge filtration on the representation
space of p. For each Abelian n-dimensional complex subspace A C
one defines the complex:

K*P(A): 0 -> Fp/Fp-X 3U Fp~l/Fp-2 ® A* ^>

When A arises as the tangent space to a Griffiths period map, this complex
is identified with the already defined complex KP of the associated VHS. Let
U C Eab be the (Zariski open) subset of the space of all Abelian n-dimensional
complex subspaces A of Lie(W)"1'1 such that KP(A) is acyclic.

One may build holomorphic homogenous fibre bundles U —• D and Ea£, —>
D with fibres at the origin [7, respectively E^. The Gauss map of a positive
cycle T = (M, p, i) is the map 7: M —» z*Ea&/7Ti(M) sending each point to
its embedded tangent space.

The following theorem follows almost immediately from the definition of
1-hyperrigidity:

Theorem 4.2.3 Let Q, be an n-dimensional Hermitian symmetric space of
noncompact type. Suppose that there is some 1-hyperrigid homogenous period
map Q —> D. Let T = (M,p,i) be a positive n-dimensional cycle of D. The
Gauss map of T takes values in 2*U/TTI(M) if and only if T is a O-hyperrigid
geodesic cycle.

Proof Theorem 3.4.1 tells us that for any cocompact fixed point free discrete
subgroup F of Aut f2, one can construct a positive cycle T = (fi/F, p|r, i) such
that ch(i^p) = 0. In particular, J^^c^Kp)^'1 = 0. The integrand from
Lemma 4.1.2 is constant along f2/F. So the maximal value of S£ is exactly
minus the scalar curvature of ft. In particular, due to Definition 4.2.1, for
any nongeodesic n-dimensional cycle T = (M, p, i) (and also for any geodesic
cycle of nonmaximal scalar curvature) JM c^Kp)^'1 ^ 0.

But, tautologically, to say that the Gauss map 7 of the cycle T should
take values in Z*U/TTI(M) means that Kp is an acyclic complex. Thus
JM ciiKp)^'1 = 0, and T is a geodesic cycle. •

On the other hand, the following theorem of [4] is more difficult to prove,
and uses in a crucial way an improvement, due to Gromov [8], of Atiyah's L2

index theorem.
Assume that there is some 1-hyperrigid period map fl —• D = W/U. Set

n = dimfi. Let p be the representation of W and P the integer provided by
Definition 4.2.1. For a positive n-dimensional cycle of D, T = (M,p,z), we
write (M, V, F # , S) for the VHS on M associated to the representation p.
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Theorem 4.2.4 Assume that (M, a^) is a Kahler hyperbolic manifold in the
strong sense. (This condition is automatic when D is Hermitian symmetric.)
Then x ( ^ Kp) = 0 if and only if T is a O-hyperrigid geodesic cycle.

Sketch of proof Let L be the homogenous holomorphic vector bundle on
D such that ci(L, h) = Uh- Since i*Uh is exact on M, it follows that i*L —> M
is topologically trivial. Thus, one^can construct, for each e G R, a Hermitian
holomorphic line bundle U on M such that ci(L£) = EUJH- Furthermore,
there is an extension T£ of TTI(M) by U(l) whose action on M lifts to U'. One
can construct a variant of Atiyah's L2 index theory for Fe-invariant elliptic
operators.

Set E™ = ®p+r=Ps_p=Q HP 0 CLrs <g> U and D"e = d'^ + V;
e. In view of the

higher index theory mentioned above, the L2 Decomplex with its Fraction
has index given by the polynomial

P(e)= [
JM

Now by Proposition 1.2.1, x(X, Kp) = 0 implies that the L2 D^-complex
is acyclic for e = 0.

Due to the boundedness of the postulated primitive of UH, the L2 D"-
complex is also acyclic for small values of e. In particular:

X(M,K*P) = 0 => ak = u£-fc(ch(#;)Todd(TM))fcfc[M] = 0 for all k<n.

Now, for k = n — 1, ak = JM ci(Kp)co^~l (note that an = 0 since there
is some n-dimensional geodesic cycle M' which satisfies x(M\Kp) = 0). We
are thus reduced to the situation of Theorem 4.2.3. •

4.3 Constructing examples

The conditions in Definition 4.2.1 are so strong (and so artificial) that one
might wonder if 1-hyperrigid homogenous period maps can exist at all. Since
I have not found any general principle to classify 1-hyperrigid homogenous
period maps, I only explain here how to construct all the nontrivial examples
I know (see Appendix A.3 for a list of examples).

Lemma 4.3.1 Let Q = G/K be an irreducible Hermitian symmetric space of
noncompact type and X eUgnCg a weight whose associated VHS has length 1
(or 2 and is defined over the real numbers with Hodge vector (a, 6, a)). Then:

(1) The Griffiths period map associated with the direct sum of k copies of
E\, Q —> D\p kq (respectively,

il -> DR(ka, kb, ka) = SO(2/ca + fcfc)/S(U(fca) x O(kb))
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is O-hyperrigid.

(2) Assume moreover that A has a critical character, or that some multi-
linear functor (for example, a symmetric or an exterior power) of E\
is an irreducible ^-module whose highest weight has a critical character.
I/CD ¥" 0; then the homogenous period map is also 1-hyperrigid. In the
case of a length 1 VHS with a critical character, this is always satisfied.
In the length 2 case,

C£ = 0 <=> dimfi = 2P and b/a = 2 dim D/(dim Q + 2).

Proof I give the proof of (1) only for VHS of length 1, the case of length 2
being similar. Recall the formula of Lemma 4.1.1 for the scalar curvature
of a Griffiths period map. Observe that, for any locally homogenous VHS,
2i[ei> &i] ^ y/—ls(u(kp) x u(kq)) is the image under the representation of pp.
Thus it is a central element, that is, a matrix of the form (alkpiblkq)j with
pa + bq = 0.

For any n-dimensional subspace of D\pkq, the element

i ,ej G yf-is(\x(kp) x n{kq))

is a pair (A, B) of symmetric matrices, with A positive definite, B negative
definite, Tr A = n and Tr A+Tr B = 0. Then || EJe*, cJH2 = Tr(A2)+Tr(B2)
takes its minimal value at (a/fcp, blkq) with pa + bq = 0. This gives the
maximality assumption on the scalar curvature.

For (2), the irreducibility of Tjj under the action of the isotropy group
of the origin of the Griffiths domain D enables to conclude that Sp is con-
stant on the space of Abelian subspaces. The main point to be verified for
the statement on 1-hyperrigidity is thus Cp ^ 0. This follows from simple
calculations. •

A Tables
The tables in this appendix were completed using the tables in [2], p. 251-276
and [9], p. 518.

A.I Length of the fundamental representations
In Table 1, UJI denotes the weight of the zth fundamental representation using
the notation of [2].

The exceptional isomorphisms between classical domains are: JD" = A,
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Bn

q>p> 2

Dll for
n > 4

D™, for

n > 3

DZ for
n > 2

n > 2

D v i

0 and [

su(n, 1),

«(u(n) x u(l))

*u(p,g),

s(u(p) x u(g))

so*(2n),u(n)

sp(n,R),u(n)

0o(2n,2),
5o(2n) x 50(2)

so(2n + l,2),
so(2n + l) X5o(2)

*6(-14)>

so(10) x so(2)

e7(-25),e6 xso(2)

dimc(^)

n

pq

0
(r)

2n

2n

16

27

\W0\

n + 1

CD
on—1

2 n

2nH-2

2n + l

27

56

/(^)

/(Sw.) = 1,1 < i < n

l(Eu;i)=i, \<i<p

l^E^) = p , p<i<q

l(EUi) =p + q-i

q<i <p + q — 1

Z(£WJ = z , l < z < n - 2
/ ( ^ . 1 ) = [(n-l)/2]
/ ( ^ J = [n/2]

Z ( £ W i ) = z , l < i < n

/ ( E ^ ) = 2,1 <i <n-l

l(EUJn) = lJ(Eu;n+1) = l

l(EUi) = 2,1 <i<n

KE.n+1) = 1

Table 1: Lengths of fundamental representations

In the case of type I domains, the weight u>i corresponds to the funda-
mental representation p\: su(p, q) —> gi(p + q,C). E*^q' = Afcpi.

In the case of type III domains, the weight u\ corresponds to the fun-
damental representation px: sp(n,C) -> fll(2n,C). Es

k
p'n'R) is the primi-

tive part of Akp\ (and can be seen as the primitive part of Rk7r*C where
TT: A1*1 —• D"1 is the universal family parametrizing marked principaly po-
larized n-dimensional Abelian varieties).

In the case of type IIn and IV2n-2 domains, EU1 is the fundamental rep-
resentation pi: 5o(2n) —> gl(2n, C). Eu. = Klpi for i < n — 2, and #u,n_i and
EU)n are the two halfspin representations.

In the case of type IV2n+i domains, EU1 is the fundamental representation
pi: so(2n + 1,2) -> gi(2n + 3, C). Eu. = AVt for ^ < n, and ^o;n+1 is the spin
representation.
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Lacking expertise on the two exceptional symmetric domains, I did not
perform all the relevant computations. However, observing that length one
homogenous VHS can be used to classify totally geodesic holomorphic em-
beddings on symmetric domains into classical ones (compare our table with
the list of embeddings of a classical domain into another one given by [15],
p. 188), the fact that Dw and Dvl have no such embedding ([15], p. 187)
is equivalent to the fact that they do not carry any length one homogenous
VHS.

A.2 Special weights for classical domains

For each classical domain, the combinatorial recipe for testing whether a
dominant weight is special is given in Table 2:

Bn

Dlr for
q>P>2

Dll for

n > 4

£<", for

n > 3

D%, for

n > 2

DZ+u for
n > 2

A = J2i niui is special if and only if:

A = 0

Vfc € {0 , . . . , pq + YLi *(»* + np+q-i) + p E g * " 1 m],

3A C { 1 , . . . ,p + q} with \A\ = p such that

E J S A ( 1 + n,)(min(i,p) -\An{l,.. .,j}\) = k

v* € {o,..., Q) + Eiri2 iU + l^Vn-i + [?]U,

3A C {1 , . . . , n} with \A\ = 0 mod 2 such that

SneA^ + ZieAin-i + ̂  + Z'lZfh) *
i<nVfc€{0,...,2fc^ii + E?=i*M3^C{l,...,n}

such that ^2ieA(n - 2 + 1 + jyf=i m) = k

A G {0,cjn,u;n+i}, where E^E^^ are

the halfspin representations of $o(2n + 2)

A = 0

Table 2: Special weights

Except in the particular cases of type IV domains and of the complex
ball or of some other small domains, I cannot give the whole list of special
weights, but can give specific examples. In the following list, the weight A is
supposed to be the sum A = Yli U^i, with U £ N:
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Case D\q for q > p > 2

• If lp 7̂  0 (or lq ^ 0) then A = J2 k^i is not a special weight.

• If lp+i 7̂  0 and lp-i ^ 0 (or lq±i =£ 0) then A = ^T l{Ui is not a special
weight.

• ru)p+q-i (respectively ruji) is special if and only ifr < l + (p—l)(q—l).

Case D™ for n > 2

• If ln 7̂  0 or Zn_i 7̂  0 then A is not special.

• pun -h go;2 is special if and only if p < <n~1}
2
(n~2) and q < ^n"2)

2
(n~3).

• pu>i + quj2 + ru3 is special if and only if r < ^~4^2
(n"3), g < (n~2>2

(n~3)

and \n - 3 + r - p| < 1 + (n"3^2
(n~2).

In particular, for D"1, 7(Ji + 3a;2 is not special whereas 7u\ + Su2 + CJ3 is
special; this shows that being nonspecial is not a monotonous property, that
is, A nonspecial does not necessarily imply that A 4- fi is nonspecial.

Case Dl* for n > 4

• If ln T̂  0, A is not special. When n = 1 mod 2, a special weight also
has ln-\ = 0 and ln < 1.

• The weight YJlZi U^ i s a special weight for D1* iff YTiZi kuf1 is a
special weight for D^iv

Bn

Bn

n

n

+1

n > 4

ftHfl

D

Dl
k<x_ljcC^l<r<n,

Dl
k2ntk2n, keN

keN

-2),kCT
n-

1)

Nonspecial isotypic

(Eirk

(Eln)®
k

(E^)®fc = (ArE™)®k

VHS

, r < n

Table 3: Hypperrigid homogeneous period maps
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A.3 Examples of 1-hyperrigid period maps

Table 3 gives the examples of hyperrigid homogenous period maps Q —* D
constructed thanks to Lemma 4.3.1.
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Algorithms for computing intersection numbers
on moduli spaces of curves, with an application

to the class of the locus of Jacobians

Carel Faber

The first purpose of this note is to explain how to compute intersection
numbers of divisors on the moduli spaces M.g,n of stable pointed curves.
The Witten conjecture, proved by Kontsevich, gives a recipe to compute the
intersection numbers of the n basic line bundles on M.g,n- As we will see,
knowing these numbers allows one to compute all other intersection numbers
of divisors as well. That this is possible was pointed out to me by Rahul
Pandharipande. Earlier, Eduard Looijenga had made a remark that went a
long way in the same direction.

After describing the various divisors on Aig,ny we proceed to discuss the
algorithm computing their intersection numbers. We discuss our implemen-
tation of this algorithm and the results we obtain from it. For example, we
compute all intersection numbers on Mg for g < 6. (Copies of the program
and some data computed with it are available from the author.)

A refined version of the algorithm requires us to take into account certain
higher codimension classes, introduced by Mumford and Arbarello-Cornalba;
it computes all intersection numbers of these classes and divisors. Recently,
we realized that the Chern classes of the Hodge bundle can be taken along
as well; hence all intersection numbers of Mumford's tautological classes and
divisors can be computed. This has several applications. In §4 we discuss
one application in detail: the calculation of the class of the locus of Jacobians
in the moduli space of principally polarized abelian varieties of dimension
g (projected in the tautological ring). This class was classically known for
g = 4 and we computed it by ad hoc methods for g = 5; the new method
allows us in principle to compute the class for all #, in practice currently for
g < 7. Other applications may be found in the recent papers of Graber and
Pandharipande [GP] and Kontsevich and Manin [KM].

93
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1 Line bundles and divisors on g,n

For nonnegative integers g and n with 2g — 2 + n > 0, denote by Mg,n the
moduli space of stable n-pointed curves of genus g, over an algebraically closed
field k. This is the Deligne-Mumford compactification of the moduli space
M9yn of smooth n-pointed curves (C;x i , . . . ,xn) of genus g (with Xi ^ Xj
if z 7̂  j). We consider certain classes in the rational Picard group of M9in.
First, for 1 < i < n, let ^ denote the first Chern class of the line bundle whose
fiber at a stable n-pointed curve (C; # 1 , . . . , xn) is the cotangent space to C at
Xi\ that is, ^ = Ci(cr*(ct;7rn+1)), where 7rn+i: Mg,n+i —> M9in is the morphism
obtained by forgetting the (n + l)st marked point (the universal curve, cf.
[Kn 1]), Unn+x is the relative dualizing sheaf, and o i , . . . , an are the natural
sections of 7rn+i (the image of a stable n-pointed curve under O{ is the stable
(n + l)-pointed curve obtained by attaching a 3-pointed rational curve at the
zth point and considering the remaining 2 points on that curve as the zth
and (n + l)st point). Next, following [AC 2], §1, we define K\ = 7rn+i^(K2),
with K = ci(k>7rn+i(X^Li Di)), where D{ is the divisor that is the image of
the section cr̂ , for 1 < i < n. Note that it is a consequence of results of Harer
(cf. [Ha 1], [Ha 2], [AC 1]) that over C the restrictions to A4gyn of the classes
Ki and V*i» • • • > VVi generate the rational Picard group of M.g,n-

To get generators for the rational Picard group of M.g,n, we have to add
the fundamental classes of the boundary divisors. Exactly when g > 0, there
is a boundary component whose generic point corresponds to an irreducible
singular curve. It is the image of A^5_i,n+2 under the degree 2 map that
identifies the (n -f l)st and (n + 2)nd point on each curve. Following [AC 2],
we denote this locus by Airr and its class in the Picard group by 5irr. (For
g = 0 this class is 0 by definition.)

The other boundary components parametrize reducible singular curves.
The generic point of such a component corresponds to a curve with two
irreducible components C\ and C<i of genus g\ and g<i with g\ + g<i — g, and
labelled by subsets Ni and iV2 of n = {1,2 , . . . , n} satisfying N\ ]J N2 = n
that correspond to the marked points on the two components. All partitions
of g and n that lead to a stable curve occur; this just translates as the
condition |A^| > 2 when gi = 0. Such a boundary component is the image of
Mgi,\Ni\+i x ^P2,|N2|+i under the natural map that identifies the two 'extra'
points and labels the |iV;| remaining points on C{ with the labels from N{.
We choose to denote this boundary component in the case n > 0 by A ^ ^ ,
where Ni is the subset of n containing 1. In the case n = 0 the Ni are empty
and we may drop them in the notation; note that Agi = A92 and that this
component is usually denoted by Amin(pi^2).

Although this plays no role in the sequel, we point out that the classes
in the rational Picard group introduced so far are independent whenever
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g > 3. For g = 2, there is one relation, arising from the fact that K\ on
M.2 comes from the boundary. For g = 1, both «i and the ^ come from
the boundary; the boundary components are independent. For g = 0, the
boundary components generate, but are not independent; the relations arise
from the various projections to Mo^ and the equivalence of its 3 boundary
cycles. For proofs of these statements, see [Ke] and [AC 3].

There is one other divisor class which is most useful: Ai, the first Chern
class of the Hodge bundle. The Hodge bundle is the locally free rank g sheaf
(on the moduli functor) whose fiber at a curve C is H°(C,u>c). So it is 0 in
genus 0, while it is a pullback from JMH or Mg in case g = 1, respectively
g>2.

2 The idea of the algorithm

Suppose given a monomial of degree 3g—3+n in the divisor classes K\, V>I, . . . ,
^n, <5irr and the Sg^Ni on Mg,n', we want to compute the corresponding inter-
section number. We'interpret the divisor classes as classes on the moduli func-
tor. In the case of a boundary divisor, this means that we divide the usual
fundamental class by the order of the automorphism group of the generic
curve parametrized by the divisor. We denote these divisor classes by £.., to
distinguish them from the actual boundary divisors A....

The case in which the monomial involves only the ^ is of course covered
by the Witten conjecture [Wi], proved by Kontsevich [Ko]. As explained in
[AC 2], this also allows us to compute intersection numbers involving both K\
and the ipi.

It remains to compute the intersection numbers involving a boundary
class. We think of such a number as the intersection of the remaining classes
on the corresponding boundary component. A problem with this approach
appears to be that most boundary components have singularities that are not
quotient singularities, which means that one cannot properly do intersection
theory on them. This problem is easily solved: we have seen that each bound-
ary component is the image under a finite map of a moduli space of stable
pointed curves or a product of two such spaces. (The map almost always has
degree 1; the only exceptions are the degree 2 map from Mg-\,n+2 to Airr

and, in the case g even, the degree 2 map from Mg/2,i x ^p/2,1 to Ap/2.) So
we wish to pull the remaining divisor classes back by means of this map. If
we can express the pullbacks in terms of the basic classes on the new moduli
space (or product of moduli spaces), we will be done, by induction on the
dimension of the moduli space.

So the point is to understand the pullbacks of the basic divisor classes
from Mfl)n to the moduli spaces occurring in its boundary components.
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It is clear that the ^ pull back to ^ on the new moduli space(s): to the
first n on Mg-i,n+2, and to the \N\\ classes ipi on M91}\N1\+I and the |iV2|
classes ^ on M.g2,\N2\+i that correspond to the points not identified in the
map to A^Ni-

As explained in [AC 2], the class K\ pulls back to K\ on Mg-iin+2, re-
spectively to the sum of the pullbacks of the «i from the two factors on the
product A V I A M + I x A ^ I ^ I + I .

Pulling back a boundary divisor other than the one under consideration to
the new moduli space(s) is not difficult. The main point is that two distinct
boundary divisors intersect transversally in the universal deformation space
(see [DM]). It remains to identify the boundary divisors on the new moduli
space (s) that arise as the inverse image of the intersection of the boundary
divisor under consideration with a distinct one.

For example, in the case Airr, the pullback of the class 5H,M to Mg-iin+2
is the sum

with some exceptions: when n = 0 and 2ft = g, the two classes in the sum are
equal and the pullback consists of that class just once; when n = 0 otherwise,
8h$ was denoted ^—i—^ î̂ } above; when ft — 0 or ft = g, the first, respectively
the second, summand is not defined, and should be omitted.

We now consider the pullbacks of boundary divisors to a product of the
form M91y\Ni\+i x •A^.IAkl+i- ^he PuUback of <$irr is the sum of the Sirr on
the two factors. It remains to find the pullbacks of the boundary divisors
parametrizing reducible curves of type other than that under consideration.

We start with the case n = 0. Hence N\ = N2 = 0. We may assume that
9i < 92, and we want to pull back a class 6^ with h < g — h and h ^ g\. The
general point in a component of the intersection of the two boundary divisors
parametrizes a chain of 3 irreducible curves. There are a priori 4 possibilities
for the genera of the 3 components:

(1) [h,g\ — /i,#2], occurring when gi > h;

(2) [/i, #2 — h,gi], occurring when g2 > ft;

(3) [01, ft - 0i, 0 - ft], occurring when h> gi\

(4) [02, ft - 92,9 - ft], occurring when ft > g2.

Here the second entry refers to the genus of the middle component; note that
[a, 6, c] and [c, 6, a] describe the same type of curves.

Note that ft < g/2 < g2. In fact ft < g2, since equality implies ft = Pi,
which we have excluded. So (4) never occurs, while (2) always occurs. We
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conclude that, with one exception, the pullback of 5h equals

f pr* 6gi-hi{1} + pi*2 6g2.K{1} if gx > ft;

\ p r ^ S92.K{1} + pr£ 8h-gu{l} if ft > gu

where pr1? pr2 are the projections to the two factors of M91I\N1\+I X M92I\N2\+V

The exception is when h = g — h (implying ft > #i), and the two summands
in the second line are equal; then the actual pullback consists of that class
just once.

Now for the case n > 0. We may assume that 1 G iVi and we want to pull
back a class SH,M other than 591JN1- S o l G M and (ft, M) ^ (<7i, iVi), but we
no longer have g\ < g2 or ft < g — ft. Again there are a priori 4 possibilities
for the genera of the 3 components, where as before the second entry refers
to the genus of the middle component:

(1) [ft,#i — h,g2], occurring when gi> h and M C N\\

(2) [h, g2 — ft, <7i], occurring when g2 > ft and M C N2;

(3) [#i, ft — (ft, g — ft], occurring when ft > g\ and N\ C M;

(4) [g2, ft — 02,9 — ft], occurring when h> g2 and 7V2 C M.

Observe that (2) never occurs, since 1 G M and 1 ̂  N2. Note also that the
other possibilities indeed yield stable curves in all cases: in (1) and (3) the
necessary condition M ^ N\ when ft = g\ is fulfilled, and in (4) the equality
M = N2 never occurs. Finally, note that types (1), (3) and (4) are mutually
exclusive.

This means that the pullback of S^M consists of the sum of 0, 1 or 2 of
the classes from the following list, depending on which conditions hold:

(1) prj 5h,M, pullback from MguNiu{*} when g\>h and M C N\\

(3) pr^ Sh^guM-N1u{i}, pullback from ~Mg^N2^{i} w n en ft > g\ and Nx C M;

(4) prj 5h-g2,M-N2u{*}, pullback from M9UN1U{*} when ft > g2 and N2 C M.

Here we have identified the factors of the product of moduli spaces by means
of sets of marked points instead of just their number of elements. In light
of our convention to label a divisor parametrizing reducible curves by the
genus of the component containing 1 and by the set of marked points on that
component, it is natural to give the 'extra' point in case (3) the label 1, rather
than *.

Finally, we have to deal with self-intersections of boundary divisors: we
need to pull the class of a boundary divisor back to the corresponding moduli
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space (or product of moduli spaces). It is not difficult to deal with this
directly, but it is easier to use the fundamental identity on Ai9in

KI = 12Ai -<J + ^,

where 5 is the sum of the functorial classes of the boundary divisors and ijj is
the sum of the n classes ?/>* (see [Co]). Namely, every divisor class on M.9,n
discussed so far occurs in this identity. So a given boundary divisor class
can be expressed as a linear combination of other divisor classes, and if we
know how to pull back the other classes, we will also know how to deal with
self-intersections. We have discussed the pullbacks of K\, the ipi and the other
boundary divisor classes above, so we only need to determine the pullback of
Ai. Note that the pullback of the Hodge bundle to M9-i,n+2 is an extension
of a trivial line bundle by the Hodge bundle in genus g — 1, whereas the
pullback of the Hodge bundle to Mg^N^+i x -M^l^l+i 1S t n e direct sum of
the Hodge bundle in genus g\ and the Hodge bundle in genus gi (see [Kn 2] or
[Co].) Hence we find that the pullback of Ai to A^5-i,n+2 equals Ai, whereas
its pullback to M>9X,\NX\+\ X <M.g2,\N2\+i e°xua^s Pri ^i + Pr2 ^i-

This determines the pullback of a boundary divisor class to its correspond-
ing (product of) moduli space(s). We find that for n = 0, the pullback of <5irr

to Mg-i,2 equals

9-2

-Ipl ~1p2 + <*irr + ^2 ^ ' W '
h=l

whereas in the case n > 0 the pullback of S1TT to Mg-i,n+2 equals

when h=g—1

In the case of a boundary divisor parametrizing reducible curves, an ac-
tual self-intersection is much rarer. We find that the pullback of 5S1 ,iVi to
MguN!u{*} x M92,N2U{I} equals

f - pr* tp{*y - pr^ V>i + P ^ ^ 2 -PI ,{ I} if n = 0 and gi < g2;

- pr* ̂ {*} - P ^ ^1 4- prj ^1-P2lSu{*} if n > 0, Nx = n and gi>g2> 0;

k - prj -0{*} - pr^ ^ i otherwise.

This finishes the theoretical description of the algorithm.
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3 Implementation and results

We have implemented the algorithm outlined in §2 in Maple [Ma]. This
first requires an implementation of Witten's algorithm [Wi] to compute the
intersection numbers of the ipi on Mg,n. For this, we gratefully use the results
of Chris Zaal [Za] who, using such an implementation, computed a table
containing all the intersection numbers

on Mg,n with g < 9 for which all di>2 (hence n < 24 since XX=iW — 1) =
3#—3). The intersection numbers for which a d{ equals 0 or 1 can be computed
from these by means of the string and dilaton equations [Wi]:

f (rordlrd2 '"Tdn) = Ez:di>0 (rdi'''T*-I • • • Tdn) (string equation),

1 (rirdlrd2 • - • rdn) = (2g - 2 + n) (rdlrd2 • • • rdn) (dilaton equation).

Prom the intersection nurribers of the ^ , one can determine the inter-
section numbers of the classes ^ on Aig introduced by Mumford [Mu], as
outlined in [Wi]. Arbarello and Cornalba [AC 2] introduced classes Ki on
M.g,n generalizing Mumford's classes, and they show that the intersection
numbers of the ipi determine the intersection numbers of these K,{ as well as
the 'mixed' intersection numbers of the divisor classes Ki and ipi. So in par-
ticular the intersection numbers of K\ and the ̂  are determined. It is easy
to implement the calculation of these numbers from the intersection numbers
of the i\)i (especially so with a formula we learned from Dijkgraaf [Dij]), and
we have for instance calculated the numbers K\9~3 on Mg for g < 9.

Naturally the various divisors on A49in have to be ordered in some consis-
tent way. On Aig we start with «i, followed, by 5lTT and then the 'reducible'
boundary divisors, ordered by the minimum of the genera of the 2 compo-
nents, for a total of [g/2] -1-2 classes. (The class Ai was introduced only to deal
with self-intersections of boundary divisors and is not actually used in the pro-
gram.) When n > 0, there are (g 4- l ) 2 n - 1 + 1 classes: first ^ i , . . . , ipn, ̂ i and
Jirr, then the reducible classes, ordered first by the genus of the component
that contains the point 1, then by the number of points on that component,
and finally by the lexicographic ordering of subsets of n (of equal size and
containing 1). (Recall that in genus 0 the class 5irr is 0; it is included for
convenience.)

In the case of a pullback to a product of moduli spaces, we need to renum-
ber the indices from N\ U {*} as well as those from {1} U N2. For this we just
use the natural ordering of the elements of n, taking * as the (n -h l)st point.

The implementation of the actual algorithm is now rather straightforward.
Given a monomial M in the divisor classes involving at least one boundary
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divisor, we order the classes as above, and pull M back to the (product of)
moduli space(s) corresponding to the last divisor that occurs. Note that
whenever the monomial contains several distinct boundary divisors, we have
a choice here; while the ordering we choose is probably optimal for M9,
it is probably not for n > 0: we have recently experimented with another
ordering, which indeed appears to be better; the idea is that in the reducible
case one should try to pull back to two moduli spaces parametrizing curves
of approximately equal genus and number of points.

In case the last divisor is Airr, we find a homogeneous polynomial of degree
3# — 4 + n in the divisor classes on jM5_i,n+2- After expanding, it is a sum
of monomials (with coefficients) in the divisor classes; these are evaluated by
means of the (heavily recursive) algorithm.

In the reducible case, we also find a homogeneous polynomial of degree
3# — 4 + n, but this time in two sets of variables, the divisors on . M ^ I ^ I + I

and those on Mg2i\N2\+i' Many of the monomials will not have the correct
degree 3#i — 2 -f- |iVi| in the first set of variables and are 0 for trivial reasons.
The others automatically have degree 3#2 — 2 + |A^| in the second set of
variables; writing such a monomial as c • M\ • M2, where c is the coefficient
of the monomial and M» is the monic monomial in the ith set of variables,
it contributes c • a(M\) • a(M2), where a{Mi) is the result of applying the
algorithm to Mi on M.gi,\Ni\+i-

Using this implementation of the algorithm, we have computed, for ex-
ample, the 28 intersection numbers of «i, Sirr and Si on M3, confirming the
results of [Fa 1]. However, because of its heavily recursive character, the
algorithm already becomes impracticable in the computation of certain inter-
section numbers on M4. Most intersection numbers are still easy to compute,
but especially the numbers /cf~*5?rr with i large take a long time. It is quite
clear why: firstly, a pullback to Mg-itn+2 is the 'worst case', since the changes
in genus and in dimension of the moduli space are minimal, while the number
of points increases by 2, so that the number of divisors increases by a factor of
almost 4; secondly, as we saw in §2, the pullback of 6^ to Atp_i>n+2 involves
by far the highest number of terms.

Observe however that the class <5irr is a pullback from Mg, respectively
A4i,i. This first of all implies

c+1 = 0,
where m = max(p, 3# — 3), for all g > 0. Using this identity systematically
already saves a considerable amount of time. Moreover, any product involving
only «!, the tpi and 5-m can be pushed down to Mg, respectively .M 1,1, by using
the projection formula and the formulas in [AC 2]. This leads to intersection
numbers on those spaces of monomials in 5irr and the higher fy mentioned
before. As observed by Arbarello and Cornalba, the /q behave very well
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under pullback, and it is clear that all intersection numbers involving divisors
as well as the Ki can be computed by means of an algorithm almost identical
to that in §2. Even the implementation is easy to adapt. The point is that
this greatly simplifies the calculation of the numbers involving only «i, the
ipi and <5irr: in the naive implementation, the complexity of a calculation
increases at least exponentially with the number of points, and one would
have to calculate certain numbers on Mo^g to get all numbers on Mg; but
now many of the hardest numbers can be computed using at most 2-pointed
curves at all stages of the computation.

With these simple changes implemented, the calculation of many more
numbers becomes practical. We have calculated all intersection numbers of
divisors on Mg for g < 6 as well as on M$,\ and M^\. To obtain the
2 numbers KiS^. and S^r on MQ, we used the relations X^S^Ki = 0 and
^i3<?rr = 0, consequences of the relation Aj35irr = 0, which is geometrically
obvious.

This section of the paper would hardly be complete without some actual
intersection numbers. Here are a few:

„ -r? .o -251987683 9 1
and X\ =4320 " ^ '% 1~ 113400'

-1766321028967 , U 2 31
and X{ =^ , . i 5 . u t e - 6 Q 4 8 — ^ - 6 8 0 4 0 ( ) ,

_ -32467988437272065977 15 _ 431
On Me'. irr - 7257600 a n x ~ 481140'

We computed the number A? on M4 in [Fa 2] by a completely different ad
hoc method. Calculating it with the algorithm amounts to calculating all 220
intersection numbers of divisors on AI4, which provides a nice check of the
implementation.

4 The class of the locus of Jacobians
We used the calculation of A? on M4 in [Fa 2] to obtain the well-known result
that the class of the locus J4 of Jacobians of curves of genus 4 in the moduli
space AA of principally polarized abelian varieties of dimension 4 equals 8A1.
Using the computation of X\2 on M5 as well as some computations in the
tautological ring of M.5 as in [Fa 3], we could determine the class of 3$ in
A$, as we explain in a moment. Recently we realized that Mumford's formula
[Mu] for the Chern character of the Hodge bundle on Mg, together with an
algorithm similar to that discussed in §2, enables one to compute the class of
Jg in Ag for all g, at least in principle. In practice, we have carried this out
for g < 7. We also discuss these results here.
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We first recall the set-up, and explain our restricted interpretation of the
"class of the locus of Jacobians" in the moduli space of principally polarized
abelian varieties: by this, we mean a class in the tautological ring of Ag, the
Q-subalgebra of the cohomology ring of a toroidal compactiflcation Ag of Ag

generated by the Chern classes A* of the Hodge bundle E on Ag. Prom [Mu],
§5 we know the relation

(1 - Ai + A2 - A3 + • • • + ( - 1 ) % ) (1 + Ai + A2 + A3 + • • • + Xg) = 1;

equivalently, ch2fc(E) = 0 for all k > 1. The tautological ring is in fact the
quotient of Q[Ai,. . . , Xg] by the ideal generated by the homogeneous compo-
nents of the relation above and is thus a complete intersection ring. A detailed
description of the tautological ring may be found in [vdG]. In particular, the
relation with the cohomology ring of the compact dual of the Siegel upper
half space via Hirzebruch's proportionality principle is explained there. This
includes the fundamental identity

that enables one to compute intersection numbers in the tautological ring of
Ag: the monomial of top degree on the left, interpreted as an intersection
number, equals the number on the right. Here Bm are the Bernoulli numbers,
denned as in [BS] via */(e* - 1) = 1 + Em=i(5m/m!)tm. So for g = 1,2,3
respectively,

1 1 1
Ai = — , AiA2 = 7—r , A1A2A3 =24 ' x * 5760' x ** 2903040

Denoting by t: Mg —> Ag the extended Torelli morphism and its image
by Jg, we are after the functorial class [jg]Q of the locus of (generalized)
Jacobians, which is one half its usual fundamental class. In other words,
we wish to determine | t* l , since a generic curve of genus at least 3 has no
nontrivial automorphisms, while the generic p.p.a.v. and the generic Jacobian
of dimension at least 3 have two automorphisms.

It is important to point out that this is not what we actually compute.
We do not know whether, modulo boundary classes, the class of the locus
of Jacobians lies in the tautological ring; our feeling is that this is probably
false for g large enough, but we cannot even envisage a method to decide this.
Instead, we compute the projection [jg]T of this class in the tautological
ring; this is well defined by the perfect pairing in the tautological ringjmd
the cohomology ring of Ag. In other words, we compute the class [J9]Q
modulo a class X that has zero pairing with all tautological classes of the
complementary dimension.
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The method to compute [jg] T is the following. It is a class in the tauto-
logical ring of Ag of dimension 3# — 3, hence of codimension c = (g~2). Write
it as a linear combination with unknown coefficients a* of the elements Si of
a basis of the degree c part of the tautological ring:

[J9]T = ai$i 4- a2s2 + • • • + aksk , [J9]Q = [Jg]T + X.

(A natural basis is for instance the collection of square free monomials of
degree c in Ai , . . . , Xg.) To compute the coefficients a*, we have to evaluate
the k monomials A» of a basis of the degree 3# — 3 part of the tautological ring
on this class. The evaluation of expressions AiSj in the tautological ring of
Ag uses the relations between the A; and the proportionality relation stated
above. So the expressions Ai(aiS\ H- • • • + ctkSk) yield k linearly independent
rational linear combinations of the unknowns a*. The values of these expres-
sions can be determined as \U(t*hi) = (|t*l) • A», provided we know how to
evaluate f A* on Mg.

The simplest nontrivial example is g = 4. Here c = 1, a basis in codimen-
sion 1 is Ai, a basis in codimension 9 is \\ (or any nonzero monomial in the
A;), so to compute the class of J*4 in A4 we only need Â  on Ai*. We have
seen above that this can be evaluated, for example, by means of the imple-
mentation of the algorithm; we find the well-known result that [J^T = 8A1.

The situation for g = 5 is more interesting. Here c = 3 and a basis
in codimension 3 is given by AiA2(= ^Af) and A3. We need to evaluate 2
independent monomials of degree 12 in the A* on Ms- The algorithm will
naturally yield only the number A}2 (whose value we gave at the end of §3).
However, we can use the simple observation that the class XgXg-i vanishes on
the boundary Mg — Mg (see [Fa 3] or [Fa 4]). As a corollary, the numbers
A1A2A4A5 and A3A4A5 on Ms satisfy the same relation as the classes AiA2

and A3 in the degree 3 part of the tautological ring R*(Ms) of Ms, which
is 1-dimensional. This relation was worked out in [Fa 3]: 10A3 = 3A1A2. A
quick calculation in the tautological ring of As shows that this implies that
the class of the locus of Jacobians satisfies

Another such calculation, using A}2 = 68^00 on Ms, then shows that a = 24,68^00

hence

[Js]T = 72AxA2 - 48A3.

For higher genus, this method only provides some of the coefficients, not
all of them. We start with a general formula:
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Conjecture 1 In the basis of monic square free monomials mAi, . . . ,Af l of
degree (g^2), the coefficient Ci,2,...,P-3 o/AiA2-• • Ap_3 in the (projected) class
[J9]T equals

Thus for g = 3 , . . . , 7 it equals 1,8,72,384,768 respectively, while it is not an
integer for any larger value of g.

The conjecture holds for g < 15: it is a consequence of a conjectural
formula in [Fa 3] for the number A^_x on Mg that is proved for g < 15. To
derive it from that formula, note simply that A^_x = 2A5_2Ap_iA5 and that
A1A2 • • • Xg-3 is the unique monomial in the basis that has nonzero pairing
with Ap_2Ap_iAy.

Note that we could have used this formula instead of that for Aj2 to
compute the class of [JS]T-

For g = 6 we find the coefficient of A2A4 using the relation between A1A3
and A4 in R*(MQ):

C2,4 = —3(71,2,3 = —1152.

The knowledge of A}5 (see §3) gives a nontrivial relation between the remain-
ing coefficients of A1A5 and Ae:

7336704

A new ingredient will be required to solve for these coefficients. It is
provided by Mumford's formula [Mu] for the Chern character of the Hodge
bundle on Mg

ch(E) =

g:

h=0
L-x + \

(Note that Mumford's convention for the Bernoulli numbers differs from the
one we use: B2 = | , B4 = ^ etc.) Here i0: Mg-1,2 -» Airr C Mg and
ihi Mh,i x Aig-h,i —̂  &h C Aig are the natural maps, and K{ is the first
Chern class of the relative cotangent line bundle at the 2th point.

The formula is ideally suited for a recursive computation of the intersection
numbers of the Ki and the ch2j_i(E). Namely, suppose given a monomial in
those classes of degree Sg — 3 + n on Mg,n. If only Ki occur, we can proceed
as explained in §2, using the Witten conjecture (Kontsevich's theorem). In
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any case, as the Hodge bundle is a pullback from Aig or A^i,i, we can push
down the expression to Mg, respectively M\,\, and obtain a sum of similar
expressions. In genus 1, we only need the well-known equalities

So assume the genus is at least 2 and the monomial on Aig contains at least
one ch2j_i(E). Take the highest odd Chern character component that occurs,
and expand it using Mumford's formula. In the first term, that cli2fc_i is
replaced by a K2k-i (up to a factor), so it is determined inductively. The other
terms involve expressions in the K{ pushed forward via the maps ih- The point
is that these can be written as pushforwards from Mg-i^ or Mh,\ x -Mg-h,i
of intersection numbers of the classes Ki, Kj and Chern character components
of the Hodge bundles in genus g — 1, respectively genus h and g — h. This is
clear from the Arbarello-Cornalba formulas for i\Kj and the fact that 2Q(E)
is the extension of a trivial line bundle by the Hodge bundle in genus g — 1,
while for h positive z£(E) is the direct sum of the Hodge bundles in genera h
and g — h.

After expanding and omitting the terms that are 0 for dimension reasons,
we find an expression in intersection numbers of the classes just mentioned
on spaces of 1- or 2-pointed curves. These can be pushed down again to
intersection numbers of K{ and ch2j_i(E) on Mh (with h < g) or Ali,i. By
induction on the genus, these numbers are known.

Having discussed the implementation of the divisor algorithm in some
detail, we content ourselves with saying that the implementation of the new
algorithm proceeds along similar lines and is considerably easier.

Because the \ can be expressed in the chj(E), this means that all the
intersection numbers of the \ on Mg can be computed recursively. By the
discussion above, it follows that for all g the projection in the tautological
ring of Ag of the class of the locus of Jacobians can be computed, at least in
principle.

Currently, we have carried this out for g < 7. For g = 6, only one more
relation was required. Either one of the two relations following from

x x x x 1 6 9 7 A x x x x x 1 5 0 7 1 9

A2A3A4A6 = « w » g ww W . O i < , w . and A1A2A3A4A5 =2988969984000 i * * * * 15692092416000

suffices to solve for Ce and C\$ (the first relation involves Ci,5 only). The
result is

[Je]T = 384AiA2A3 - 1152A2A4 -

« 7 o / n A ox x . 2469^ 646 V

= Z 6 [ A1A2A3 - cJA2A4 + 777^A1A5 - ggJA6
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It may be worthwhile to point out the relation 15C& + 28Ci)5 = 2933.
In genus 7 the result is:

~ 220Q1^9
[J7]T = 768A!A2A3A4 - 6912A2A3A5 + " °o91

7522176. 8842752. 968832. 3276672
A A A A4A6 + - ^ - A 3 A 7 - - ^ -

As stated, this result is not very pretty; perhaps the class looks better in
a different basis. We would like to point out though that the class can be
computed with any choice of 7 independent monomials of degree 18 in the
A*; once this is accomplished, the values of all other such monomials can Jpe
determined by means of an easy calculation in the tautological ring of Aj.
In particular, one can choose 'easy' monomials to compute the class, and get
the 'hard' ones for free. In this way, for instance, we computed A}8 on M7:

1 8 _ 32017001
1 638512875

Finally, we have another general formula:

C o n j e c t u r e 2 In the basis of monic square free monomials in A i , . . . , A 5

of degree (g^2), the coefficient C2,z,...,g-t,g-2 of A2A3 • • • AP_4A5_2 in the (pro-

jected) class [jg]T equals

9{2g-2) s
2 ) Cl,2,...,s-3

12
_ 0-2 n 1 9-2

12 1 1 (2i + l)\B2i\ 4<? - 4 1=1 (2t + l)\B2i\ '

Thus for g = 5,6,7 it equals —48, —1152, —6912 respectively, while it is not
an integer for any larger value of g.

The conjecture again holds for g < 15; it is a consequence of Conjecture 1
and of the conjectural formula KiXg-3 = g(2g — 2)AP_2 in R9~2(Aig) that
can be proved for g < 15 using the results of [Fa 3] (note that the only
2 monomials in the basis that have nonzero pairing with AiAp_3Ay_iAp are
A2A3 • • • \g-4\g-2 and A1A2 . . . A^_3).
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were sparked by talks in which I discussed the problem of determining the
intersection numbers of divisors on M.g and the partial results I had obtained
(cf. [Fa 2], §5). I am most grateful to them for these remarks. I also want to
thank Chris Zaal whose results I used heavily in my computations.

The research in the remaining part of §4 was carried out at the Institut
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Finally, some remarks about possible uses of the implemented algorithms.
The algorithm for computing intersection numbers involving Chern classes
of the Hodge bundle (described in §4) has already found applications in the
recent work of Graber and Pandharipande [GP] and Kontsevich and Manin
[KM]. For moduli spaces M,g,n of small dimension and with not too many
divisors, one can use the divisor algorithm to determine the part of the coho-
mology ring generated by divisors. Recently, Getzler [Ge] did this for M.2,2 \
he shows in fact that the divisors generate the cohomology ring. As in that
paper, such calculations may have applications to computing Gromov-Witten
invariants. Also, the algorithms involving the ^ and the ch2j_i allow one to
do calculations that include those classes; this covers, for example, the Chow
ring of M3. It is even possible to include arbitrary boundary strata as module
generators, by pulling back all other classes to the corresponding product of
moduli spaces via a sequence of maps, each identifying a single pair of points.
Writing algorithms that can handle intersections of arbitrary boundary strata
will be considerably more difficult, however.

The various algorithms, and some tables of intersection numbers computed
with it, are available from the author by e-mail, although only the initial
version of the divisor algorithm is currently available in a user friendly format.

Note added in proof Conjecture 1 is now proved: Rahul Pandharipande
and I have proved the formula for A^_x that implies it [FaP].
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On some tensor representations of the
Cremona group of the projective plane

Marat Gizatullin

Intellectus est universalium et non singularium.
Thomas Aquinas, from Summa contra gentiles (1264)

0 Introduction

The Cremona group Cr = Cr(2, K) is the group of birational automorphisms
BirP2 of the projective plane; it is (anti-)isomorphic to the automorphism
group Aut K(x, y) of the rational function field in two variables.

Let W be a 3-dimensional vector space (over an algebraically closed field K
of characteristic zero), and P2 = P(W) its projectivization; V = Aut(P2) =
PGL(W) = PGL(3, K) is the collineation group of P2, that is, the group
of projective linear transformations. Thus V C Cr is a subgroup of the
Cremona group. For a linear representation r: GL(W) —> GL(V), consider
the projectivization

p = P(r): V = PGL(W) -> PGL(V) = AutP(V).

An extension of p is a homomorphism

p: C r -

which restricts to p on V, that is, p\p = p: V —> AutP(V); in other words,

there is a commutative diagram

V - ^ AutP(V)

i i
Cr M BirP(F)

where the vertical arrows are the natural inclusions.

Question Given the projectivization p of a linear representation r, does
there exist an extension p of p to the whole Cremona group Cr ?

I l l
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We shall see that the answer is yes if r = 5m(r0) is the mth symmetric
power of the natural representation r0 of GL(W) in the vector space W* of
linear forms, and m = 2,3,4. In other words, the Cremona group of the plane
has an action on the spaces of plane conies, cubics or quartics, extending the
actions of the group of plane collineations.

A first approach to the above question was proposed by Igor Artamkin in
his thesis [1], [2], where he constructed an action of the Cremona group of the
plane on moduli spaces of stable vector bundles over the projective plane, and
deduced an action on the curves of jumping lines of the bundles. A drawback
of his approach is that the generic curve of degree > 3 is not realized as
the curve of jumping lines of a vector bundle. Moreover, Artamkin's action
applies to curves with the additional structure of an even theta characteristic.

Our approach is more algebraic, although we believe that at a deeper level,
the reasons underlying Artamkin's constructions and ours are the same. A
rough outline of our constructions is as follows.

The group Cr(2, K) is known to be generated by the collineations V and
the standard quadratic transformation. Given a variety and an action of V,
we can obtain the required extension by choosing an action of the standard
quadratic transformation with the lucky property that all the relations hold-
ing between the collineations and the standard quadratic transformation are
satisfied. Of course, to realize this approach, one needs to find a handy and
explicit way to verify the list of relations. Section 1 of this paper carries out
this program. In a sense, this section complements the main theorem of [11];
it was omitted from [11] in view of the length of the paper.

Section 2 contains a series of general definitions of some objects con-
nected with natural actions of the group Cr(n, K), or of a more general group
UCr(n, K) (Definition 2.7), which we call the universal Cremona group. Our
definitions are perhaps too general for applications, but we hope that this
philosophy will clarify our constructions. Section 2 ends with a series of
verifications of relations as just explained.

Section 3 describes actions of the Cremona group of the plane on the
spaces of curves of degrees 2, 3 and 4. We present the first two actions in
some detail, but only sketch the treatment for quartics; we hope to return to
this case on another occasion.

As an introduction to these ideas, we describe the effect of the standard
quadratic transformation so on a generic conic C, following Artamkin [1], We
write C for the dual conic of C; let Po,Pu Pi De the three fundamental points
of s0 and Qo, Qo>Qv QiiQ& Q'i t n e s*x points of intersection of C with the
sides of the fundamental triangle, with Q'^Q" on the side Li opposite the
vertex Pi for 0 < i < 2. Write i?- and R" for the intersection points of Li
and the proper transforms of the lines PiQi and PiQ'l under s0; then all six
points R^ Bl[ lie on a conic D, and the dual conic D is the image of C by the
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action of the standard quadratic transformation on the space of conies.
About the same time, a letter from Dolgachev [7] contained the formulas

xf
0 = xix2, x[ = x2x0, x'2 = XQXU X'3 = x3x0, x'4 = x 4 x i , x'5 = x5x2

for a quadratic transformation of P5, which he considered as an analog for
P5 of the standard quadratic transformation s0. These formulas express the
relation between the coefficients of C and of D in Artamkin's construction
(compare (3.0) below).
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1 Generators and defining relations for Cr

1.1 Generators of the Cremona group

We suppose that the ground field K is algebraically closed; let (XQ : x\ : x2)
be homogeneous coordinates on the projective plane P2 over K. A rational
transformation of ¥2 can be written

£0 = /o(zo, £1, ^2), z'i = /i(zo, xu X2), x2 = /2OE0, £1,2:2), (1-0)

where /o , / i , /2 are either homogeneous polynomials of the same degree, or
quotients of homogeneous polynomials having the same degrees of homogene-
ity. The image of a point (a0 : ai : a2) G F2 under such a transformation
is

,ai,a2) : fi(aQ,aua2) : f2(aOyaua2)).



114 Tensor representations of Cr(2, K)

Let Cr = Cr(2, K) denote the set of all invertible rational transformations of
P2 over K.

Let V = AutP2 = PGL(3, K) be the set of all projective transformations

C01X1 + C02X2,

x[ = CIOXQ + cnXi + C12X2, with Cij G if and det(c^) 7̂  0. (1.1)
X2 =

We write Q for the set of all quadratic transformations, that is, invertible
rational transformations of the form (1.0), where / c / 1 , / 2 are homogeneous
polynomials of degree 2 with no common linear factor. The set of quadratic
transformations splits into three double cosets under the group of collineations
(more precisely, with respect to the natural two-sided action of V x V on Q):

Q = VSQV U VSIV U Vs2V, (1.2)

(here U means disjoint union), where So is the so-called standard quadratic
transformation, given by

So • XQ — **̂ lX2) X^ — X0X2, X2 — X()Xi, ^ l .o j

f^T* /y* —1— /v» /v» «^__ /v» sy* fy* 1 I f\ I

Next, 5i is the first degeneration of the standard quadratic transformation,
where two of the three fundamental points of So come together, and is given
by

i l l I {1 r\

S\ : XQ = Xj, Xj = X0X1, X2 = X0X2, (l-^/

or x0 = XIXQ^XI, xi = xi, x2 = X2. (1.6)

Finally, 52 is the second degeneration of s0 (or a further degeneration of $1),
where all the fundamental points of So come together to one point, and is
given in formulas by

s2: x'o = XQ, X\ = xoxi, x2 = x\ - xox2, (1.7)

or XQ = X0, x i = x i , x2 = XIXQ xxi - x2. (1.8)

Note that (1.4), (1.6), (1.8) are destined for future noncommutative general-
izations (see (2.9)).

Remark 1.1 The third double coset VS2V of (1.2) contains all nonunit ele-
ments of the following one-parameter subgroup at (with parameter t G K)

at: xf
0 = xj), xi = xoxi, x2 = x0x2 + tx\

or xf
0 = x0, xi = xi, x2 = x2 -h txiXo lxx.
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We can write these elements as composites o~t= P20 $2 °Pi in terms of s2 and
the collineations P\,P2 £ V given by

Pi: xf
0 = #o, #i = —tx\, x'2 = —tX2,

and p2: x'o = x0, x[ = —t~lx\, x'2 = t~lx2.

Theorem 1.1 (Max Noether) The Cremona group Cr(2, if) is generated
byVUQ.

Note that one can, as usual, replace P U Q b y the more economic set of
generators V U {s0}, writing the transformations si,S2 in terms of s0 and
collineations. More precisely,

81 = go o so o g0 o s0 o 0O, (1.9)

where g0: x'o = x\ - x0) x\ = xu x'2 = x2; (1-10)

and

s2 = siogxosu (1.11)
where g\: x'o = x0, x[ = xi, x2 = x0 — x2 (1-12)

Remark 1.2 The identities (1.9) and (1.11) have interesting analogs in the
Cremona group Cr(3, K) of 3-space. The involution

SO'.X'O = XQ1, X[=XI1, X'2 = X2
1, xf

3 = x^ (1.4a)

is the standard cubic transformation of P3. Take the projective transformation

Go' x'o = X\ — Xo, x'i = rci, x'2 = x2 xf
3 = X3 (1.10a)

as an analog of (1.10). Then the composite

Si = Go o So o Go o So o Go, (1.9a)

is the quadratic space transformation

Si: XQ = Xj, 2q = Z0Z1, ^2 = ^o^2) ^3 = £o#3- (1.5a)

Moreover, if we take the collineation

Gi: x'o = x0, xi = xi, x;
2 = x2, x;

3 = xo-x3 (1.12a)

as an analog of g\ in (1.12), then the composite

S2 = S i o G i o S i , (1.11a)
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is the quadratic transformation

(1.7a)

or (in af&ne coordinates x = X\/XQ, y = X2/XQ, Z = Xs/xo)

S2: x' = x, y' = y, z' = x2 - z.

The composites (1.9a) and (1.11a) contradict some propositions of Dolgachev
and Ortland [9], p. 93 (which are comparatively lucid paraphrases of some
claims of S. Kantor [13], A. Coble [6], H. Hudson [12], and P. Du Val [10]).

More precisely, write Crreg(3, if) for the subgroup of Cr(3, K) generated
by -So and the subgroup of collineations; the elements of Crreg(3, K) are the
"regular" transformations in the sense of Coble. Let Punct(3, K) be the
set of Cremona transformations of P3 without fundamental curves of the
first kind, that is, transformations without curves whose proper image in the
projective space is a surface, see [12], [9]. The authors listed above start
by asserting (sometimes with some provisos) that "one can prove that all
punctual transformations form a subgroup of the Cremona group". This
is false, because each factor of the right-hand side of (1.9a) is a punctual
transformation, whereas the composite S\ has x0 = 0, x\ — 0 as a fundamental
line of the first kind (maybe, more precisely, a curve infinitely near to this
line is a fundamental curve of the first kind); at any rate, no blowups of
P3 at a finite sets of points can reduce the transformations S\ and S2 to
pseudoisomorphisms in the sense of Dolgachev and Ortland [9]. The identity
(1.9a) also refutes the conjectured equality Punct(n, K) = Crreg(n, K), or
even the inclusion D. Note that the fact that the composites (1.9a) and
(1.11a) have even degree also contradicts Coble's formulas, according to which
the degree of a "regular" transformation of P<* is of the form (d — l)ra + 1.

1.2 Defining relations between the generators V U Q

We now reproduce and comment on the main theorem of [11], Theorem 10.7,
with some changes of formulation. If a, 6, c , . . . are finitely many elements of
the set V U Q of generators of Cr(2, K) (see Theorem 1.1), we write abc- • •
to mean a word over the alphabet P u Q , whereas the expression a o b o c o • • •
means the ordinary composite in Cr, that is, a birational transformation of
P2. The theorem on relations is as follows.

Theorem 1.2 Every relation between the generators V U Q that holds in
Cr(2, K) is a consequence of the 3-term relations of the form

9i929z = 1, (1.13)
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where {#1, #25 #3} i>s &n ordered triple of elements of V U Q for which the
corresponding composite g\og2o g3 of rational maps equals the identity trans-
formation of¥2.

We pull out some special relations from the above large family (1.13), and
each relation of the family will be a consequence of the marked special ones.

1.2.1 The first family of special relations: the multiplication law
of the projective group

They are relations of the form

P1P2P3 = 1, (1.14)

where Pi,P2,P3 £ V are collineations, and p^1 = p2 op3.

1.2.2 Generalities on edge relations

The edge relations arise from the two-sided action of the collineations on the
set of quadratic transformations, and are of the form

PiQiP2 = £2, (1-15)

where pi,p2 £ ^> £1,(72 £ Q, a n d p i o ^ o ^ = £2- More precisely, each relation
(1.15) gives three 3-term relations for use in Theorem 1.2:

Pi£i(P2 ° Q21) = 1> Pi(Qi OP2)Q21 = 1, /
and (pi o q\)p2q2 = 1.

We picture a relation (1.15) as follows:

£1

Pi O — — O P 2

This describes a relation (1.15) as a loop of length 2 going out along an edge
and back along the same edge; our term "edge relation" arises from this. The
family of all relations (1.15) is still too large and cumbersome, but in 1.2.3,
1.2.4, 1.2.5 below, we distinguish three special edge relations which, together
with (1.14), imply all the edge relations. Note that in any relation (1.15), the
quadratic transformations q\ and q2 both belong to the same double coset of
(1.2); this leads us to separate and classify the edge relations according to the
subscript n of the representative sn of the double coset VsnV for n G {0,1,2}.
We call the corresponding relation an (n)-edge relation.
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1.2.3 The (O)-edge relations

Our second family of special relations are edge relations arising from a loop
of length 2 obtained by going out and back along an edge corresponding to
the standard quadratic transformation SQ. The loop in question is a marked

Figure 1: (O)-edge relation

path in the graph I \ (see Figure 1 and compare [11], 4.1, 4.4, 4.5 and 10.5.3).
Let Go be the collineation group consisting of the transformations

g: x'o = toXi, x[=tiXj, x'2 = t2Xk, (1-16)

where {z, jf, k} is a permutation of {0,1,2} and to, £i, t<i £ K*. In other words,
Go = Aut Vo, where Vo —* P2 is the blowup of P2 in the three points

Let g >-» ~g be the involutive automorphism of Go taking (1.16) to

g: XQ = 60 £ J , x± = t^ Xj, a?2 = ^2 *̂ fc# (!••*• • )

Our second family consists of the relations of the form

sogso = 9 for g £ Go C V. (1.18)

More precisely, each relation (1.18) provides three 3-term relations for use in
Theorem 1.2:

sog(so o (g) l) = 1,

and (s0o g)so('g)~1 = 1;

compare (1.15) and (1.15a). Note that one of the simplest consequences of
(1.18) is si = 1 (take g = 1 in (1.18)).

1.2.4 The (l)-edge relations

Our third family of special relations are edge relations arising from a loop
of length 2 obtained by going out and back along an edge corresponding to
the first degeneration si of the standard quadratic transformation (see (L5),
(1.6)). See Figure 2, where we omit arrows that can be deduced by analogy
with Figure 1.
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9 O^—O (g)-1

Figure 2: (l)-edge relation

Let G\ be the collineation group consisting of the transformations

g: XQ = toXo, x\ = t\Xi, x'2 = t2x2 + r^o, (1-19)

where to,ti,t2 G K* and r G K. The group G\ is AutVi, where V\ —• P2 is
the minimal resolution of the indeterminacy of the rational map s\ of (1.5).
Let g »—> ~g be the involutive automorphism of Gi sending (1.19) to

~g\ x'Q = tlt^xi, x[ = tiXi, x'2 = t2x2 + rxi. (1.20)

Our third family consists of the relations of the form

g, (1.21)

where g G G\. More precisely, as in (1.15a) and (1.18a), (1.21) provides three
3-term relations. As before, s\ = 1 is a consequence of (1.18).

1.2.5 The (2)-edge relations

Our fourth family of special relations are edge relations arising from a loop of
length 2 obtained by going out and back along an edge corresponding to the
second degeneration 52 of the standard quadratic transformation (see (1.7),
(1.8)). See Figure 3, where we omit arrows that can be deduced by analogy
with Figure 1, and, here and below, we label the edges by n in place of sn.

Figure 3: (2)-edge relation

Let G2 be the collineation group consisting of the transformations

g: x'o = z0, x\ = txu x2 = t2x2 + rxi + sxQ, (1.22)

where t G K* and r, s G K. The group G2 is isomorphic to the group Aut V2 of
automorphisms of the surface V2, the minimal resolution of the indeterminacy
of the rational map 52. Let g \—> ~g be the involutive automorphism of G\
sending (1.22) to

~g\ x'o = XQ, x[=txi, x2 = t2x2 — rxi — SXQ. (1.23)
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Our fourth family consists of the relations of the form

S29S2 = <?, (1.24)

where g e G2. As in (1.15)-(1.15a), (1.18)- (1.18a), (1.24) provides three
3-term relations. As before, s\ = 1 is a consequence of (1.24).

1.2.6 Generalities on triangular relations

The relations (1.18), (1.21) and (1.24) were pictured as walks around the
edge in Figures 1, 2 and 3. Our remaining special relations are pictured as
marked loops around the triangle of Figure 4 (clockwise, as for the above edge
relations). Here the vertices are marked by collineations P1.P2.P3 € V, and

Figure 4: Triangular relations

the edges by quadratic transformations qi, q2, q$ £ Q. The marked triangular
loop of Figure 4 gives a relation of the form

PiqiP2q2Psq3 = 1, (1.25)

whenever the composite of rational maps pioq1op2oq2op3o qz is the identity.
Although as it stands (1.25) has six terms, it actually reduces to a three-term
relation (1.13) if we set & = Pi o q{. We call (1.25) a triangular relation.

All the triangular relations follow from the special triangular relations
written down in 1.2.7-1.2.12 below, together with the special relations al-
ready listed above. Each special triangular relation is of the form (1.25) with
QiiQ2^q3 taken from the quadratic involutions So»si o r 52 of (1.3)—(1.8). If
(1.25) holds with

Qi = 8n(i)i Q.2 = sn{2) and q$ = sn(3) , (1.26)

we say that Figure 4 is an (n(l),n(2),n(3))-triangle and that the relation
(1.25) is an (n(l),n(2),n(3))-triangular relation. As in 1.2.5, we label edges
with the number n instead of sn.
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1.2.7 The special (O,O,O)-triangular relation

This is the following relation:

= 1, (1.27)

where So is the standard quadratic transformation, and ho the involutive
collineation given by

/ l 0 . XQ — Xoi X-^ — XQ X\y X2 — Xo X2. yL.ZiOj

1.2.8 The special (l,O,O)-triangular relation

This is the identity (1.9) written down as the relation

0 \ /o 9oSigosogoSo = 1, (1.29)

(J9o

where g0 is the projective involution (1.10).

1.2.9 The special (2,l,l)-triangular relation

This is the identity (1.11) written down as the relation:

CQ—^—Oe

1 \ /I 525l5fl5l = 1? (l.oUj

U9i

where g\ is the projective involution (1.12) and e eV the identity.

1.2.10 The special (O,l,l)-triangular relation

This is the following relation:

where / is the collineation
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Remark 1.3 It is interesting to note in passing that the relation (1.31) yields
as a corollary:

the set V U {si} generates the group Cr(2, K)

(if K is an algebraically closed field, of course).
In contrast, the set VU{s2} does not generate Cr(2, if). Indeed, VU{s2}

is contained in the subgroup Cr^(2,AT) C Cr(2, K) consisting of Cremona
transformations (/o,/i,/2) (in the notation of (1.0)) having Jacobian de-
terminant a perfect cube; this is a proper subgroup because, for example,

1.2.11 The special (1,1,1)-triangular relation

This is the relation:

hi Q—^ O hi
= 1, (1.32)

where hi is the projective transformation

h i : x'o = xi- x 0 , x[ = xi, x'2 = x 2 .

1.2.12 The special (2,2,2)-triangular relations

Our final family of relations depends on a parameter t G K, with t ^ 0,1.
Write pt for the projective transformation:

pt\ XQ = £o, x\ = —txi, x2 = tx2i

and 52 for the second degeneration of the standard quadratic transformation
as in (1.7). Then our final special triangular relations are:

Pt"S2Pt'S2PtS2 = 1, where t' = 1 — - and t" — . (1.33)

Remark 1.4 There is a more natural and convenient form of (1.33), namely,
the multiplication law for the one-parameter group crt of Remark 1.1, that is,
the relation

at(7s = a t + a ,

where s,t G K, with s,t ^ 0 and 5 + 1 ^ 0. Note that the last equality is
of the form presented by (1.25) with pi = p2 = Pz = 1, qi = <Jt+s, q2 = cr_s,
93 = cr-t-
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1.2.13 Theorem 1.2 revisited

The more detailed statement of the theorem on relations is as follows.

Theorem 1.3 Every relation holding between the generators V U {sOi si, s2}
of the Cremona group Cr(2, K) is a consequence of the special relations (1.14),
(1.18), (1.21), (1.24), (1-27), (1.29), (1.30), (1.31), (1.32), (1.33).

For the proof, see [11], 10.6-10.7.

2 The universal Cremona group

2.1 Admissible triples, their spaces and maps

Definition 2.1 An admissible triple is a triple (R, A, M), where:

1. R is a commutative ring with a unit.

2. A is an i?-algebra, not necessarily commutative or associative, but at
least alternative; this means that R is contained in the centre of A and
the subring of A generated by any two elements is associative.

3. M C A is an i?-submodule such that

mMm C M for every m G M.

4. If m G M has a total inverse m~l in A, then m~l G M; here a iota/
inverse of a (Mal'tsev [15], Chap. II, 4.3) means an element a~l such
that

a~l(ax) — (xa)a~1 = x for every x E A.

Let G(M) denote the set of units or totally invertible elements of M.

Definition 2.2 Let R be a commutative ring having an involutive auto-
morphism r H-> f; by default, ~ is the identity map if no involution is specified.

An R-algebra with involution is an i?-algebra A with a semilinear invo-
lutive anti-automorphism a i—» a*; that is, * is an involution satisfying the
identities

(ra + sb)* = fa* + sb* and (ab)* = b*a*.

We write

A+ = {a e A | a* = a}, A" = {a € A | a* = - a }

for the set of *-invariant (respectively *-anti-invariant) elements of A.
For an i?-algebra A with involution, a triple (i?, A, M) is admissible if it

is admissible in the sense of Definition 2.1, and M* = M.
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Remark 2.1 If A is an i?-algebra with involution, then both (i?, A, A+) and
(R,A,A~) are admissible triples in the sense of Definition 2.2.

Let R be a commutative ring and n > 0 an integer. We construct a functor
§ n from the category of admissible triples to the category of sets.

Definition 2.3 If (R, A, M) is an admissible triple, we say that an (n + 1)-
tuple m = (mo,. . . , mn) G Mn+1 is invertible if AomoH hAnmn is invertible
in A for some Ao,..., An G R; in other words, if the components of m generate
an i?-submodule of M having nonempty intersection with G(M).

On invertible (nH-l)-tuples, we introduce the equivalence relation ~ which
is generated by the elementary relation

3g G G(Af) such that (ra0 , . . . , m'n) = {gmogy..., gmng).

(This is the point at which we need A to be alternative.) In other words,
two (n + l)-tuples m and m' are equivalent if and only if there are elements
<7i5 • • • » gk € G(M) such that

mi = 9i(' •' (gk-i(gk(mi)gk)gk-i) • * • )g\ for each 0 < i < n.

We write (mo : • • • : mn) (or sometimes simply m) for the equivalence class of
m = (mo, . . . , mn), and define Sn(i?, A, M) as the set of equivalence classes
of invertible (n 4- l)-tuples under ~. We define the functors SJ and §~ on
the category of i?-algebras with involution by

and S~(A) = §n(R, A, A').

Remark 2.2 The main example in what follows is the functor §+, especially
its value §+(Matp(AT)) on the if-algebra Ma,tp(K) of p x p matrices with
entries in an algebraically closed field K, where the involution * is matrix
transposition.

In general, S£(A) is the set of (n 4- l)-tuples (a0 , . . . ,an) with â  G A+

and with an invertible iMinear combination J2^iai ^ G(i4), modulo the
equivalence relation:

(oo, ...,On)~ (a 0 , . . . , a'n) 4=^ baob = a0 , . . . , banb = a'n,

where b G G(A) is a product of elements of G(A+). §+(^4) is called the
spherical n-space or the n-sphere over A. This is partly justified by the
fact that if A is an algebra with involution * over E or over C, such that
A+ = R, then SJ(A) is in natural one-to-one correspondence with the unit
sphere Sn C Rn+1.

If K is an algebraically closed field, then the set G(Matp(K)+) of invertible
symmetric matrices generates the whole group GL(p, if), hence the spherical
space §J(Matp(if)) coincides with the "noncommutative projective space" of
Tyurin and Tyurin [17].
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Under certain conditions, we define the polynomial A (if, A, M)(m) and
some other polynomials F(A), usually considered up to proportionality. These
polynomials depend on dual variables (u0,..., un) and (rc0,..., xn), and define
hypersurfaces in Pn and the dual Pn.

Let A be a finite dimensional associative algebra over the ground field if,
and NA/K' A—> K its norm (see Bourbaki, Algebre, [4], Livre II, Chap. VII;
for our purposes, we can use the so-called principal norm in the sense of the
exercise in [4], loc. cit, or the reduced norm if A is a semisimple algebra).
Write p for the degree of the characteristic polynomial of A ([4], loc. cit),
and let K[UQ, . . . , un]d be the vector space of homogeneous polynomials of
degree d. We assume that the restriction of the norm NA/K to the subspace
M C A is the exact qth. power of a polynomial: NA/K\M

 = (N°)q, where

N%K G K[M\.

Definition 2.4 For a fixed m = (ra0 : • • • : mn) G Sn(M), we set

A(if, A, M)(m)(uo,... ,un) = NO
A/K(uomo H h unmn);

thus A(if, A, M) e K[UQ, . . . , un] is a homogeneous polynomial of degree p/q.
If F: K [u0,..., un]p/q —• if [ajo, • . . , xn] is a contravariant and has nonzero

value at A(if, A, M)(m), then F(A(if, A, M)(m)) is an equivariant like de-
fined polynomial in the sense of Remark 2.5 below.

Remark 2.3 If A = Matp(if) is a matrix algebra over a field if, with invo-
lution matrix transposition, then A (if, A, A+)(a) = det(a).

Remark 2.4 If dimK A < oo, the hypersurface A(M)(m)(w0,... ,un) = 0
coincides with the so-called spectrum set of m, that is, with the set of all
points (t/o • * * * ' Vn) £ Pn(if) for which the linear combination yorriQ H h
ynmn is a noninvertible element of M. Indeed, by [4], Chap. VII, Proposi-
tion 12, an element x € A is invertible in A if and only if its norm NA/K{X)

is invertible in if.

Remark 2.5 The group PGL(n + 1, if) of projective transformations

n

9: x'i = ^9ijxj for z = 0 , . . . , n
i=o

acts (on the left) on Pn and (on the right) on Pn by the transpose map

71

gT: u[ = ^^gjiUj for i = 0 , . . . , n.
j=0
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This group acts (on the right) on P(AT[uo,... ,um]d): if F(u) G K[u]d,
then g(F)(u) = F(gT(u)). It also acts (on the left) on §n(K,M,A):

n

g(m) = (m'o : • • • : m^), where vn!i = /]gijTrtj.
3=0

A(K,A,M)(g(m))=g(A(K,A,M)(m)),
, A, M)(g(m))) = g^Atf, A,

Note that

The last equality means that the map

T(A(K, A, M)): Sn(K, A, M) - V(K[x0,..., xn})

is equivariant with respect to PGL(n + 1,K), because the correspondence
g \—• (^ - 1)T is an automorphism of this group.

In the following two definitions, we now construct an analog of homo-
geneous rational functions, specially adapted to the noncommutative case;
these are certain expressions in variables which are either letters, or ele-
ments of a if-algebra A. The pattern of our construction follows that of
the well-formed formulas in the calculus of mathematical logic (for example,
see Church's book [5]); our functions are always derived from well-formed
rational expressions. Moreover, for a well-formed homogeneous rational ex-
pression / , we define at the same time its domain of definition dom / C Mn+l

(here M is the third component of an admissible triple (K, A, M)), its value
/ (m) G M a t point m = (mo,... ,rnn) G dom/, and the notion of the do-
main of invertibility dom/" 1 C M n + 1 of such an expression. The degrees of
homogeneity of our functions / (xo , . . . ,xn) are the numbers +1 and —1; in
what follows, e stands for an element e G {-hi,—1}. The ground field K is
fixed, and its elements are called constants.

Definition 2.5 (i) For each i G {0 , . . . , n}, we define the coordinate func-
tion / ( x 0 , . . . , xn) = Xi to be an expression of degree 1. Its domain of
definition domxj is the whole of Mn + 1 , its value at m = (ra0, . . . , mn)
is equal to m*, its domain of invertibility is

{ m = ( r a ( ) , . . . ,m i , . . . ,m n ) |m i G G(M)}.

(ii) If / is an expression of degree e = ±1 and A a nonzero constant, A/
is an expression of degree e by definition. Its domain of definition (or
invertibility) coincides with that of / , and its value at m is equal to
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(iii) If / and g are expressions of the same degree e = ±1, the sum f + g
is an expression of degree e. Its domain of definition is the intersection
of the corresponding domains for / and g, its value (/ + g)(m) equals
/(m) + g(xn) and its domain of invertibility is

{m | m G dom(/ + g) and (/ + g)(m) G G(Af)}.

(iv) If / is an expression of degree e, then f~l = 1// is an expression of
degree — e by definition. The domain of definition and the domain of in-
vertibility of the expression f~l coincide with the domain of invertibility
of / . The value f~l(m) is equal to (/(m))"1.

(v) If f,g are expressions of degree e then fg~lf and f~lgf~l, are ex-
pressions of degree e and — e respectively by definition. The domain
of definition or invertibility of each product is the intersection of the
corresponding domains for all the three factors, and

The smallest set of expressions satisfying the above conditions (i)-(v)
is the set of well-formed homogeneous /f-rational expressions of variables
(xo,... ,xn). Every /^-rational expression / has a definite degree deg/ G

Remark 2.6 If /(x) = /(x0 , . . . ,xn) is a if-rational expression of degree 5
and #o(y), • • •, 9n(y) are n expressions in variables y = (y0,..., ym) of degree
£, then the composite /(go> • • • ,9n) is obviously a rational expression in y of
degree eS.

If / is a well-formed expression of degree e, and m G Mn+1 belongs to
dom/, then bmb G dom/ for any b G G(M), and f(bmb) = b£f(m)b£.

Definition 2.6 If / and g are two well-formed homogeneous expressions in
(n + 1) variables, each with nonempty domain of definition in some Mn+1,
we say that / and g are equivalent (and write / = g) if for every admissible
triple (K,A,M) and for every element m G dom/ D doing C Mn+1, the
equality /(m) = #(in) holds. A homogeneous K-rational function is defined
as an equivalence class of well-formed homogeneous if-rational expressions
/(x0, . . •, xn) with a nonempty domain of definition in some Mn+1; the set of
these is denoted by Rat(n-hl, K). Note that nonzero homogeneous K-rational
functions fall into two sets according to their degree.
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Remark 2.7 We have the following identities in two variables x,y:

(x-1)-1 = x, (x-'yx-1)-1 = xy-'x,

(x~l — y~l)~l = x(x — xy~lx)~lx

xy-'x = x - {x~l - (x - y)~l)-\ (2.1)

x(x — xy~lx)~lx = x — x(x — y)~lx (2.2)

{x-l-y-lyl = x-x(x-y)~lx. (2.3)

See Mal'tsev [16], Chap. 2, 4.3 for (2.1); (2.3) follows from (2.1) on substitut-
ing 2/1—• rr — 2/, and (2.2) is similar.

Definition 2.7 A well-formed if-rational map from projective n-space to
projective p-space is given by a (p + l)-tuple of if-rational functions of the
same degree in variables (xo, • • •, xn):

/(x) = ( /o(x) : . . . : / p (x)) ; (2.4)

or / : xf
0 = fo(xo,...,xn),...,x'p = fp(x0,...,xn).

Two (p + l)-tuples give the same map if they are equivalent under the equi-
valence relation generated by the following primitive relation: another (p+1)-
tuple (<7o(x) : • • • : &>(*)) is equivalent to (2.4) if there exists a K-rational
function h(x) with deg(/i) = — deg(^) and with nonempty domain of in-
vertibility, such that we have equivalences (in the sense of Definition 2.6)
fi = hgih for each 0 < i < p.

The identity map is the transformation given by xf
0 = x 0 , . . . , x'n = xn.

The map /(x) (2.4) induces a family of partially defined maps Sn(M) —»
SP(M), one for every admissible triple (K, A, M); it follows from Remark 2.6
that these maps are well defined. The domain of definition of a (p + l)-tuple
(2.4) consisting of rational expressions fi is

{m | m G dom/i, for 0 < i < p},

and on it / (m) defines a point of §P(M) in the sense of Definition 2.3.
A well-formed if-birational transformation of projective n-space is a well-

formed rational map F of this space to itself such that there is an inverse
map G with the property that both composites F o G and G o F are equal
(more precisely, equivalent) to the identity map. We call such a map F a uni-
versal Cremona transformation; the group of all these is called the universal
Cremona group, and is denoted UCr(n, K).

A partially defined map / : §n(M) —• §n(M) with a nonempty domain of
definition, where M is the third component of an admissible triple (K, A, M),
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is a Cremona transformation if there is an element F G UCr(n, if) inducing / .
We identify two such maps if they coincide on some nonempty intersection of
the domains of definition of some well-formed representatives for both maps.
The group of these maps will be denoted by Cr(n, M).

Thus the universal Cremona group UCr(n, if) is endowed with a family
of epimorphisms

n(n, M): UCr(n, if) -> Cr(n, M). (2.5)

Our immediate goal is to construct (for the case of an algebraically closed
ground field if) a section S(2, if) of the epimorphism 11(2, if).

Remark 2.8 If A is a finite dimensional associative algebra with involution
over an algebraically closed field K and (if, A, M) an admissible triple such
that the set G(M) generates a semisimple algebraic subgroup G of G(A),
then, at least birationally, one may view Sn(if, A, M) as a geometric quo-
tient of Mn+1 with respect to the two-sided diagonal action of G. Thus a
generic element of Sn(if, A, M) may be viewed as a generic point of some al-
gebraic variety over if; and moreover, we may view the transformations of the
§n(K, A, M) induced by elements UCr(n, if) as birational transformations of
the variety.

2.2 An action of the Cremona group of the plane on
the 2-spaces S2(K,A, M)

Let A be a if-algebra over an algebraically closed field K and (K,A,M)
an admissible triple. The collineation group V = PGL(3, K) acts on the
set S2(if,A, M). Our goal is to extend the action to the whole Cremona
group (see the Introduction), making it act on §2(if, A, M) by birational
transformations. The group Cr(2, M) acts on ^(K-iA^M) and, according
to equation (2.5) (see (2.6) below), we have the epimorphism 11(2, M) of
the universal Cremona group UCr(2, if) onto Cr(2, M), hence this universal
group acts on §2(M). A special case of (2.5) is

n(2, if): UCr(2, if) -> Cr(2, if). (2.6)

If the homomorphism (2.6) admits a section

E(2, if): Cr(2, if) -* UCr(2, if), (2.7)

(of course, by definition, so that the composite 11(2, if )oE(2, if) is the identity
of Cr(2, if)), then this section provides the required extension.
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In the rest of this section, our plan is as follows. First, we already have a
natural inclusion

£?,:P-+UCr(2,#). (2.8)

of the collineation group V into the universal Cremona group.
Next, we find three universal birational maps So, Si, S2 £ UCr(2, K) that

map to the quadratic transformations SQ,SI,S2
 under 11(2,K). Finally, we

check that all the relations mentioned in Theorem 1.3 hold in UCr(2, K)y or
more precisely, the relations obtained from those by substituting So,S\,S2

respectively for s0, Si, s2.
Let x = (XQ : x\ : x2). We define the effect of the action on x of the

quadratic maps So, Si, S2 (compare (1.4), (1.6), (1.8)) in the following natural
way:

S0(x) = (XQ1 : x^1 : x2
l),

Si(x) = (zi^o1^ : £i : x2),
S2(x) = (x0 : xi

Note that, to be correct, we should perhaps write "=" instead of "=" in
all the verifications below, but we neglect to do it.

2.2.1 Verifying the relations (1.14)

These relations hold because the natural inclusion (2.8) of the collineation
group of the plane into the universal Cremona group is a homomorphism.

2.2.2 Verifying the relations (1.18)

If G is the collineation G(x) = {toXi : t\Xj : t2Xk) (more precisely, the image
of the collineation (1.16) under the inclusion (2.8)), then

GSo(x) = (toxrl : t&J1

that is, SoGSo = G, where G = Tsp{g). Thus (1.18) is satisfied here.

2.2.3 Verifying the relations (1.21)

Set G = Ep(#), where g is the collineation (1.19) and G = Ep(y)), where ~g
is (1.20); then

SiGSi.(x) = (tixi(toxixo ^ i ) " 1 ^ ! : tixi : t2x2 + rx0)
= (tlt^xo : totiXi : t2x2 + rx0) = G(x).

Thus (1.21) is satisfied here.
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2.2.4 Verifying the relations (1.24)

Similarly, set G = T,-p(g), where g is the collineation (1.22), and G = £T>(#),

where ~g is (1.23); then

GS2(x) = (x0 : tixi : £2(XIXQ ^ I - ^2) + rai + sx0),

52G52(x) = (xo : toi : —^(xix^xi — X2) — rx\ — sxo + tx\XQltx\)

= (x0 : tx\ : t2x2 — rxi — sx0) = G(x).

Thus (1.24) is satisfied here.

2.2.5 Verifying the relation (1.27)

Let Ho = Ep(/i0), where /i0 is the collineation (1.28). We have to check that

SoHoSo(x) = HoSoHo(x).

First, on the left-hand side,

So(x) = (XQ1 : X11 : x^1),

Similarly, on the right-hand side,

So#o(x) = (XQ X : (x0 - si)"1 : (x0 - X2)"1),

H0S0H0(x) = (XQ1 : x^1 - (x0 - X1)"1 : XQ l - (x0 - x2)-1)

= (x0 : x0 - xp(x0 - xi)"1xo : x0 - xo(xo - x2)"1x0).

Thus the required relation follows from the identity (2.3).

2.2.6 Verifying the relation (1.29)

Let Go = E^(^o), where go is the collineation (1.10). We have to check that

5i(x) = GoSoGoSoGo(x).

We build the following pyramid of equivalences:

G0(x) = (xi - x 0 : xi : x2),

5oGo(x) = ((xx-xo)"1^1^1),

Go5oGo(x) = ( x r 1 - ( x i - x 0 ) - 1 : x r 1 : x 2 - 1 ) ,

5oGo5oGo(x) = ((xr1 - (xi - xo)"1)"1 : xx : x2),

GoSoGoSoGo(x) = (xi ~ (XTX ~ (xi " ^o)"1)"1 : a* : x2).

By virtue of the identity (2.1), the first component of the last triple coincides
with xixo"

1xi. Hence the required relation is established.
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2.2.7 Verifying the relation (1.30)

Let G\ = £p(#i), where gi is the collineation (1.12). We have to check that

52(x) = SiGiSi(x).

This is easy; indeed,

5i(x) = (XIXQ XXX : xi : x2),

*xi - x2),

= (x0 : xi : XIXQ lxx - x2) = 52(x).

2.2.8 Verifying the relation (1.31)

Let F = £p(/) , where / is the collineation of (1.31). We have to check that

As before, this is easy; indeed,

Si(x) = (XIXQ^I : xi : x2),

F5i(x) = (x2 : xi : 1

2.2.9 Verifying the relation (1.32)

Let #1 = Sp(/ii), where hi is the collineation participating in (1.32). We
have to check that

First, on the left-hand side,

5i(x) = (XIXQ xxi : xi : x2),

ffiS'i(x) = (xi - XIXQ xxi : xi : x2),

5iffi5i(x) = (xi(xi - XIXQ ^ i ) " ^ ! : xi : x2).

Next, on the right-hand side,

ifi(x) = (xi - x0 : xi : x2),

5iffi(x) = (xi(xi - xo)"1^! : xi : x2),

HiSiHi(x) = (xi - xi(xi - xo)"1^! : xi : x2).

Thus the required relation now follows from the identity (2.2).
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2.2.10 Verifying the relation (1.33)

Let pt be the collineation of 1.2.12, and Pt = ̂ v{Pt) its image; as in (1.33),
write if = 1 - \ and if' = ^ . Then

S2(x) = (x0 : xi

PtS2{x) = (x0 : - t e i : t(xxXQ lxx - x2)),

x) = (xo:-tx1:{t2-t)(xlXQlx1)+tx2),

= {x0 : (t - l)x1 : -(t -

Pt»S2Pt>S2PtS2(x) = (x0 : xi : x2).

All our verifications are now completed. Q.E.D.

3 Conies, cubics and quartics

3.1 Left and right actions of the Cremona group of the
plane on the space of plane conies

Let A = Mat2(K) be the 2 x 2 matrix algebra over an algebraically closed
field K of characteristic ^ 2, with involution given by transposition * = T;
thus A+ is the set of symmetric matrices. We write D(P,Q) for the mixed
determinant of two 2 x 2-matrices P, Q; in other words, if

\P21
Pl2\
P22j '

1 /Ipil
2 \\p21

0

922

911

921

912

922

P\2

P22

then

The spherical 2-space S^A) consists of triples (mo,mi,m2) of symmetric
matrices m; € A+, such that some if-linear combination Ao?noH-Aimi4-A2m2

is invertible, modulo the equivalence relation: (rao,mi,ra2) ~ (^0,^1,^2) if
rti = CrriiCT for some invertible matrix C G A. Let m = (mo : mi : m2)
denote the equivalence class of (mo,mi,m2). The collineation group V acts
(on the left) on S f ^ ) . The P-anti-equivariant map

A:

(compare Definition 2.4) sends each triple m = (m0 : m\ : m2) to the ternary
quadratic form

-f- uimi + u2m2) =
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considered up to proportionality; here ^ ( m ) = D(mi,rrij). The Cremona
group of the plane acts (on the left) on S^(^4). It is possible to define a
natural (right) action of this group on the space of conies in such a way that
A is a Cr(2, if )-anti-equivariant map. Indeed, we can use the identities

) = (det(P))"1, D(P,P)=det(P),

det(P)det(Q)'

^ Q ) .

D{QP~lQ,P) = 2D(P,Q)2(det(P))-1-det(Q),

n(np-in m 2D(P,Q)D(Q,R)-D(P,R)det(Q)
D(QP Q,R) = ^ •

For s0, we get

ai:j(So(m)) = aij(m)(aii(m)ajj{m))-'1 for 0 < i, j < 2;

to write down explicit formulas for the actions of the three quadratic trans-
formations 5o,5i,S2 on conies. That is, in other expressions, the right action
of the standard quadratic transformation on the space of plane conies is de-
scribed by the formulas

aa'12 = ai2aOo, ^02 = a02^n, a01 =

Similarly, we get the following formulas for s\ and 52:

. *

JJ-^aiitm))2, an(Si(m)) = an(m),

= a22(m), ai2(5i(m)) = ai2(m),

= aOi(m)aii(m)(aOo(m))-1,

aO2(5i(m)) = (aoo(m))~1(2aoi(m)ai2(m) -

and

aOo(52(m)) = aoo(m), an(52(m)) = an(m), a0i(52(m)) = aOi(m),

ai2(52(m)) = a1i(m)aoi(m)((aOo(m))-1 - ai2(m),

aO2(52(m)) = 2(aOi(m))2(aOo(m))-1 - aO2(m) - on(m), (3.2)

a22(52(m)) = a22(m) -h (aoo(m))-1((aii(m))2

+ 2aO2(m)aii(m) - 4aOi(m)ai2(m)).
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An alternative way of writing the action of 5i is as follows:

a00 = a n , a u = anaoo, a'22 = a22&oo, / o ., N
(o.laj

and similarly for the action of 52:

a o o = aoo> a i i
a'12 = anaoi - ai2aOo, a'O2 = 2a^ - (aO2 + an)aoo, (3.2a)

All the special relations (where, of course, we replace each collineation g
by its transpose gT, and reverse the order of terms in products) are satisfied
here.

If we want a left action of the Cremona group of the plane on the space
of plane conies, then we must pass to the dual conic. Let (̂ 4ij)o<i,j<2 De the
adjoint matrix of (a^); then the left action of So is given by the formulas

a>ij = auajjAij (3.0b)

The left action of Si is defined by

aoo =

o!l2 = aOianA)2 - anai2A22, (3.1b)

^01 = ^00^12^02

The left action of 52 is defined by

+ ^ ^ 2 2 ,

4- 4a^A22, a22

a02 = ~aOO»114o2 ^

aoo =

aoi =
(3.2b)

More precisely, if a matrix g G PGL(3, K) = V, viewed up to scalar multiples,
acts on the space of symmetric 3 x 3 matrices (also viewed up to scalar
multiples)

a = (ay) € F5(K) = F(S2(W*))

according to the rule

g(a) = ( f f - 1 ) ^ " 1 ) ,
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and the quadratic transformations so,si,S2 ac^ o n ^s(^0 according to for-
mulas (3.0b), (3.1b), (3.2b) respectively, then we have a well-defined (left)
action of Cr(2, K) on the space of plane conies.

Note that our good luck in the case of conies is based on the fact that the
map A is a birational isomorphism (for some analogs of this fact see below,
3.2.5, Theorem 3.3 and 3.5, formulas (3.39)-(3.40)).

3.2 Left and right actions of the Cremona group of the
plane on the space of plane cubics

Now let A — yi&tz(K) be the 3 x 3 matrix algebra over an algebraically closed
field K of characteristic ^ 2 ,3 , with the involution given by transposition
* = T ; thus A+ is again the set of symmetric 3 x 3 matrices. Let D(P, Q, R)
denote the mixed determinant of three 3 x 3 matrices; tha t is, if

ei P12 P

1 P22 P23

1 P32 P33J

then 6D(P, Q, R) equals

'011 012 <3
1 = I 021 022 023

1 032 033>

^22 ^

7*32 ^33 >

Pll

P21

P31

012

022

032

7*13

7*23

7*33
+

Pll

P21

P31

+
011

021

031

7*12

7*22

7*32

7-12

7*22

7*32

013

023

033
+

Pl3

P23

P33

011

021

031

+ 7*2

Pl2

P22

P32

1 Pl2

1 P22

1 P32

7*13

7*23

7*33

013

023

033
+

7*11 012 Pl3

7*21 022 P23

7*31 032 P33

The spherical 2-space Sj{A) consists of triples of matrices (ra0, mi, m2) in
A+ for which some if-linear combination Aorao + Aimi + A27n2 is invertible,
and (m0, mi,m2) ~ (n0, ni, n2) if there exists an invertible matrix C G A such
that rti = CmiCT. We write m = (m0 : mi : m2) for the equivalence class.
The collineation group V acts (on the left) on Sj (^)- The P-anti-equivariant
map (see Definition 2.4)

A: S+ (Mat3(/0) -+ W) = P(^[^o^i^2]3)
associates with each triple m = (m0 : mi : m2) the ternary cubic form

A(m)(u0, uu U2) = det(ttomo + u2m2) =

(up to proportionality), where a ^ m ) = D(mi,mj,mk). The cubic curve
A(m)(uo,ui,U2) = 0 inherits an additional structure from the matrix triple
m, namely, an even theta characteristic, that is, a nonzero 2-torsion point;
we now treat these relations more explicitly.
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3.2.1 Invariants, covariants, contravariants and 2-torsion of plane
cubic curves

We take the three variables xo,xi,x2 to be homogeneous coordinates on P2,
and normalize the coefficients a^ of XiXjXk in a cubic form F as follows:

F =

(3-3)

•+•

Let uo,ui,u2 be dual homogeneous coordinates on the projective plane P2.
The Hessian form He(F) of the cubic (3.3) is defined by

where HE(F) is the Hessian matrix

/

HE(F) =

d2F
dx2

0

d2F
dxidxo

d2F

d2F
dxodxi

d2F
dx\

62F

d2F

dxodxz

d2F

dx\dx2

82F

(3-4)

dx\ I

Note that our Hessian form differs slightly from that of Salmon's book [16]
or Dolgachev and Kanev [8] (ours is multiplied by 6). Normalized coefficients
by monomials XiXjXk of the Hessian are written down in [16], N° 218. The
Cayley form Ca(F) of F is

Ca(F) = 3 x

GOOO

^ 0 0 1

&002

2u0

0

0

&110

a m

0

2tii

0

&220

»221

<*222

0

0

2u2

Q>012

ana

«122

0

u2

Ui

^002

aoi2

O>022

U2

0

UQ

«001

aon

«012

0

There is a well-defined natural scalar product (or convolution) (F, G) of two
ternary forms F(XQ,XI,X2) and 0(^0,^1,^2) of the same degree in dual vari-
ables. For example, if F and G are ternary cubic forms (where F is (3.3),
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and G has normalized coefficients 6^), then

(F, G) = aooô ooo + aiii&m -f a222&222 + 6aOi2&oi2

4- 3aOo2̂ oo2 + 3ano6no (3.5)

The Aronhold invariants 5 = S(F), T = T(F) and R = R(F) of a cubic form
F are defined by

S(F) = - ( F , Ca(F)), T(F) = -(He(F), Ca(F)), R(F) = T(F)2 - 5(F)3

(compare [16], N°s 220-221). It is convenient to use the following contravari-
ant cubic form

D(F) = - (T(F) Ca(F) - Ca(He(F))). (3.6)
3

The operation D is an analog of passing to the dual of a quadratic form.
Indeed,

D(D(F)) = -S2R(F)6S(F)2F, (3.7)

or in other words, D iterated twice yields the initial cubic form (up to a
factor). We may consider D a s a "birational null-correlation", because the
contravariant D(F) defines a hyperplane in the space of cubic curves, and F
belongs to this hyperplane: (F, D(F)) = 0, where ( , ) is the scalar product
(3.5). The operation D interchanges the Hessian and the Cay ley forms up to
a factor, in the sense that

He(£>(F)) = 2i?(F)2 Ca(F)

and Ca(£>(F)) = -4R(F)2 He(F).

We refer to the pencil of cubic forms

uF(xo, xi, x2) + v He(F)(xo, £i, x2),

as the Hessian pencil (an alternative term syzygetic pencil is due to L. Cre-
mona), and

u Ca(F)(uo, u\, u2) + vD(F)(uo, ui,u2)

as the Cayley pencil The Hessian operation preserves both these pencils,
giving rise to the following actions (compare [16], N° 225). On the Hessian
pencil:

He(uF + v He(F)) = 3t; (u2S + 2uvT + ^ S 2 ) • F (3.9)

-I- (u3 - ZSuv2 - 2?V) • He(F),

in particular He(He(F)) = 352F - 2THe(F). (3.10)
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(Here and below, we write S = S(F), T = T(F), R = R(F).) On the Cayley
pencil:

He(uCa(F) + vD(F)) = 6u(u2 - 2Tuv + Rv2} • D{F) (3.11)

+ 2(2Tu3 - 3Ru2v + flV) • Ca(F),

in particular He(Ca(F)) = 6T(F) Ca(F) - 2 Ca(He(F)). (3.12)

The Cayley operation takes the Hessian pencil into the Cayley pencil; namely,

S(F) Ca(uF + vKe(F)) = 3v(u2 - S(F)v2} • D(F)

+ (s(F)u3 + 3T(F)u2v + 3S(F)2uv2 + T(F)S(F)v3^ • Ca(F);

The operation D acts in a similar way. Furthermore,

Ca(uCa(F) + vD{F)) = 12S(F)2U(RV2 - u2) • F

+ 4 (T(F)u3 - 3R(F)u2v + 3R(F)T(F)uv2 - R(F) V ) • He(F), (3.13)

and

D(wCa(F) + vD(F)) = 16S2R$(u,v)2[2uSUe(F) - {Tu + 2Rv)F],

where

In particular,

= 288R(F)S(F)2 (T{F)F - S(F) He(F)) • (3-14)

Evaluating the Aronhold operations S(-), T(-), and /?(•) on our two pencils
gives the following: on the Hessian pencil,

S{uF + v He(F)) = u4S + 4u3vT + 6uVS2

+ 4uv3ST + v\AT2 - 353), (3.15)
in particular 5(He(F)) = 4T2 - 353 = T2 + 3R. (3.16)

Also,

T{uF + v He(F)) = u6T + 6u5vS2 + 15uVST
+ 20u3v3T2 + 15u2v4S2T (3.17)
+ 6uv5(3S3 - 2T2)S + v6(9S3 - 8T2)T,

in particular T(He(F)) = (953 - 8T2)T = T3 - 9RT. (3.18)
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Further, (3.15) and (3.17) give

R{uF + v He(F)) = (u4 - 6Su2v2 - STuv3 - 3S2v4)3R,
in particular R(Ke(F)) = - 27S6R(F).

On the Cayley pencil, we get

S(uCa(F) + vD(F)) = 4 x ((4T2 - 3i?)u4 - ARTu3v

+ 6RTW - AR2Tuv3 + i?3u), (3.19)

in particular, 5(Ca(F)) = 4(4T2 - 3iJ) and S(D(F)) = AR{F)\

Also,

vD(F)) = 8 x (-T(9i? - 8T2)u6 + 6i?(3i? - 2T2)u5v

- 15R2Tu4v2

in particular

T(Ca(F)) = 8T(8T2 - 9R) and T(D(F)) = -8R(F)4T(F). (3.20)

Finally,

i?(Ca(F)) = (-125(F))3(T(F)2 - 5(F)3)2 = -123S(F)3i?(F)2,
R{D(F)) = 64R{F)8S(F)\

3.2.2 The space of marked cubics

An even theta characteristic of a nonsingular plane cubic curve is a nonzero
2-torsion point on the Jacobian curve of this cubic. The right parameter
space for marked cubics (that is, cubics with a marked 2-torsion point) is the
weighted projective space P(11O;2) with coordinates

(F; 6) = (aOoO) a m , ̂ 222) aooi, aoo2> ̂ no, an2, a22o> tym,
 a ° 1 2 ' ^ ) -

A similar statement holds for the spherical 2-space Sj (Mat3(K)), compare
Theorem 3.3 below.

Definition 3.1 The space of marked cubics is the hypersurface V C P(l10; 2)
defined by the equation

03 - ZS{F)0 - 2T{F) = 0. (3.21)
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Remark 3.1 The affine equation

\y2 + x3 - 3S(F)x - 2T(F) = 0 (3.22)

defines the Jacobian curve of the generic cubic curve F = 0, where F is
the form (3.3); hence a 2-torsion point of the Jacobian corresponds to a
zero of the left-hand side of (3.22) of the form (x, 0); this justifies the above
definition. Here 0 is an "irrational invariant" of a ternary cubic form, and
its degree equals 2. The fact that 6 is invariant ensures that the action
of V on the space of cubic forms extends to 7 . A point of V is a cubic
curve with a marked 2-torsion point. The hypersurface V is birationally
equivalent to the project ive space of bare (unmarked) plane cubics (compare
Dolgachev and Kanev [8], who attribute this result to G. Salmon [16]). We
give two constructive proofs of the Salmon-Dolgachev-Kanev theorem (see
Theorem 3.1, Claims (A) and (B) below).

Example 3.1 Let F be a generic cubic form and He(F) its Hessian; then
twice the value of the Aronhold T-invariant of F defines a 2-torsion point of
He(F). That is, 6 = 2T(F) is a root of the equation

03 - 3S(He(F))<9 - 2T(He(F)) = 0.

This follows from (3.18) and (3.16). Hence we get a map

he: P9 -> V defined by he(F) = (He(F); 2T(F)) (3.23)

from the space Pg of ternary cubic forms to the space V of cubics with a
marked 2-torsion point.

Example 3.2 Let F be a generic cubic form and Ca(F) its Cayley form;
then -4T(F) defines a 2-torsion point of Ca(F). That is, 6 = -4T(F) is a
root of the equation

03 - 3S(Ca(F))0 - 2T(Ca(F)) = 0.

This follows from (3.20) and (3.19). Hence we get a map

c a : P 9 - + F defined by ca(F) = (Ca(F); -4T(F)) (3.24)

from the space Pg of ternary cubic forms to the space V of cubics with a
marked 2-torsion point.

The next theorem shows that each of (3.23) and (3.24) is a birational
equivalence.
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Theorem 3.1 (A) The map g: V -> P9 defined by

g((F;9)) = 6F + Ee(F) (3.25)

is a birational inverse of the map he of (3.23).

(B) The map d: V -> P9 defined by

d{(F; 6)) = R(F) Ca(F) + (9S{F) + T(F))D(F)

is a birational inverse of the map ca of (3.24)-

Proof of (A) This follows from (3.9), (3.10) and (3.25):

g{he(F)) = <?((He(F); 2T(F))) = 2T(F) He(F) + He(He(F)) =

hence g o he = idp9. The right hand side of (3.17) equals:

-(Su2 + 2Tuv + S2v2)2uv + T(u3 - 3Suv2 - 2Tv3)2 +

+ hu3 - 3Suv2 - 2Tv3)((Su + Tv)2 + SRv2).

Using this, together with (3.15), (3.17), (3.23), (3.25), we get

he(g((F;e))) =he(6F + Ee(F))

= (Ee(6F + He(F)); 2T(6F + He(F))

= (Z(S(F)02 + 2T(F)6 + S(F)2)F; 9(S(F)62 + T{F)6

This point of P(11O;2) coincides with {F\6), hence he op = idv.

Proof of (B) Substituting from (3.14), (3.20), (3.19) gives

d(ca(F))=d((Ca(F);-4T(F)))

= i?(Ca(F))Ca(Ca(F)) + (T(Ca(F)) - 4T(F)5(Ca(F)))D(Ca(F))

= -123R{F)2S{F)2S{C&{F))F,

that is, d(ca(F)) is proportional to F, hence do ca = idp9.

To study the inverse composite ca od, and for some further comments on
the theorem (Remark 3.2), we need an additional series of identities.
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Lemma 3.1 Suppose that 6 satisfies (3.21), and set

(3.26)

Then the coefficient o/He(F) in (3.13) vanishes at u = R(F), v = r:

r3 - 3T(F)r2 + 3R(F)r - T(F)R(F) = 0. (3.27)

Furthermore,

(F) + TD(F)) = 72R4S6(-9Tr2 + 8Rr - 3TR),
(r2 - R)26 = -2S2(-9TT2 + 8Rr - 3TR), (3.28)

-4T(i?Ca(F) + TD(F)) = (12R2S2(r2 - R))26.

Moreover, if we set

A(r) = T(F)T2 - 2R{F)T + T(F)R(F), (3.29)

then

A(r)3 = S6(9TT2 - SRT - 3TR)r2, (3.30)
+TD(F)) = 6R2A{T)T-1(T Ca(F) + D(F)). (3.31)

These identities can be checked directly, but we omit the details.

Proof of (B), continued Applying (3.14), (3.27) and (3.28) yields:

#Ca(F) +TD(F); -4T(Ca(i?Ca(F)

= (l2S2R2(r2 - R)F; (12S2R2)2(r2 - i?)2^

This point of P(l10; 2) coincides with (F; 0), hence caod = id.

Remark 3.2 Comparing the two assertions (A) and (B) gives new infor-
mation concerning two birational transformations: (1) the transformation
D: Pg —+ Pg of (3.6) of the projective space of plane cubics, and (2) an in-
volutive transformation E: V —• V described below of the space of marked
cubics.

First, D equals the composite g o ca (and the composite d o he): for

s(ca(F)) = ^(Ca(F); -4T(F)) = He(Ca(F)) - 4T(F) Ca(F) = 6Z?(F),

by (3.12) and (3.6). Our second map E is the composite he od (which is equal
to cao<7). We claim that

E(F; 0) = ((0S + T) Ca(F) + D{F)\ -4S2(T02
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or in terms of the notation (3.26), (3.29),

E(F- 0) = (r Ca(F) + D(F); -4A(r)) .

For, applying (3.28), (3.30), (3.11), (3.31), we get

he(d(F)) = he(i?Ca(F) + rD(F) ; 2T(i?Ca(F) +

); -4(6/i2A(r)r-1)2A(r))

3.2.3 A birational transformation of the space of marked cubics

We describe a birational transformation Eo of the variety V and of the ambient
weighted projective space P(l10; 2). This transformation is an analog of the
action of the standard quadratic transformation on the space of conies. It is
convenient to make a coordinate change (F; 6) H-> (F; 77) in P(l10; 2), replacing
the final coordinate 6 by

ry = - 1 ( 0 + 2P), (so that 0 = —477 - 2P),

where P = a012 — G, and G = anoa22o + aooi^22i

In the new variables, the hypersurface V C P(l10; 2) of (3.21) is now denned
by the equation:

+ 48P772 + 6(4P2 -S)r) + T + 4P3 - 35P = 0. (3.32)

We introduce the monomial birational transformation £0 of
given by (a; 77) 1—• (a*, 77*), where:

a000 — a l l l a 222? fl*n = ^000^222,

a001 = a110^222, ^002 =

a*12 = 0221^000, ^ 2 0 =

= ^000^1110222^012-

Theorem 3.2 (04.̂  T/ie map Eo 25 an involutive birational transformation
O / P ( 1 1 0 ; 2 ) .

( ^ It preserves the hypersurface V.
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Proof It is obvious that Eo is an involution, because on double application
of Eo, each weight 1 coordinate is multiplied by

M = aOooaiiia222, (3.34)

and the final weight 2 coordinate rj is multiplied by M2.
Let A = if [aooo, flin, ^222, aooi, aoo2, ano> aii2, ^220, a221l ^ e t n e polynomial

ring generated by all the coefficients of cubics except a0i2- The first nine
equations of (3.33) define an endomorphism * of A; write /* for the image of
/ G A under *. Expanding the terms in the defining equation (3.32) of V in
powers of aOi2 gives:

4P2 - 5 = 4£a0i2 + 4C,

T + 4F 3 - 35P = 32Mag12 - 48G*a2
)12 + 24£a0i2 + D,

where M, B,C,D,E G A (here M is the multiplier spelt out in (3.34)),

(0.00)

, E* = M2C, G** = M2G.

We can rewrite (3.32) as

3 Ma3
012)

 2 2 4
+ 24Br)a012 + 24(Cr/ + ^012) + D = 0. (3.36)

Using this, we see that applying formulas (3.33) defining Eo (see especially
the last two formulas of (3.33) and (3.35)) to the left hand side of (3.32) or
(3.36) multiplies it by M2. Q.E.D.

3.2 .4 A birat ional m a p of t h e spherical space of s y m m e t r i c 3 x 3
matr ices o n t o t h e space V of marked cubics

We write fh for the adjoint matrix of a symmetric 3 x 3-matrix m and £>(-,-,•)
for the mixed discriminant of three symmetric 3 x 3 matrices. For a triple
m = (mo, m i , ra2), we define a ternary cubic by

( o o 1 1 H~

and a number 0(m) by

D(m0) mi,mi)D(mo, m2, m2) (3.37)

, m0, mo)i^(mi, m2, m2) + ^(m 2 , m0, mo)D(m2, mi, mi)).
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Theorem 3.3 For a triple m = (mo : m\ : ra2) £ §2(Mat3(if)), the point
{Fm;9(m)) belongs to V, and

a: Sf (MatsW) -> V C P(11O;2) ^wen 6y a(m) = (Fm;0(m)) (3.38)

25 a well-defined birational map, having the inverse

; (9) = (m0 : mx : ra2),

£0^0+0:17711+2:2^2 = #HE(F)+HE(He(F)); see (3.4) for the Hessian
matrix HE(F).

TTie map a zs V-anti-equivariant, and has the following compatibility with
the action of the standard quadratic transformation

E0(a(m)) = a(S0(m)).

Remark 3.3 Formula (3.37) is borrowed from the end of Salmon, Conic
sections [15]. Salmon gives a different formula for 0(m), which he attributes
to Burnside. Namely, write [*,*,•] for the determinant made up of three
ternary linear forms, and

det(x o mo A12

A22

where Aij = Aij(xo)xi,x2) are linear forms and Aij = Aji for i,j = 0,1,2.
Then

0(m) = 2 x (-8[AOi, A12, A20}
2 + [^00, ^ n , ^ 2 2 ] 2

+ 4[A2i, Aio, Ao2][Aoo, A n , A22] + 4[A00, A n , A12][A00, A22, A12]

H- 4[An, A22, A02][An, Aoo, A02] + 4[A22, Aoo, A0i][A22, A n , AOi]

-f- 8[An, A02, Aoi][A22, A02, AOi] -f 8[A00, A i 2 , AiO][A22, A i 2 , Ai0]

-f 8[A0 0,A2i, A2o][An, A2i , A20] - 8[A00, A02, AOi][An, A22, Ai2]

- 8[Au, Aio, Ai2][A22, Aoo, A20] - 8[A22, Aio, Ai2][A00, A n , AOi]).

Salmon [15] also sketches a proof tha t a is well defined.

P r o o f of T h e o r e m 3.3 We introduce some notation. Let m and m! be
two symmetric 3 x 3-matrices and [m, m'\ their mixed adjoint matrix, that is,

(um + vmf) = u2fh + uv[m, mf] + v2m', in particular [m, m] = 2m.

For six ternary quadratic forms A, B, C, £>, E, F (or the corresponding
symmetric matrices), we write [A, B, C, D, E, F] for the 6 x 6 determinant
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whose columns are these forms, written out as normalized coefficients in the
order 00,11,22,12,02,01. Salmon's (or Burnside's) second invariant M =
M(m) is

M = [[mo, mo], [mi, mi], [m2, m2], [mi, m2], [m0, m2], [m0, mi]].

The Aronhold invariants of the above symmetric determinant F = F m are
the following expressions (see Conic sections, [15], loc. cit.)

S(F) = 62- 24M, T(F) = 63 - 366M, R{F) = 432M2(32M - 02),

where 0 = 0(m) and M = M(m). Hence (F;0) satisfies (3.21) and belongs
to V C P(11O,2). Thus the map a is well defined. Further, if (F;0) G V,
and if we identify m and the corresponding linear form with their matrix
coefficients, then

a(/3(F; 0)) = a(0HE(F) + HE(He(F)))

= (He(0F + He(F)); 2T(0F + He(F)) = (F;0)

by the proof of Theorem 3.1, (A). Because they map between varieties of
the same dimension, it is now obvious that a and (3 are birational. That a
is compatible with the standard quadratic transformation follows from the
observation that the mixed determinant of adjoint matrices in formula (3.37)
corresponds to the rj of Theorem 3.1 and from the behaviour of mixed deter-
minants of the third order when the matrices involved are replaced by their
inverses (or adjoints). Q.E.D.

3.2.5 An action of the Cremona group on the space of cubics

Consider the following two composite maps from the space of plane cubics to
the spherical 2-space over 3 x 3-matrices:

F(S3(W*)) ^ V -^ Sf(Mat3(/O),

VT)) - ^ V -£+ Sf (Mat3(/0).

Each of these maps leads to an action of the Cremona group on the space of
plane cubics, the first on the right, the second on the left. If C is a plane
cubic defined by a form F , and g G CT(2,K) (or g e UCr(2,/f)), then we
may define

g(C) = (J3 o he)-10;(C9 ° he)(F))) or g(C) = (/? o ca)-1 ($((/? o ca)(F))).
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3.3 An action of the Cremona group of the plane on
the space of quartics

Let K be an algebraically closed field of characteristic zero. Every ordered
triple of symmetric 4 x 4-matrices rao,rai,ra2 G MatJ(If) defines a net of
quadrics XQMQ + X\M\ + x^M^ = 0 in P3; here M* is a quaternary quadratic
form with matrix m*, and the X{ are parameters in the net. GL(4, K)-
equivalence classes of stable nets correspond one-to-one to points m = (mo :
m\ : 777-2) £ Sj(Mat^if)). The discriminant curve C(m) of such a point
is well defined and also has degree 4. This curve has a marked even theta
characteristic 0(m) (at least, provided that it is nonsingular, see [3]). Thus a
point of spherical 2-space defines a point of the variety Mfv of plane quartics
with a marked even theta characteristic. By results of Barth [3], the map

7: S£(Mat4(#)) -> M? Siven b y r n n (C(m); 0(m)) (3.39)

is one-to-one on some open subset, and hence birational.
Moreover, every ternary quartic F G S*(W*) defines a pair (S(F);6(F)),

where S(F) is the Clebsch covariant of degree 4 for F, and 0(F) is an even
theta characteristic of the plane quartic S whose equation is S(F) = 0 (at
least, provided that F is weakly nondegenerate, see [8] for details). This map

Sc:P(S4(iy*))-+M4
ev given by F *-* (S(F);0(F)) (3.40)

is the Scorza map. By a theorem of Scorza (see [8], 7.8), Sc is a P-equivariant
birational isomorphism. Thus, we get the following possibility to define a
(right) action of the Cremona group on the space of plane quartics: if F G
F(S4{W*)), and g G Cr(2, K) (or g G UCr(2, K)), then we may define

Remark 3.4 Let X C S^A) be the subset defined by the equations

det(?7li77lj77lfc — TYlkTYljTYli) = 0,

where (i,j, k) is an arbitrary permutation of (0, 1, 2). Equivalently, X is the
subvariety whose generic point x = (xo : x\ : #2) satisfies the equations

det(xixT1Xfc - xkxJxXi) = 0.

In other words, Barth's commutators (see [3]) for x have rank < 2.
The variety X is preserved by collineations and the standard quadratic

transformation; this is clear for collineations. As for the standard quadratic
transformation, So substitutes Xi H-> X"1, and

x^XjX^1 - x^XjXj1) = det(x~x(xjX^Xi - XiX^lXj)xJl)

= (det(xi))~2 det(x jX^Xi — XiX^Xj).
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Therefore the action of the Cremona group we have just constructed on the
space of quartics with an even theta characteristic extends Artamkin's action
(see the Introduction) on the space of special marked quartics corresponding
to certain vector bundles.

References
[1] I. V. Artamkin, Thesis: Vector bundles over the projective plane and the

Cremona group, 1989, Leningrad

[2] I. V. Artamkin, Action of biregular automorphisms of the affine plane on
pairs of matrices, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 1109-1115,
1120; translation in Math. USSR-Izv. 33 (1989)

[3] W. Barth, Moduli of vector bundles on the projective plane, Invent.
Math., 42, 1977, 63-91

[4] N. Bourbaki, Algebre, Livre II, Paris, 1958 (Russian translation 1968)

[5] A. Church, Introduction to mathematical logic, 1, Princeton, New Jersey,
1956 (Russian translation 1960)

[6] A. Coble, Point sets and allied Cremona group. II, Transactions of Amer.
Math. Soc, 17, 1916, 345-388

[7] I. V. Dolgachev, Private letter

[8] I. V. Dolgachev and V. Kanev, Polar covariants of planes cubics and
quartics, Advances in Math, 98, No.2, 1993, 216-301

[9] I. Dolgachev and D. Ortland, Point sets in projective space and theta
functions, Asterisque, 165, Societe Math, de Prance

[10] P. Du Val, Applications des idees cristallographiques a l'etude des
groupes cremonniennes, Troisieme Colloque de Geometrie Algebrique,
Bruxelles 1959, 1960, Paris, Gauthier-Villars

[11] M. Kh. Gizatullin, Defining relations for the Cremona group of the plane,
Izv. Akad. Nauk SSSR, Ser. Mat., 46, 1982, 909-970 (English translation
in Math. USSR Izvestiya, 21 (1983), p.211-268)

[12] H. P. Hudson, Cremona transformations in plane and space, 1927, Cam-
bridge University Press



150 Tensor representations of Cr(2, K)

[13] S. Kantor, Theorie der Transformationen im R3 welche keine Punda-
mentalkurven 1. Art besitzen und ihrer endlichen Gruppen, Acta Math-
ematica, 1897, 21, 1-77

[14] A. I. Mal'tsev, Algebraic systems, "Nauka", Moscow, 1978 (in Russian)

[15] G. Salmon, A treatise on conic sections, London, 1878 (Russian transla-
tion 1900)

[16] G. Salmon, A treatise on the higher plane curves, 1879, Dublin

[17] A. N. Tyurin and N. A. Tyurin, Algebraic geometry today and tomorrow.
Unpublished manuscript

Marat Gizatullin,
Department of Mathematics and Mechanics,
Samara State University,
Academician Pavlov Street, 1,
Samara, 443011, Russia
e-mail gizam@ssu.samara.ru



Hilbert schemes and simple singularities

Y. Ito and I. Nakamura*

Abstract

The first half of this article is expository; it contains a brief survey
of the famous ADE classification, and how it applies to six kinds of
objects, some old and some relatively new. The second half is a re-
search article, discussing the two dimensional McKay correspondence
from the new point of view of Hilbert schemes.
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0 Introduction

There is a whole series of apparently unrelated phenomena that are governed
by the so-called ADE Dynkin diagram scheme. It is widely believed that,
despite the diverse nature of the objects concerned, there must be some hid-
den reasons for these coincidences. The ADE Dynkin diagrams provide a
classification of the following types of objects (among others):

(a) simple singularities (rational double points) of complex surfaces (Du
Val, Artin, Brieskorn),

(b) finite subgroups of SL(2,C),

(c) simple Lie groups and simple Lie algebras (Elie Cartan, Dynkin),

(d) quivers of finite type ([Gabriel72]),

(e) modular invariant partition functions in two dimensions (Capelli, Itzyk-
son and Zuber [CIZ87]),

(f) pairs of von Neumann algebras of type Hi ([Ocneanu88]).
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0.1

The present article consists of two halves, an expository part and a research
part. The expository part occupies the first six sections. In Sections 1-4,
we recall briefly the above ADE classifications. Sections 2-3 report in some
detail on the relatively new subjects of modular invariant partition functions
and type Hi von Neumann algebras (Hi factors). In Section 4 we recall the
two dimensional McKay correspondence. Section 5 summarizes some of the
missing links between the six objects and related problems. We would like to
say that while much is known about these, much remains unknown.

Next, in Section 6, we recall some basic facts about Hilbert schemes for use
in the research part, and give a quick review on three dimensional quotient
singularities in Section 7. Section 7 is not directly related to the rest of the
paper, but it provides motivation for further study in the same direction as
Sections 8-16. For instance, a natural three dimensional generalization of
the McKay correspondence, quite different from that of Theorem 7.2, can be
obtained by applying similar ideas. This direction is the subject of current
research and we simply mention [Reid97], [INkjm98] and [Nakamura98] as
available references for it.

In the second half of the article we discuss the two dimensional McKay
correspondence from a somewhat new point of view, namely by applying
the technique of Hilbert schemes. Any of the known explanations for the
classical McKay correspondence enables each irreducible component of the
exceptional set E to correspond naturally to an irreducible representation of
a finite subgroup G. In the present article we do a little more. In fact, to
any point of the exceptional set, we associate in a natural way a G-module,
irreducible or otherwise, whose equivalence class is constant along each irre-
ducible component of E. We discuss this in outline in Section 8, and in detail
in Sections 8-16. Some new progress and related problems are mentioned in
Section 17.

0.2

There are a number of excellent reports on the first four topics (a)-(d),
for example: Hazewinkel, Hesselink, Siersma and Veldkamp [HHSV77] and
[Slodowy95]. See [Slodowy90] and [Gawedzki89] for the topic (e). See also
[Ocneanu88], Goodman, de la Harpe and Jones [GHJ89], [Jones91] and Evans
and Kawahigashi [EK98], Section 11 for the last topic (f). The authors hope
that the reader will also study or at least have a glance at these reports.

We have in mind both specialists in algebraic geometry and nonspecialists
as readers of the expository part. Therefore we have tried to include elemen-
tary examples and algebraic calculations, though they are not completely
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self-contained.
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1 Simple singularities and ADE classification

1.1 Simple singularities (1)

We first recall the definition of simple singularities. A germ of a two dimen-
sional isolated hypersurface singularity is called a simple singularity if one of
the following equivalent conditions holds:

1. It is isomorphic to one of the following germs at the origin

An : xn+1 + y2 + z2 = 0 for n > 1,

Dn : xn~l -h xy2 + z2 = 0 for n > 4,

E6: x
4 + y3 + z2 = 0,

E7: x3y + y3 + z2 = Q,

E8 : x5 + y3 H- z2 = 0.

2. It is isomorphic to a germ of a weighted homogeneous hypersurface of
(C3,0) of total weight one such that the sum of weights (iui, u>2, ^3) of
the variables is greater than one. The possible weights are ( ^ j , §, §),
( 1 n - 2 1 \ ( 1 1 1 \ / 2 1 1 \ flnri ( 1 1 1 \
V n - 1 ' 2 n - 2 ' 2 / ' U > 3 7 2 / ' V 9 ' 3 ' 2 / a n u V 5 ' 3 ' 2 ' '

3. It has a minimal resolution of singularities with exceptional set consist-
ing of smooth rational curves of selfintersection —2 intersecting transver-
sally.

4. It is a quotient of (C2,0) by a finite subgroup of SL(2, C) ([Klein]).

5. Its (semi-)universal deformation contains only finitely many distinct
isomorphism classes ([Arnold74]).
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1 1

.. r•—•—#—•—•—•—•
2 4 6 5 4 3 2

Figure 1: The Dynkin diagrams ADE

Many other characterizations of the singularities are given in [Durfee79].
The third characterization of a simple singularity classifies the exceptional set
explicitly. In fact, the dual graph of the exceptional set is one of the Dynkin
diagrams of simply connected complex Lie groups shown in Figure 1.

1.2 Simple singularities (2)

Let (£,0) be a germ of simple singularities, TT : X —• S its minimal resolution,
E := 7r~1(0)red and E{ for 1 < i < r the irreducible components of E. It
is known that Et ~ P1 and (Ef)x = - 2 . Let I r rE be the set {E{\ 1 < i <
r} . We see that H2 = #2 ,SING(S) := H2(X,Z) = © x ^ ^ Z ^ ] . Then H2

has a negative definite intersection pairing ( , )SING: H2 X H2 —• Z. Since
(EiEj)smG = 0 or 1 for i ^ j , the pairing ( , )SING can be expressed by a
finite graph with simple edges. We rephrase this as follows: we associate a
vertex v(E') to any irreducible component E' of E, and join two vertices v(E')
and v(E") if and only if (£"£"')SING = 1- Thus we have a finite graph with
simple edges, from which in turn the bilinear form ( , )SING can be recovered
in the obvious manner. We call this graph the dual graph of £?, and denote
it by r(JB) or rSiN G(5). Let H2 = H£mG{S) := H2(X,Z).

There exists a unique divisor Efund5 called the fundamental cycle of X,
which is the minimal nonzero effective divisor such that EfundEi < 0 for all
i. Let £fund '-= Zli=i imflNGEi and Eo := —Efund- For the simple singularities
we have E0Ei = 0 or 1 for any E{ £ IrrJ£, except for the case A\, when

= 2. Therefore we can draw a new graph FSING by adding the vertex
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v(E0) to FSING(S')- By a little abuse of notation we denote Irr E U {Eo} by
Irr, E.

For instance let us consider the D$ case. Then E = Xw=i &* w ^ n &? = ~2
and

—EQ = jE/fund = E\ + 2J5/2 + 2^3 + E4 + E5.

Then E o ^ 2 = -^1^2 = E2E3 = E3E4 = E3E5 = 1, and all other E{Ej = 0.
Hence (m?I N G, . . . , mfING) = (1,2,2,1,1), as indicated in Figure 2.

2 2 ^ 1

1 # # 1

Figure 2: The Dynkin diagrams D5 and D$

There are various ways of computing E. We do it starting from the fact
that D5 is the quotient singularity of A2 by the binary dihedral group B3 of
order 12. The binary dihedral group G := D3 is generated by o and r:

0 " r =

where e := e
27rvCIT/6. We have a6 = r4 = 1, a3 = r 2 and TGT~1 = a'1. The

ring of G-invariants in C[a;,2/] is generated by three elements F := x6 + y6,
H := xy(x6 — y6) and / := x2?/2. The quotient A2/G is isomorphic to the
hypersurface 4/4 + H2 — IF2 = 0. Since G has a normal subgroup N := (a)
of order 6, we first take the quotient A2/iV and its minimal resolution XN.

Since P := x6, Q := y6 and i? := xy are AT-invariants, A2/N is the
hypersurface P<5 = -R6. Hence XN has an exceptional set consisting of a
chain of 5 smooth rational curves C\ + • • • 4- C5. The action of r on A2

induces an action on Ajy, which maps C* into Cs_i, so in particular takes C3
to itself. The action of r on XN has exactly two fixed points p + and p_ on
C3, which give rise to all the singularities of XN/ (T).

The images of p± give smooth rational curves E± and E$ on the minimal
resolution X of A2/G by resolving the singularities of XN/ (T) at p±. Thus on
X we have the images Ei of G» for i — 1,2,3 and two new rational curves £4
and £5. This gives the exceptional set E of X. We see easily that (-EASING

 =

—2. The intersection pairing ( , )SING is expressed with respect to the basis
i?i for 0 < i < 5 a s a 6 x 6 symmetric matrix with diagonal entries equal to



(2
0

- 1
0
0

0
2

- 1
0
0
0

- 1
- 1
2

- 1
0
0

0
0

- 1
2

- 1
- 1

0
0
0

- 1
2
0

0
0
0

1

0
2
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—2. We write it down multiplied by —1 for convenience:

(-1)

Let Vi := v(Ei) for 0 < i < 5. Then we obtain the Dynkin diagram
D5 from Vi for 1 < i < 5 and the extended Dynkin diagram D5 from vt for
0 < i < 5, as in Figure 2.

1.3 Simple singularities and simple Lie algebras (1)
Let 0 be a simply laced simple Lie algebra and 9) a Cartan subalgebra of (8.
We fix a lexicographical order of the roots of # and let A (respectively A+,
Asimpie) be the set of roots (respectively, positive roots, positive simple roots)
of (5 with respect to T. (See [Bourbaki] for more details.) Let r be the rank
of (5 (= dim#) and Asimpie = {a*; 1 < i < r} .

Let Q be the root lattice, namely the lattice spanned by A over Z endowed
with the Cartan-Killing form ( , )LIE and P := Homz(<3,Z) the dual lattice
of Q (the weight lattice):

The Cartan-Killing form ( , )LIE with respect to the basis ASimpie is a
positive definite integral symmetric bilinear form with (a, a) = 2 for all a G
Asimpie. Since (O:,/?)LIE = 0 or - 1 for a ^ /3 G Asimpie, we can express the
bilinear form by a finite graph with simple edges FLIE as we did for the dual
graph of the set of exceptional curves of simple singularities.

There is a maximal root in A with respect to the given order, called the
highest root of A. (This name is justified by the fact that it is the highest
root of the adjoint representation of 0 . See Table 1.) Let the highest root
be a0 := ahighest = £1=1 m ^ a * . Then (a0, P) = 0 or - 1 for any p G Asimpie

(expect for the case Ai, when (a0, p) = 2), so that we can draw a new graph
rnE(©) (called the extended Dynkin diagram of 0) by adding the vertex ao
to rLiE(©).

Let us consider the D5 case as an example. The Lie algebra <S := <&(D$)
is given by o(10) := {X G MiO(C);*X + X = 0}. Its Cartan subalgebra S)
is spanned by Hi := Eiii+5 — Ei+^i for 1 < i < 5 where Eij is the matrix
with (i, jf)th entry equal to 1 and 0 elsewhere. We define Si G Homc(iD, C) by
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Type

An

Dn

E6

E7

Es

r

n

n

6

7

8

(m0)

1

1

1

1

1

mi,m2,m3,...,mr_i;mr

1 , 1 , . . . , 1,1

1,2,2,. . . , 2 , 1 , 1

1,2,3,2,1; 2

1,2,4,3, 2,1; 2

2,4,6, 5,4,3,2; 3

Table 1: Multiplicities of the highest root

€i(H) := U for all iJ = Yfi=i UHi £ -ft- Then we can choose simple roots a»
with order ax > a2 > • • • > #5 as follows:

for 4.

The highest root a0 is £1 + £2 = »i + 2a2 + 2a3 + a4 + a5. For each a»
we define an element Hi e S) by a{{H) = - \ Tr(HiH) for all Heft. We see
that Hi = Hi - i?i+i for 1 < i < 4, and H5 = H4 + H5. We define (a., a^) :=
a ^ ^ ) = aj(Hi). Then we have (ai,a/) = -(Ei.Ej) for 0 < z < j < 5
in the notation of 1.1-1.2. This shows that F S I N G ^ S ) = F L I E W ^ S ) ) and

We note that P = ^f=1 ^ i and Q = ^ L i Z a ^
The first theorem to mention is the following:

Theorem 1.4 Let S be a simple singularity and Lie(S) a simple Lie algebra
of the same type as S. Then there is an isomorphism

i:H2
smG(S)~P(Lie(S))

such that

= Q(Lie(5));

2. i(lvi(E(S))) = Asimple(Lie(5));

3. i{E(md(S)) = -ahighes t(Lie(S));

4- (> )SING = —i*(. )LIE;

5. rSiN G(5) = rUE(Lie(5)) and fSING(5) = fLIE(Lie(5)).
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1.5 Simple singularities and simple Lie algebras (2)

There are two kinds of similar constructions of simple singularities from simple
Lie algebras: first of all, the Grothendieck-Brieskorn-Springer construction
and second, the Knop construction. Good references for this topic are for
instance [Slodowy80], [Slodowy95] and [Knop87].

1.6 Finite reflection groups and Coxeter exponents

Let V be a vector space over R endowed with a positive definite bilinear form
( , ). A linear automorphism s of V is called a reflection if there is a vector
a G V and a hyperplane Ha orthogonal to a such that s(a) = —a, and the
restriction of s to Ha is trivial: s\H = id#a. There is a simple formula

2 ^ (1)
(a, a)

A finite group generated by reflections is called a finite reflection group.
For instance, let Q be the root lattice of a simple Lie algebra <S over C,
( , )LIE ^ S Cartan-Killing form, and set V = Q <8> C. For any simple root
OLi G Agimpie, we define a reflection Si := sai of V by the formula (1). The
group W generated by all reflections sa for a G Asimpie is finite, and is called
the Weyl group of (3. The Weyl group W acts on the polynomial ring C[V*]
generated by V* := Homz(V, Z), the dual of V.

The product s = YU=i si °f reflections for all the simple roots is called
a Coxeter element of W. All 5 defined in this way for different choices of
lexicographical order of the roots are conjugate in W. Therefore the order
of 5 in W is uniquely determined, and we denote it by h and we call it the
Coxeter number of (3.

Theorem 1.7 ([Chevalley55]) Let W be the Weyl group of a simple Lie
algebra 0 over C, and r the rank of <&. Then

1. The invariant ring C\y*Y^ i>s generated by r algebraically independent
homogeneous polynomials / i , /b, • • •, /r- We order the fi so thai deg /*
is monotonically increasing.

2. For any choice of the generators fi as above, the sequence of degrees
(deg / i , . . . , deg fr) is uniquely determined.

Definition 1.8 We define the Coxeter exponents e» by ê  := deg/; — 1 for
1 < i < r.

Theorem 1.9 Let (5 be a simple Lie algebra, h its Coxeter number, and e»
its Coxeter exponents. Then we have
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1. 6i + er-i = h for all i;

For the proof, see [Humphreys90], Orlik and Terao [OT92] and [Bourbaki].
Let us look at the D§ case. Prom the root system given in 1.2-1.3 we see

easily that the Weyl group W(D^) is a group of order 24 • 5! = 1920 fitting in
the exact sequences

1 -> W{D5) -> G

and

(Z/2Z)©5 G A S5 - 1.

The group G, and hence the Weyl group W(D5) as a subgroup of G, acts
onC[Si(Ds)*]~C[xu...,x5]by

where <7 G G, e» = ±1 and tfj(a) = £i • • • £5. Write /^ for the j th elementary
symmetric function of 5 variables. Then C[$)(D5)*]W(D5>) is generated by
g- : = fj{x\,..., x\) for j = 1,2,3,4 and g& := / 5 = x\ • • • x5. It follows that
{degpj} = (2,4,6,8,5) so that the Coxeter exponents are 1,3,5,7,4. Since
the Coxeter number h(D^) equals 8, we have 8 = 1 + 7 = 3 + 5 = 4 + 4,
Moreover \W(D5)\ = 1920 = 2 • 4 • 6 • 8 • 5.

Type

An

Dn

E6

E7

Es

r

n

n

6

7

8

1

1

ei,e2,

1,2

,3,5,.

1,

1,5,

,7,11

e3,• • •,

, . . . , n

..,2n -

4,5,7,}

7,9,11

13,17,

er_i,er

- l , n

- 3 , n - l

3,11

13,17

19,23,29

ft

n +

2 n -

12

18

30

1

2

Table 2: Coxeter exponents and Coxeter numbers

1.10 Quivers (= oriented graphs) of finite type
Let F be a connected oriented graph. It consists of a finite set of vertices and
(simple) oriented edges joining two vertices. Write v(T) and e(F) for the set
of vertices and edges of F.

For an edge I, we define d(£) = /3(£) - a(£), where a(^) and fi(£) are the
starting and end points of £.
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Definition 1.11 ([Gabriel72]) A representation V := {V^,^} of F is
a set of finite dimensional vector spaces Vai one for each a £ v(F), cou-
pled with a set of homomorphisms (p£i Va(£) —* Vp(e)i o n e f°r each £ G e(F).
We define the dimension vector of a representation V to be v = dim V :=
{dxmVa\aev(T)}.

Two representations V = {Va,ipe} and W = {Wa,ipe} are equivalent if
there are isomorphisms / a : Va —» Wa such that ij)i • /a(^) = f^ • ^ for any
£ G e(F). Two equivalent representations have the same dimension vector.

We say that F is a quiver of finite type if there are only finitely many
equivalence classes of representations of F for any fixed dimension vector.
This notion is independent of the choice of orientation of F.

Theorem 1.12 ([Gabriel72]) Let F be a quiver of finite type. Then F with
orientation forgotten is one of An, Dn and En, Conversely, if F is one of
these types, it is a quiver of finite type.

Proof (Outline) Suppose that F is of finite type. Let v = (na)a£v(r) be a
vector with positive integer coefficients na. We choose and fix a representation
V := {VQ, ipt} of F. Hence na = dim Va. Then the set of representations of
F is the set M := n*ee(r) Hom(Vtt(0, Vm). Let G := Y[aev{T) End(Fa). Then
G acts on M by

(<Pt) ^ (9m ' <Pi' 9Z(i)) f o r 9a € End(V;).

The set of equivalence classes of representations of F with fixed dim V = v
is the quotient of M by the action of G. Since F is connected, the centre of
G consists of scalar matrices. Therefore dim M < dim G — 1 by assumption.
It follows that Y^eee(r)n<xnP — J2aev(T)na ~ 1- Since this holds for any
v G (Z + ) C a r d ^ r » , the bilinear form £ a G t ; ( r ) x\ - £ £ € e ( r ) xa{e)x^e) is positive
definite. It follows from the same argument as in the classification of simple
Lie algebras that the graph F is one of ADE. •

Theorem 1.13 ([Gabriel72]) Let F be a quiver of finite type. Then the
map V i—• dim V is a bijective correspondence between the set of equivalence
classes of indecomposable representations and the set of positive roots of the
root system corresponding to F.

2 Conformal field theory

2.1 Background from physics
In the study of conformal field theories, systems fitting into an ADE classifi-
cation arise on considering field theories satisfying certain physically natural
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assumptions on a real two dimensional torus (periodic in one space and one
time direction).

We start by telling in very rough terms a story that physicists take for
granted. Suppose we are given an infinite dimensional vector space H and a
finite set of operators Aj on H. The space H is supposed to be a realization
of various physical states. The operators Aj are supposed to be self adjoint in
so far as they correspond to actual physical operators or "observables". In
this sense, the vector space H is required to have a Hermitian inner product,
namely, we require H to be unitary. Rather surprisingly, we will soon see
that the unitary assumption picks up mathematically interesting objects.

If we have a kind of Hamiltonian operator in the algebra A, the eigen-
value of the operator would be the energy of the (eigen)-state, and in general
any state is an infinite linear combination of eigenstates, like a Fourier series
expansion. The operators Aj are supposed to correspond to physical observ-
ables such as the energy of particles in the system, and they correspond in
mathematical terms to irreducible representations of some algebra A on H,
where the system is said to admit Asymmetry.

The system {A, Aj,H} is called a conformal field theory if the algebra A
contains a Virasoro algebra acting nontrivially on H.

The distribution of various energy levels is captured by the so-called par-
tition function of the system, which in mathematical terms is the generating
function of H weighted by the values of energy. If the system has space-time
symmetry, one proves by a physical argument that the partition function is
SL(2, Z)-invariant.

The problem is to determine all possible systems admitting space-time
symmetry; hence, as a first step, we consider the problem of classifying all
possible modular invariant partition functions, namely SL(2, Z)-invariant par-
tition functions in certain restricted situations. In the situations we are in-
terested in, the algebra A is either the affine Lie algebra A± or the minimal
unitary series of Virasoro algebras with central charge c = 1 — 6/ra(ra + 1)
for m > 3. Although the minimal unitary series is more interesting, the par-
tition function for A± is easier to write down and more coherent to the ADE
classification. Therefore we limit ourselves to A[ . It is not known whether
the modular invariant partition functions in the subsequent table (Table 3)
are partition functions of some conformal field theory admitting space-time
symmetry.

We now rephrase all this in more mathematically rigorous terms.

Definition 2.2 Write

/o A) o\ . A o\
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for the standard generators of sl2(C). The Cartan-Killing form of ^^(C)
is given by (x,y)uE = ^(xy)- The affine Lie algebra A± is an infinite
dimensional Lie algebra A over C spanned by 0(2(C) ®C[£, t"1] , together with
a central element c, subject to the relations

[x(m),y(ri)] = [x, y](m + n) + rac5m+n,o(:r, y)LiE and [c, z(ra)] = 0,

for all ra, n G Z; here t is an indeterminate, and we write x(m) := x 0 tm for
rr G sl2(C).

Theorem 2.3 Le^ k be a positive integer and s an integer with 0 < s < k.
We define an Ap]-module V(s, k) := A^] • v(s, fe) by

x(n)v(s, k) = 0, e(0)v(s, fe) = 0 /or a; G sr2(C) and n > 1,

)i;(s, fe) = sv(5, fe), cv(s, fe) = fev(s, fe).

Then V(s,k) is a unitary integrable irreducible A± -module having highest
weight vector v(s1k). Conversely, any unitary irreducible integrable highest
weight Ai -module V is isomorphic to V(s, fe) for some pair (5, fe) as above.

By convention, we write v(s,k) as the ket |s, fc). The integer fe is called
the level of the Ai -module V(s, fe). By the Kac-Weyl character formula, we
have

Theorem 2.4 The character ofV.(s,k) is given by

where the denominator is D = (1 —

Although this may look different from the usual form of the Kac-Weyl
formula, the above form of the character is adjusted to the expression used
by physicists to write down partition functions. In Kac's notation ([Kac90],
Chapter 6 and p. 173) and the notation in 2.6

Xs,k =

We note that Lo — —d and c = K in the notation of [Kac90], Chapters 6-7.
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Definition 2.5 The Vimsoro algebra Virc with central charge c is the infinite
dimensional Lie algebra over C generated by Ln for n E Z and c, subject to
the following relations

[Lm, Ln] = (m - n)Lm+n + TZ{™? - m)5m+nj0,

[Ln, c] = 0 for all n, m.

There is a way of constructing Ln from the affine Lie algebra A[ , called
the Segal-Sugawara construction:

Ln = r>(bur>\ 12 ( : e(n ~ m ) / ( m ) : + : / ( n ~ ^)e(m): + \:h(n - m)/i(m

Here : : is the normal ordering defined by

{ x(m)y(n) if m < n,

\(x(m)y(n) + y(n)x(m)) if m = n,
y(n)x(m) if m > n.

Then we infer the relations
1 3A;

( 3 )5

[Lm, Ln] = (m - n)Lm + n + ^^^(rr^ m)5m+n>0,

[Lm, x(n)] = —nx(m 4- n) and [Lo, x(—n)] = nx(—n)

for all m,neZ and Z G ( )
Thus given a system having A^ symmetry of level fc, the system ad-

mits a Virasoro algebra Virc symmetry with c = 3k/(k + 2). Write v :=
x(—ni)x{—n2) • • -x(—np)\s, fe); note that V(s,k) is spanned by vectors v of
this form for various rii > 0. The element Lo acts on v by

fe + 2)(^2 + 2s) + (m + n2 + • • •

This shows that Lo behaves as if it measures the energy of the state v.

2.6 Modular invariant partition functions

Write A for the affine Lie algebra A[ , and A* for its complex conjugate.
We fix the level k, and consider only unitary irreducible integrable A or A*-
modules of level k. We consider the following particular A ® ̂ 4*-module:
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where m^ is the multiplicity of the copy V(£, k) 0 {V(£r, k))*.
This is what physicists call Hilbert spaces in such a situation, without

further qualifications. We only need to take the completion of H in order
to be mathematically rigorous. Mathematicians might guess why we have
to choose H. as above. This is a special case of the factorization principle
widely accepted by physicists. Now LQ is supposed to play the same role as
the Hamiltonian operator of the system, and therefore the eigenvalues of LQ
should express the energies. For the (physical) theory it is always important
to know the energy level distribution inside the system. Thus it is important
to know the eigenvalues of LQ and to count the dimension of the eigenspaces,
in other words to determine the partition function Z of the system. The
partition function Z of the system (= the A^ -module) TL is defined by

Z(q,9,q,9) := T r H ( V f c + 2 ) L o e ^ ( f c + 2 ) * M O ) ^

where q = e 2 7 r v ^ r with r in the upper half plane, and 9 is a real parameter;
when r is purely imaginary, — ir equals the ratio of sizes of time and one
dimensional space. For more details see [Cardy88] and [EY89].

In this situation, the physicists assume

2. Z(q,9,q,9) is SL(2, Z)-invariant.

Condition (1) means that the system has a unique state of lowest energy,
usually called the vacuum. This is one of the principles that physicists take for
granted. We therefore follow the physicists' tradition, doing as the Romans
do. Next, (2) is the condition of discrete space-time symmetry. It means
that Z is invariant under the transformations r H - 1 / r and 9 i-> 0 + 1.
See [Cardy86] and [Cardy88] for more details. These assumptions have very
surprising consequences.

Theorem 2.7 Modular invariant partition functions are classified as in Ta-
ble 3. We write the partition function Z = ^a,%jXiX!j ^n terras of A[ -
characters. Then the indices i with nonzero an are Coxeter exponents of the
Lie algebra of the same type. Moreover the value k + 2 is equal to the Coxeter
number.

For example, for k — 6 there are two modular invariant partition functions:

z(A7) = |xi | 2 + |x2|2 + --- + |x6|2 + N 2 ,

Z(D5) = J2 lX2A-i|2 + (X2X6 + XaXe) + M 2 ,
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Type

An

D2r

D2r+i

E6

E7

E8

k +

n +

4r —

4r

12

18

30

2

1

2

partition function Z(q, t

ELIIXAI2

E A = 1 IX2A-1 + X

EAr=llX2A-l|2 +

|X1+X7|2 + |X4

|Xi+Xi?|2 + |X£

+|X9|2 + (X

IXi + Xii + Xi9 -

4T+1-2A
2 + 2|x2,-i

Z^A=l(X2AX4r-2A +

+ Xs|2H

+ Xia|2

3 + Xl5;

+" X291 "

1-|X5 +Xnl

I2

X2AX4r-2A) + |X2r|2

2

+ IX7 +Xnl 2

X9+X9(X3

\- |X7 + Xl3

+ X15)

+ Xl7 + X23|2

Table 3: Modular invariant partition functions

where A-j (respectively D§) has Coxeter exponents {1,2,.... ,6, 7} (respec-
tively {1,3,5,7,4}). Note that the indices 2,6 are not among the Coxeter
exponents of D5. For k = 10, there are three types of modular invariant
partition functions Z(An), Z{D-j) and Z(EQ).

For more details, see Capelli, Itzykson and Zuber [CIZ87], Kato [Kato87],
Gepner and Witten [GW86] and Kac and Wakimoto [KW88]. Compare also
[Slodowy90]. Pasquier [Pasquier87a] and [Pasquier87b] used Dynkin diagrams
to construct some lattice models and rediscovered a series of associative al-
gebras (called the Temperly-Lieb algebras) which are expected to appear as
some algebra of operators on the Hilbert space in the continuum limit of the
models. See also Section 3.4 and [GHJ89], p. 87, p. 259. Although the relation
of the models with modular invariant partition functions remains obscure, the
partition function of Pasquier's model is expected to coincide in some sense
with those classified in Table 3. See [Zuber90]. The connection of CFT with
graphs is studied by Petkova and Zuber [PZ96].

2.8 N = 2 superconformal field theories

There are other series of conformal field theories - the N = 2 superconformal
field theories or (induced) topological conformal field theories, which are more
intimately related to the theory of ADE singularities. However, these are a
priori close to the theory of singularities. See Blok and Varchenko [BV92].

The following result might be worth mentioning here.

Theorem 2.9 Suppose that there exists an irreducible unitary Viic-module,
namely an irreducible Viic-module admitting a Virc-invariant Hermitian inner
product. Then c> 1 or c = 1 — 6/m(m + 1) for some m G Z, m > 3.
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2.10 The minimal unitary series

Virasoro algebras of the second type are called the minimal c < 1 unitary se-
ries of Virasoro algebras. They attract attention because of their exceptional
characters. There is a series of von Neumann algebras with indices equal to
similar values 4cos2(?r//i) for h = 3 ,4 , . . . , where h is the Coxeter number in
a suitable interpretation. Conjecturally, the minimal unitary c < 1 series of
CFTs are deeply related to the class of subfactors which will be introduced in
Section 3. Much is already known about this topic. See [GHJ89], [Jones91],
[EK98].

3 Von Neumann algebras

3,1 Factors and subfactors

We give a brief explanation of von Neumann algebras, Hi factors of finite
type, and subfactors. The reader is invited to refer, for instance, to [GHJ89],
[Jones91], [EK98]. Let H be a Hilbert space over C and B(H) the space of
all bounded C-linear operators on H endowed with an operator seminorm
in some suitable sense. A von Neumann algebra M is by definition a closed
subalgebra of B(H) containing the identity and stable under conjugation
x i—• x*. This is equivalent to saying that M is *-stable and is equal to its
bicommutant. This is von Neumann's bicommutant theorem. See [Jones91],
p. 2. The commutant of a subset S of B(H) is by definition the centralizer
of S in B(H). The bicommutant of M is the commutant of the commutant
of M. If M is a *-stable subset of B(H), then the bicommutant of M is the
smallest von Neumann algebra containing M.

A factor is denned to be a von Neumann algebra M with centre ZM
consisting only of constant multiples of the identity. Let M be a factor. A
factor N is called a subfactor of M if it is a closed *-stable C-subalgebra of M.
A Hi factor is by definition an infinite dimensional factor M which admits a
C-linear map tr: M —• C (called the normalized trace) such that

1. tr(id) = 1,

2. ti(xy) = tr(7/x) for all x,y € M,

3. ii(x*x) > 0 for all 0 ̂  x G M.

We note that the above normalized trace is unique. Let L2(M) be the
Hilbert space obtained by completing M with respect to the inner product
(x | y) := ti(x*y) for x,y e M. The normalized trace induces a trace (not
necessarily normalized) T r ^ on the commutant M' of M in B(Tt), called the
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natural trace. If H = L2(M), then TrM'(JXJ) = tiM(x) for all £ G M where
J is the extension to L2(M) of the conjugation J(z) = z* of M.

A finite factor M is either a Hi factor or B(H) for a finite dimensional
Hilbert space H. Let M be a finite factor, and N a subfactor of M. Then the
Jones index [M : JV] is defined to be dim^y L2(M) := Trw^id^^)) , where Nf

is the commutant of N. In general [M : TV] G [1, oo] is a (possibly irrational)
positive number.

For instance, M = Endc(VF) is a factor (a simple algebra) for any finite
dimensional C-vector space W. If N = Endc(V) is a subfactor of M, then
we have a representation of N = Endc(V) on W, in other words, W is an
Endc(Vr)-module. We recall that

1. any Endc(^)-module is completely reducible, and

2. V is a unique nontrivial irreducible Endc(Vr)-module up to isomor-
phism.

Therefore W z± V®c U for some C-vector space U. Hence dime M̂  is divisible
by dime V. Since M is complete with respect to the inner product, we have
[M : N] = dimN L2(M) = dimN M = (dimc M)(dimc N)~x = (dimc f/)

2, a
square integer. See [GHJ89], p. 38.

The importance of the index [M : N] is explained by the following result:

Theorem 3.2 ([GHJ89], p. 138) Suppose that M is a finite factor, and
let H and H1 be M-modules which are separable Hilbert spaces. Then

1. diniM H = diniM-fl7 if and only if H and H' are isomorphic as M-
modules.

2. dimM H = 1 if and only if H = L2(M).

3. dimM H is finite if and only ifEndM(H) is a finite factor.

Theorem 3.3 ([GHJ89], p. 186) Suppose that N C M is a pair of IIX

factors whose principal graph is finite.

1. If [M : N] < 4 then [M : N] = 4COS2(TT//I) for some integer h>2>.

2. If [M : N] = 4COS2(TT//I) < 4, the principal graph of the pair N C M
is one of the Dynkin diagrams An, Dn and En with Coxeter number h.
(Only An, £>2n, EQ and E$ can appear, see [Izumi91], p. 972. This was
proved independently by Kawahigashi and Izumi.)

3. If [M : N] = 4 then the principal graph of the pair N C M is one of
the extended Dynkin diagrams An, Dn and En.



Y. Ito and I. Nakamura 169

4. Conversely for any value A = 4 or 4 cos2(IT/h), there exists a pair of II\
factors N <Z M with [M : N] = A.

See [GHJ89], [Jones91], p. 35. See [GHJ89], p. 186 for principal graphs. See
also 3.8-3.10 where to each tower of finite dimensional semisimple algebras we
associate a finite graph F analogous to a principal graph for a pair of factors.
This will help us to guess the principal graphs for factors.

3.4 The fundamental construction and Temperly-Lieb
algebras

Why do the constants 4COS2(TT//I) appear? Let us explain this briefly.
Given a pair of finite Hi factors N C M with /? := [M : N] < 00, there

exists a tower of finite Hi factors My, for k = 0,1,2, . . . such that

1. Mo = TV, Mi = M,

2. for any k > 1, the algebra Mk+i := EndMfc_! Mk is obtained from Mk
by taking the von Neumann algebra of operators on L2(Mk) generated
by Mk and an orthogonal projection e^: L2(Mk) —> L2(Mfc_i), where
Mfc is viewed as a subalgebra of Mk+i under right multiplication.

By Theorem 3.2, (3), Mk+i is a finite Hi factor. The sequence {efc}fc=i,2,...
of projections on M^ := (Jfc>o ̂  satisfies the relations

e^ = 6 ,̂ 6j = = Gj,

ei = i9eieJ-ei for | i - j | = l,

e^- = ê e* for \i — j \ > 2.

We define ^ ^ to be the C-algebra generated by l , e i , . . . ,efc_i subject
to the above relations, and Ap := Ufcli As.fc- ^ n e algebra A/? is called the
Temperly-Lieb algebra. Compare also [GHJ89], p. 259.

Thus given a pair of Hi factors, the fundamental construction gives rise
to a unitary representation of the Temperly-Lieb algebra. However, the con-
dition that the representation is unitary restricts the possible values of /?, as
Theorem 3.5 shows.

Theorem 3.3, (1) follows from the following result

Theorem 3.5 ([Wenzl87]) Suppose given an infinite sequence {e*;}^!^,...
of projections on a complex Hilbert space satisfying the following relations:

2 •
e± — 6^ 6^ — 6

i for | 2 - j | = l,

eiej = ejei for \i-j\>2.

Jfex ^ 0, then /? > 4 or /3 = 4cos2(?r/^) for an integer £>
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Proof We give an idea of the proof of Theorem 3.5. Suppose we are given a
homomorphism (p: Ap —> B(H) for some Hilbert space 7i, that is, a unitary
representation of Ap. For simplicity we identify (p(x) with x for x € Ap.

First we see that 0 < e\e\ = e\ = e\ — fie\e2e\ — /?(^2^i)*(c2ei). Hence
/? > 0. If f3 = 0 then e\ — 0, contradicting the assumption. Hence /? > 0.

Next we assume 0 < j3 < 1 to derive a contradiction by using Ap$. Let
S2 := 1 — e\. Then the assumptions of Theorem 3.5 imply 52 = S2i S2 = S2.
Hence

0 < (52e2S2y(62e2S2) = (S2e282)
2 = (1 - / T ^ W 2 ) < 0,

because 52e252 = (e2^2)*(e2^2) > 0. Thus e2^2 = 0. It follows that e2 =
and e2 = e2 = e2eie2 = /3~1e2, so that e2 = 0. Therefore e\ = f5e\e2e\ = 0,
contradicting the assumption. If 4cos2(?r/£) < /? < 4COS2(TT/(^+ 1)), then we
derive a contradiction by using Aptt+i. See [GHJ89], pp. 272-273. •

3.6 Bipartite graphs
A bipartite graph T with multiple edges is a (finite, connected) graph with
black and white vertices and multiple edges such that any edge connects a
white and black vertex, starting from a white one (see, for example, Figure 3).
If any edge is simple, then T is an oriented graph (a quiver) in the sense of
Section 1. Let F be a connected bipartite finite graph with multiple oriented
edges. Let w(T) (respectively b(T)) be the number of white (respectively
black) vertices of F. We define the adjacency matrix A := A(F) of size b(T) x
iw(r) by

\m(e) if there exists e such that de = b — wy

10 otherwise,

where m(e) is the multiplicity of the edge e.
We define the norm ||F|| as follows,

= max{||XX||EUCL; IMIEUCL < l } ;

o A(r)\
'-" o )

where X is a matrix, x a vector and || ||EUCL the Euclidean norm. We note
that when X is a square matrix, ||X|| is the maximum of the absolute values
of eigenvalues of X.

Lemma 3.7 Assume F is a connected finite graph with multiple edges. Then
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* IV
Figure 3: The Dynkin diagram D5 as a bipartite graph

1. if \\T\\ < 2 and if F has a multiple edge, \\T\\ = 2 and F = Av

2. \\T\\ < 2 if and only if F is one of the Dynkin diagrams A,D,E. In
this case \\T\\ = 2COS(TT//I), where h is the Coxeter number of F.

3. \\T\\ = 2 if and only if F is one of the extended Dynkin diagrams

Lemma 3.7 is easy to prove. For instance, if there is a row or column
vector of F with norm a, then ||r|| > a. See also [GHJ89], p. 19.

3.8 The tower of semisimple algebras

Why is Theorem 3.3, (2) true? The interested reader is invited to see [GHJ89].
Here we explain it in a much simpler situation.

Recall that a matrix algebra of finite rank is a finite factor by definition.
This is an elementary analogue of a finite Hi factor with a finite dimensional
Hilbert space. So let us see what happens if we consider the fundamental
construction for a pair N C M of (sums of) matrix algebras. We call N and
M (a pair of) semisimple algebras (over C).

Let F be a connected bipartite graph with multiple edges, v(T) and e(F)
its set of vertices and edges. Let W(w) be a C-vector space for a white vertex
w. Let W(b, w) be a C-vector space for an edge e with de = b — w and
V(&) = ®de=b-w ^(&>w) ® W(w) for a black vertex 6, where the sum runs
over all edges of F ending at b. Set

N:= 0 Endc(W»),
w: white

M := 0 Endc(V(b))
6:black

= ® 0 Endc(W(b,w))®Endc(W(w)).
6:black de=b-w

Now let (fo: N —> M be the homomorphism defined by

de=b—w
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where idw(b,w) is the identity homomorphism of W{b,w). This is a repre-
sentation of the oriented graph F in the sense of Definition 1.11 if m(e) =
dim W(6, w) < 1 for any edge e.

We set A(M, N) := A(F) and call it the inclusion matrix of M in N.
Let us consider a tower of semisimple algebras arising from the funda-

mental construction for the pair N C M. We define Mo = N, M\ = M and
Affc+i := EndMfc.jCMfc) inductively.

Let M2 = End;v M, </?i the monomorphism of Mi into M2 by right multi-
plication. Let V(b,w) = Endc(W(b,w)). Then we see that

U(w),
w: white

U(w):= 0 Endw{w)(V(b))
de—b—w

= 0 Endc(^(b, w)) 0 '.
de=b-w

<£l = ^^<£l,it;j <Pl,w — ^ p right mult.V(b,w) 0 idEnd(W(w))•
tu de—b—w

The construction shows that the graph F describes the inclusion of Mk~\
into Mfc by interchanging the roles of white and black vertices, and reversing
the orientation of edges at each step. We see A(M2fc+i,M2fc) = A(M, N)1,
A(M2fc,M2,_1)=A(M,iV).

We set [M : N] := limfc^oo(dimMfc/dimMo) . (This is one of the
equivalent definitions of the Jones index [M : N}.) We compute this in the
simplest case when F is a connected graph with two vertices and a single edge
e. Let m(e) be the multiplicity of e, and de — b — w. Then we see that

Mo = N = Endc(W(w)),
Mi = M = Endc(V(6)) c± Endc(VK(6, w)) 0 Mo,

M2 = Endc(Endc(VF(&, w))) <

b,w)

Hence we see that dime Mk/Mk-i = dime Endc(VF(6, w)) = dimc(M/N). It
follows readily that [M : iV] = dime (M/iV), as was remarked in 3.1.

In this situation, the following result is proved.

Theorem 3.9 ([GHJ89], pp. 32-33) 1. The following are equivalent:

(a) there exists a row b(T)-vector s and (3 G C* with sAA* = f3s such
that every coordinate of s and sA is nonzero,

(b) there exist C-linear maps e^: Mk —> Mk-\ such that e\ = e^ and
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(i) Mk is generated by Mk-i and ek,

(ii) ek satisfies e* = Pe^efii if \i — j \ = 1 and ê e., = ê e* if
N - j | > 2 .

2. If one of the equivalent conditions in (1) holds, then

This is nontrivial, but is just linear algebra. By Theorem 3.9, we have a
situation similar to a pair of Hi factors N C M as well as a Temperly-Lieb
algebra Ap.

Prom Lemma 3.7, we infer the following result.

Corollary 3.10 Let Mo = N C Mi = M C • • • C Mk C • • • be a tower of
semisimple algebras. We have a Temperly-Lieb algebra Ap from the tower if
and only if (3 = [M : N] and 0 > 4 or jp = 4COS2(TT//I) for h = 3 ,4 ,5 , . . . .
Moreover

1. if (3 = 4COS2(TT//I); then the graph T is one of A, D, E;

2. if (3 = 4, then the graph T is one of A, D, E.

For a pair of Hi factors N C M, we can always carry out the same
construction as for a pair of semisimple algebras, and we find the same graphs
(principal graphs), because the pair in fact satisfies the stronger restrictions
of (infinite dimensional) Hi factors. As a consequence, the cases Dodd and Ej
are excluded.

4 Two dimensional McKay correspondence

4.1 Finite subgroups of SL(2, C)
Up to conjugacy, any finite subgroup of SL(2,C) is one of the subgroups
listed in Table 4; see [Klein]. The triple (^1,^2,^3) specifies the degrees of
the generators of the G-invariant polynomial ring (compare Section 11).

4.2 McKay's observation

As we mentioned in Section 1, any simple singularity is a quotient singular-
ity by a finite subgroup G of SL(2,C), and so has a corresponding Dynkin
diagram. McKay [McKay80] showed how one can recover the same graph
purely in terms of the representation theory of G, without passing through
the geometry of A2/G.
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Type

An

Dn

E6

E7

Es

G

Zn+l

Dn_2

T

O

1=
1

name

cyclic

binary

binary

binary

binary

dihedral

tetrahedral

octahedral

icosahedral

order

n+ 1

4(n - 2)

24

48

120

h

n -f

2n-

12

18

30

1

2

(du

(2,n-f

(4,2n-

(6,

(8,

(12,

di, d%)

- l . n+1)

- 4,2n - 2)

8,12)

12,18)

20,30)

Table 4: Finite subgroups of SL(2, C)

To be more precise, let G be a finite subgroup of SL(2, C). Clearly, G has
a two dimensional representation, which maps G injectively into SL(2, C);
we call this the natural representation pnat. Let Irr* G, respectively Irr G, be
the set of all equivalence classes of irreducible representations, respectively
nontrivial ones. (Caution: note that this goes against the familiar notation
of group theory.) Thus by definition, Irr* G = Irr G U {po}, where p0 is the
one dimensional trivial representation. Any representation of G over C is
completely reducible, that is, it is a direct sum of irreducible representations
up to equivalence. Therefore for any p G Irr* G, we have

P n a t =
p'Glrr* G

where apy are certain nonnegative integers. In our situation, we see that
Gp,p' = 0 or 1 (except for the case Au when apj = 0 or 2).

Let us look at the example D5, the case of a binary dihedral group G := B3
of order 12. The group G is generated by a and r:

= (0 A r= -°i J = e

We note that Tr(cr) = 1, Tr(r) = 0, hence in this case, the natural repre-
sentation is p2 in Table 5.

Definition 4.3 The graph FGROUP(G) is defined to be the graph consisting
of vertices v(p) for p e Irr* G, and simple edges connecting any pair of vertices
v(p) and v(pf) with aPyP> — 1. We denote by FGROUP(G) the full subgraph
of FGROUP(G) consisting of the vertices v(p) for p G IrrG and all the edges
between them.

For example, let us look at the Z)5 case. Let Xj '•=
of pj. Then from Table 5 we see that

be the character

X2{g)X2{g) = Xo(g) + Xi{g) + for g = 1, a or r.
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p

Po

Pi

P2

P3

P4

P5

Trp

Xo

Xi

X2

X3

X4

X5

1

1

1

2

2

1

1

a

1

1

1

- 1

- 1

- 1

r

1

- 1

0

0

Table 5: Character table of D5

Hence X2X2 = Xo + Xi + X3- General representation theory says that an
irreducible representation of G is uniquely determined up to equivalence by
its character. Therefore p2 0P2 = Po + Pi + P3- Hence aP2tPj = 1 for j = 0,1,3
and aP2iPj = 0 for j = 2,4,5. Similarly, we see that

X0X2 = X2, XlX2 = X2,

X3X2 = Xo + Xi + X4,

X4X2 = X3 and X5X2 = Xs-

In this way we obtain a graph - the extended Dynkin diagram D5 of Figure 4.
It is also interesting to note that the degrees of the characters degp^ = Xj(l)
are equal to the multiplicities of the fundamental cycle we computed in Sec-
tion 1. This is true in the other cases. Namely the graph FGROUPIG) turns
out to be one of the Dynkin diagrams ADE, while FGROUPIG) is the corre-
sponding extended Dynkin diagram (see Figure 5). This is the observation of
[McKay 80].

Pi

Figure 4: McKay correspondence for

AA The Gonzalez-Sprinberg-Verdier construction
Let G be a finite subgroup of SL(2,C), X the minimal resolution of 5 :=
A2/G, and E the exceptional set. Gonzalez-Sprinberg and Verdier [GSV83]
constructed a locally free sheaf Vp on X for any p G Irr G such that there
exists a unique Ep G Irr E satisfying

deg(ci(iy | ^ ) = 1 and deg(Cl(Vp)^) = 0 for E' ± Ep, E' G Irr E.
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Thus the map p n Ep turns out to be a bijection from IrrG onto IrrE.
Their construction of Vp is essentially as follows [Knorrer85], p. 178. Let

p: G —> GL(V(p)) be a nontrivial irreducible representation of G. Then the
associated free O^2-mod\ile V(p) := O&2 ®c V(p) admits a canonical G-action
defined by g • (x,v) = (gx,gv). Let V(p)G be the (D^-module consisting of
G-invariant sections in V(p). The (locally free) (9x-niodule V̂  is defined as

VP := Ox 0 o s V(p)G/C>x-torsion.

Theorem 4.5 Let G be a finite subgroup o/SL(2,C), 5 = A2/G; X tte
minimal resolution of S and E the exceptional set. Then there is a bijection
j of Irr* G to Irr* E such that

1. j(p0) = Eo =: Epo and j(p) = Ep for p £ Irr G;

2. deg(p) = m|p
NG for all p € Irr* G;

3. aPiP> = (Ep, £y )SING for p^ p' £ Irr* G.

In particular:

Corollary 4.6 rGROup(G) = rSiNG(A2/G) and fGROUP(G) = fSiNG(A2/G).

See [McKay80] and [GSV83]. Using invariant theory, [Knorrer85] gave a
different proof of Theorem 4.5 based on the construction in [GSV83]. We dis-
cuss again the construction of [GSV83] from the viewpoint of Hilbert schemes
in Sections 8-16, and give there our own proof of Theorem 4.5.

5 Missing links and problems

5.1 Known links
We review briefly what is known about links between any pair of the objects
(a)-(f) - namely,

(a) simple singularities, (b) finite subgroups of SL(2, C),

(c) simple Lie algebras, (d) quivers, (e) CFT, (f) subfactors.

A very deep understanding of the link from (c) to (a) is provided by work of
Grothendieck, Brieskorn, Slodowy and Springer. See [Slodowy80]. However,
no intrinsic converse construction of simple Lie algebras starting from (a) is
known.

The link from (b) to (a) is on the one hand the obvious quotient singular-
ity construction, and on the other the very nontrivial McKay correspondence.
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The construction of [GSV83] gives an explanation for the McKay correspon-
dence. See also [Knorrer85] and Section 4. We will show a new way of
understanding the link (the McKay correspondence) in Sections 8-16. Quiv-
ers of finite type appear in the course of this, which provides a link from (b)
to (d) alongside the link from (b) to (a). This path has already been found
in [Kronheimer89] in a slightly different manner.

For a given pair of Hi factors one can construct a tower of Hi factors by
a certain procedure which specialists call mirror image transformations. In
order to have an ADE classification we had better look at the same tower
construction for a pair of semisimple algebras (semisimple algebras over C
are sums of matrix algebras). In the tower of semisimple algebras the initial
pair N C M is described as a representation of an ADE quiver, while the rest
of the tower is generated automatically from this. Therefore the link between
(d) and (f) is firmly established, though the subfactors are only possible with
the exception of Dodd and E7. The link between (e) and (f) does not seem to
be perfectly understood. See [EK98].

Infinite dimensional Heisenberg/Clifford algebras and their representa-
tions on Fock space enter the theory of Hilbert schemes. See [Nakajima96b],
[Grojnowski96] and Section 6. This strongly suggests as yet unrevealed rela-
tions between the theory of Hilbert schemes with modular invariant partitions
and Hi (sub)factors.

The most desirable outcome would be a theory in which all six kinds of
objects (a)-(f) arise naturally in various forms from one and the same object,
for instance, from a finite subgroup of SL(2, C).

5.2 Problems
The following problems are worth further investigation.

1. What are the Coxeter exponents and the Coxeter number for a finite
subgroup of SL(2, C), and why? (It is known that the Coxeter number
equals the largest degree of the three homogeneous generators of the
G-invariant polynomial ring. But why?)

2. What are the multiplicities of the highest weight for (e) and (f)?

3. Why do indices other than Coxeter exponents appear in Table 3 of
Theorem 2.7?

4. The link from (b) to (c)? Can we recover the Lie algebras?

5. The link from (a) to (c)? Can we recover the Lie algebras?

6. The links from (b) to (e) and (f)?
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7. Theorem 2.9 and Theorem 3.3 hint at an ADE classification of c < 1
minimal unitary series. If so, what do they look like? What is the link
from (e) to (f) via this route?

6 Hilbert schemes of n points

6.1 Existence and projectivity

Let X be a projective scheme over C. The n-point Hilbert scheme Hilb^ is by
definition the universal scheme parametrizing all zero dimensional subschemes
Z C X such that h°(Z, Oz) = dim(Oz) = n. A zero dimensional subscheme
Z e Hilb^ has a defining ideal / C Ox that fits in an exact sequence

0 -> / -> Ox -> Oz -> 0.

Thus, set theoretically,

HilbJ = {ZcX; dim(Oz) = n}
- { / c O i j / a n ideal of Ox,dim(Ox/I) = n}.

See [Mumford], Lectures 3-4 or Grothendieck [FGA], Expose 221 for an
explanation of Hilbert schemes and a general treatment of their universal
properties. A theorem of Grothendieck [FGA], Expose 221 guarantees the
existence of Hilbert schemes in a fairly general context; we give an elementary
proof that HilbJ exists and is a projective scheme, following suggestions of
Y. Miyaoka and M. Reid.

Let Ox (I) be a very ample invertible sheaf on X defining an embedding
X <-+ FN, and set Ox(rn) := OxQf". We prove first that HilbJ for fixed
n can be viewed as a subscheme of the Grassmann variety of codimension n
vector subspaces of H°(X,

Lemma 6.2 Let Z c X C FN be a zero dimensional subschemes of degree
n. Then

(i) The restriction map rz'- H°(Ox(m)) —> Oz(m) ^ Oz is surjective for
any m > n — 1;

(ii) IOxim) is generated by its H° for any m > n.

Proof Write Supp Z = {Pi,.. . , Ps}, and degP. Z = ni5 so that Yln% = n-
Now for each Pj, the map

n: H°(FN,O(m))
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is surjective for any m > n; — 1. Moreover, for k > r^, the kernel of r* contains
forms not vanishing at any given point Q ^ Pi. This is obvious, because, if
Pi is taken as the centre of inhomogeneous coordinates, then O^N/mJp. is just
the vector space of polynomials of degree < n{ — 1. Clearly O^N JTrUp —• Oz,Pi
is also surjective.

The lemma now follows on taking the product of forms of degree >rii. •

Corollary 6.3 Let X be a projective scheme and C*x(l) CL very ample line
bundle on X. Then HilbnX is a closed subscheme of the Grassmann variety
of codimension n subspaces of H°(Ox(n)).

Proof It is not hard to see that a subspace V C H°(Ox(n)) of codimension
n generates a subsheaf Ox • V = I(n) C Ox(n) with dim(Ox/I) = n if
and only if the map V 0 H°(OX{1)) -* H°(Ox(n + 1)) also has corank n.
(This is the condition that V is closed under multiplication by linear forms.)
This condition clearly defines a Zariski closed subscheme of the Grassmann
variety. The alternative proof of the corollary uses the standard flattening
stratifications of [Mumford], Lecture 8. •

The construction of Hilbn X in Corollary 6.3 makes clear that X x Hilbn X
has a sheaf of ideals / defining a O-dimensional subscheme Zn C X x Hilbn X
satisfying the following universality property, a special case of a theorem of
Grothendieck [FGA], Expose 221. We will use this theorem to determine the
precise structure of Hilb^ defined in Section 8.

Theorem 6.4 (existence and universality of Hilb^) Let X be a projec-
tive scheme and n any positive integer. Then there exists a projective scheme
Hilb^ (possibly with finitely many irreducible components) and a universal
proper flat family 7runiV: Zn —> Hilb^- of zero dimensional subschemes of X
such that:

1. any fibre of 7runiv belongs to

2. Z? = Z? if and only ift = s, where Z? := T T ^ W for t G Hilb£;

3. given any flat family n: Y —> S of zero dimensional subschemes of X
with length n, there exists a unique morphism ip: S —• HilbJ such that

Let U be an open subscheme of X. Then HilbJ} is an open subscheme of
consisting of the subschemes of X with support contained in U. We

call Hilb^ the n-point Hilbert scheme of U.
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6.5 Hilbert-Chow morphism

Write Sn(A2) for the nth symmetric product of the affine plane A2. This is
by definition the quotient of the products of n copies of A2 by the natural
permutation action of the symmetric group Sn on n letters. It is the set of
formal sums of n points, in other words, the set of unordered n-tuples of
points.

We call Hilbn(A2) the Hilbert scheme of n points in A2. It is a quasipro-
jective scheme of dimension 2n. Any Z G Hilbn(A2) is a zero dimensional
subscheme with h°(Z, Oz) = dim(Oz) = n. Suppose that Z is reduced.
Then Z is a union of n distinct points. Since being reduced is an open and
generic condition, Hilbn(A2) contains a Zariski open subset consisting of for-
mal sums of n distinct points. This is why we call Hilbn(A2) the Hilbert
scheme of n points on A2.

We have a natural morphism ir from Hilbn(A2) onto Sn(A2) defined by

We call 7T the Hilbert-Chow morphism (of A2). Let D be the subset of
Sn(A2) consisting of formal sums of n points with at least two coincident
points. It is clear that TT is the identity over Sn(A2) \ D, hence is birational. If
n = 2 and if Z is nonreduced with Supp(Z) the origin, then Z is a subscheme
defined by the ideal

/ = (ax + by, x2, xy, y2), where (a, b) ̂  (0,0).

Thus the set of these subschemes is P1 parametrizing the ratios a : b. It follows
that Hilb2(A2) is the quotient by the symmetric group S2 of the blowup of
the nonsingular fourfold A2 x A2 along the diagonal A2. For all n there is a
relatively simple description, due to Barth, of Hilb^2 as a scheme, in terms of
monads. See [OSS80] and [Nakajima96b], Chapter 2. We write some of these
down explicitly in Sections 12-16.

One of the most remarkable features of Hilbn(A2) is the following result.

Theorem 6.6 ([Fogarty68]) Hilbn(A2) is a smooth quasiprojective scheme,
and TT: Hilbn(A2) -+ Sn(A2) is a resolution of singularities of the symmetric
product.

A simpler proof of Theorem 6.6 is given in [Nakajima96b]. We note that
smoothness of Hilbn(A2) is peculiar to dim A2 = 2. If k > 3, then a subscheme
Z C Ak can be very complicated in general [G6ttsche91]. See [Iarrobino77],
[Briangon77]. [G6ttsche91], p. 60 writes that Hilbn(Afc) is known to be sin-
gular for k > 3 and n > 4, while it is smooth for any k if n = 3. Hilbn(Afc) is
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connected for any n and k by [Fogarty68], while it is reducible, hence singular
for any k and any large n > k by [Iarrobino72].

Besides smoothness, Hilbn(A2) has various mysterious nice properties.
Among others, the following is relevant to our subsequent study of HilbG(A2).

Theorem 6.7 ([Beauville83]) Hilbn(A2) admits a holomorphic symplectic
structure.

Proof See also [Fujiki83] for n = 2, and [Mukai84] for a more general case.
The sketch proof below, mostly taken from [Beauville83], shows that the
theorem also holds for Hilbn(5) if 5 is a smooth complex surface with a
nowhere vanishing holomorphic two form. Let w be a nowhere vanishing
closed holomorphic 2-form on 5 := A2, say dx A dy in terms of the linear
coordinates on S. The product Sn of n copies of S has the holomorphic 2-
form ip := Y^i=\ Pi(u)i where pi is the zth projection. We show that ?/> induces
a symplectic form on SH := Hilbn(S).

We write S^ = Sn(5) for the nth symmetric product of 5, that is, by
definition, the quotient of the products of n copies of S by the natural per-
mutation action of the symmetric group Sn on n letters. Let e: Sn —• S^
be the natural morphism. Let D* be the open subset of D consisting of all
0-cycles of the form 2x\ + x2 + • • • + xn_i with all the xi distinct. We set
S(n) ._ S(n) \ ( jD \ jj^ gin] = 7 r - l ( 5 W) ) ^ . = ^ ^ W ) a n d A* = ff"1^)-

Then A* is smooth and of codimension 2 in Sin\ Then by [Beauville83],
p. 766, S!n] is isomorphic to the quotient of the blowup of BlA+(5^n)) of Sin)

along A* by the symmetric group Sn. Hence we have a natural morphism
p: BID(S* ) —» 5 * . We see easily that ip induces a holomorphic 2-form ip
on 5* , which extends to 5 ^ because the codimension of the inverse image
of SW \ 5in] in S'nl is greater than one.

Let E* be the inverse image of A* in BlA>(,(5*n^). Then the canonical
bundle of B1A*(S* ) is K*, because that of Sn is trivial. On the other hand,
it is the sum of the divisor p*((pn) and the ramification divisor R of p. Since
R = E* on B I A ^ S * ), we see that ((p)n is everywhere nonvanishing on 5; ,
hence also on 5 ^ [Beauville83]. Thus ip is a nowhere degenerate 2-form, that
is, a holomorphic symplectic form on 5 ^ . •

Definition 6.8 The infinite dimensional Heisenberg algebras is by definition
the Lie algebra generated by p*, <& for i > 1 and c, subject to the relations

\pu qj] = cSij, \puPj] = [ft, qj] = [pi, c] = [ft, c] = 0.

It is known that for any a G C*, the Lie algebra $ has the canonical
commutation relations representation aa on the Fock space R := C[xi, £2, . . . ],
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that is, the ring of polynomials in infinitely many indeterminates x»; the
representation is defined by

0a(Pi) = a-Q—, °a(qi) = xu oa(c) = a • id#.

We denote this s-module by Ra. We also define a derivation do of 5 by

[d0, qi] = iqh [d0, Pi] = - i p i , [do, c] = 0.

The following fact is important (see [Kac90], pp. 162-163):

Theorem 6.9 An irreducible s-module with generator v0 is isomorphic to Ra

ifPi(vo) = 0 for all i and c(vo) = av0 for some a ^ 0. The character of Ra is
given by

The vector vo in the above theorem is called a vacuum vector of V. We
quote one of the surprising results of [Nakajima96b].

Theorem 6.10 Let s be the infinite dimensional Heisenberg algebra. Then
the direct sum of all the cohomology groups @n>oi/*(Hilbn(A2),C) is an
irreducible s-module with a = 1 whose vacuum vector vo is a generator of
#0(Hilb°(A2),C).

By Theorem 6.9, the above theorem gives in a sense the complete structure
of the s-module. However we should mention that its irreducibility follows
from comparison with the following Theorem 6.11.

[Nakajima96b] derives a similar conclusion when A2 is replaced by a
smooth quasiprojective complex surface X. Then 0n > o iJ*(Hilbn(X),C) is
an infinite dimensional Heisenberg/Clifford algebra module. Its irreducibility
again follows from Theorem 6.11.

Cell decompositions of Hilbn(P2) and Hilbn(A2), and hence complete for-
mulas for the Betti numbers of Hilbn(P2) and Hilbn(A2), are known by Ellings-
rud and Str0mme [ES87]. The formulas for the Betti numbers of Hilbn(P2)
and Hilbn(A2) are written by [G6ttsche91] more generally in the following
beautiful manner.

To state the theorem, we define the Poincare polynomial p(X, z) of a
smooth complex variety X by p(X, z) := ^ ° ^ 0 dim HX(X, Q)zl. Moreover we
define p(Xy z, t) := S^=o^(^-^n(-^) ' z)^n f°r a s m o ° t h complex surface X.
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Theorem 6.11 ([G6ttsche91]) Let X be a smooth projective complex sur-
face. Then

P{X, Z,t) =

where bi(S) is the ith Betti number of S.

7 Three dimensional quotient singularities

7.1 Classification of finite subgroups of SL(3, C)

Threefold Gorenstein quotient singularities have attracted the attention of
both mathematicians and physicists in connection with Calabi-Yau three-
folds, mirror symmetry and superstring theory. For a finite subgroup G of
GL(n,C), the quotient An/G is Gorenstein if and only if G C SL(n,C); see
[Khinich76] and [Watanabe74].

Now we review the classification of finite subgroups of SL(3,C) from
the very classical works of [Blichfeldtl7], and Miller, Blichfeldt and Dick-
son [MBD16]. In these works they nearly completed the classification of finite
subgroups of SL(3, C) up to conjugacy. Unfortunately, however, there were
two missing classes, which were supplemented later by Stephen S.-T. Yau and
Y. Yu [YY93], p. 2.

There is an obvious series of finite subgroups coming from subgroups of
GL(2, C). In fact, associating (det*?)""1 0 g to each g e GL(2,C), we have
a finite subgroup of SL(3, C) for any subgroup of GL(2,C). Including this
series, there are exactly four infinite series of finite subgroups of SL(3, C):

1. diagonal Abelian groups;

2. groups coming from finite subgroups in GL(2,C);

3. groups generated by (1) and T;

4. groups generated by (3) and Q.

Here

T = 0 0 1 , Q = - 4 = 1 u J1 , where w := e25rv/=T/3.

There are exactly eight sporadic classes, each of which contains a unique
finite subgroup up to conjugacy, of order 108, 216, 648, 60, 168, 180, 504 and
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1080 respectively. Only two finite simple groups appear: A$ (~ PSL(2,Fs))
of order 60, and PSL(2,F7) of order 168.

The subgroup PSL(2,F7) of SL(3,C) is the automorphism group of the
Klein quartic curve x$X\ + x\x<i + X\XQ = 0. On the other hand, A$ is
realized as a subgroup of SL(3, C) as follows. Let G be the binary icosahedral
subgroup of SL(2, C) of order 120 (compare Section 16). This acts on the
space of polynomials of homogeneous degree two on A2, with ± 1 E G acting
trivially. Therefore this is an irreducible representation of G/{=bl} (~ A$)
of rank three. This realizes As as a finite subgroup of SL(3, C). Or, more
simply, A*, C SO (3) is the group of automorphisms of the icosahedron.

In the case of order 108, the quotient A3/G is a complete intersection
defined by two equations, while it is a hypersurface in the remaining seven
cases. The defining equations are completely known; in contrast with the
two dimensional case, they are not all weighted homogeneous. The weighted
homogeneous ones are the cases of order 108, 648, 60, 180 and 1080 [YY93].

All finite subgroups of GL(2, C) are known by Behnke and Riemenschnei-
der [BR95]. We note that in the easiest series (1) the quotients are torus em-
beddings. Therefore their smooth resolutions are constructed through torus
embeddings. See [Roan89].

Outstanding in this area is the following theorem, which generalizes the
two dimensional McKay correspondence to some extent.

Theorem 7.2 For any finite subgroup G o/SL(3,C), there exists a smooth
resolution X of the quotient A3/G such that the canonical bundle ofX is triv-
ial (X is then called a crepant resolution of As/G). For any such resolution
X, H*(X,ZJ) is a free Z-module of rank equal to the number of the conjugacy
classes of G.

[Ito95a], [Ito95b], [Markushevich92], [Roan94] and [Roan96] contributed
to the proof of this theorem. It seems desirable to simplify the proofs for
the complicated sporadic classes. Ito and Reid [IR96] generalized the the-
orem and sharpened it especially in dimension three by finding a bijective
correspondence between irreducible exceptional divisors of the resolution and
conjugacy classes of G (called junior) with certain type of eigenvalues: they
defined the notion of age of a conjugacy class; the junior conjugacy classes
are those of age equal to one. The junior ones play a more important role in
the study of crepant resolutions.
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8 Hilbert schemes and simple singularities:
Introduction

The second half of the article starts here. In it, we study the link from (b)
to (a).

8.1 Abstract

For any finite subgroup G of SL(2, C) of order n, we consider the G-orbit
Hilbert scheme, namely, a certain subscheme HilbG(A2) of Hilbn(A2) that
parametrizes G-invariant subschemes. We first give a direct proof, indepen-
dent of the classification of finite subgroups of SL(2,C), that HilbG(A2) is a
minimal resolution of a simple singularity A2/G. Any point of the exceptional
set E is a G-invariant O-dimensional subscheme Z of A2 with support the ori-
gin. Let / be the ideal sheaf defining Z. Then / is an infinite dimensional
G-module. Dividing it by a natural G-submodule of / gives a finite G-module
V(I), which turns out to be either an irreducible G-module or the sum of two
inequivalent irreducible G-modules. This gives the McKay correspondence as
described in Section 4.

8.2 Summary of main results

We explain in a little more detail. Let Sn(A2) be the nth symmetric product of
A2 (that is, the Chow variety Chown(A2)), and Hilbn(A2) the Hilbert scheme
of n points of A2. By Theorems 6.6 and 6.7, Hilbn(A2) is a crepant resolution
of Sn(A2) with a holomorphic symplectic structure.

Let G be an arbitrary finite subgroup of SL(2,C); it acts on A2, and
therefore has a canonical action on both Hilbn(A2) and Sn(A2). Now we
consider the particular case where n equals the order of G. Then it is easy
to see that the G-fixed point set Sn(A2)G in Sn(A2) is isomorphic to the
quotient A2/G. The G-fixed point set Hilbn(A2)G in Hilbn(A2) is always
nonsingular, but could a priori be disconnected. There is however a unique
irreducible component of Hilbn(A2)G dominating Sn(A2)G, which we denote
by HilbG(A2). Since HilbG(A2) inherits a holomorphic symplectic structure
from Hilbn(A2), HilbG(A2) is a crepant (that is, minimal) resolution of A2/G
(see Theorem 9.3).

Our aim in this part is to study in detail the structure of HilbG(A2) using
representations of G defined in terms of spaces of homogeneous polynomials
or symmetric tensors.

Let m (respectively m^) be the maximal ideal of the origin of A2 (respec-
tively S \— A2/G) and set n = msO&2. A point p of HilbG(A2) is a G-invariant
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O-dimensional subscheme Z of A2, and to it we associate the G-invariant ideal
subsheaf / denning Z, and the exact sequence

0 -* / -> OA2 -> Oz -* 0.

We assume that p is in the exceptional set E of HilbG(A2); since G acts freely
outside the origin, Z is then supported at the origin, and / C m . As is easily
shown, / contains n (Corollary 9.6). Let V(J) := I/(veil + n). The finite
G-module V{I) is isomorphic to a minimal G-submodule of I/n generating
the 0A2-module I/n.

If p is a smooth point of E, we prove that V(I) is a nontrivial irreducible
G-module; while if p £ E is a singular point, V(I) is the direct sum of two
inequivalent nontrivial irreducible G-modules. For any equivalence class of a
nontrivial irreducible G-module p we define the subset E(p) of E consisting
of all I G HilbG(A2) such that V(I) contains p as a G-submodule. We will
see that E(p) is naturally identified with the set of all nontrivial proper G-
submodules of p0 2 , which is isomorphic to a smooth rational curve by Schur's
lemma (Theorem 10.7). The map p »-» E(p) gives a bijective correspondence
(Theorem 10.4) between the set Irr G of all the equivalence classes of irre-
ducible G-modules and the set Irr E of all the irreducible components of E,
which turns out to be the classical McKay correspondence [McKay80].

We also give an explanation of why it is that tensoring by the natural
representation appears as the key ingredient in the McKay correspondence.
An outline of the story is given in Section 13.5. The most remarkable point,
in addition to the McKay correspondence itself, is that there are two kinds
of dualities (Theorems 10.6 and 12.4) in the G-module decomposition of the
algebra m/n. (After completing the present work, we were informed by Shin-
oda that the dualities also follow from [Steinberg64].) It is the second duality
(for instance, Theorem 10.6) that explains why tensoring by the natural rep-
resentation appears in the McKay correspondence.

Our results hold also in characteristic p provided that the ground field k
is algebraically closed and the order of G is coprime to p.

The research part of the article is organized as follows. In Section 9 we
prove that HilbG(A2) is a crepant (or minimal) resolution of A2/G. We also
give some elementary lemmas on representations of finite groups. In Sec-
tion 10 we formulate our main theorem and relevant theorems. We give a
complete description of the ideals corresponding to the points of the excep-
tional set E. In Section 11 we prove the dualities independently of the classi-
fication of finite subgroups of SL(2, C). In Sections 12-16 we study HilbG(A2)
and prove the main theorem separately in the cases An, Dn, EQ, E7 and Eg
respectively.

In Section 17, we raise some unsolved questions.
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9 The crepant (minimal) resolution
Lemma 9.1 Let G be a finite subgroup of GL(2,C), and Hilbn(A2)G the
subset of Hilbn(A2) consisting of all points fixed by G. Then Hilbn(A2)G is
nonsingular.

Proof By Theorem 6.6, Hilbn(A2) is nonsingular. Let p be a point of
Hilbn(A2)G. The action of G on Hilbn(A2) at p is linearized; in other words
we see that there exist local parameters X{ of Hilbn(A2) at p and some con-
stants dij(g) G C such that g*Xi = Y2 aij(9)xj f°r a n v 9 € G. The fixed locus
Hilbn(A2)G at p is by definition the reduced subscheme of Hilbn(A2)G defined
by X{ — Y^ aij(9)xj = 0 for all # G G. Hence it is nonsingular. •

Lemma 9.2 Let G be a finite subgroup of SL(2, C) of order n, and Sn(A2)G

the subset of Sn(A2) consisting of all points of Sn(A2) fixed by G. Then
Sn(A2)G ~ A2/G.

Proof Let 0 ^ q G A2 be a point. Then since q is not fixed by any element
of G other than the identity, the set G • q := {g((\)\g G G} determines
a point in Sn(A2)G. Conversely, any point of Sn(A2)G is an unordered G-
invariant set E in A2. If E contains a point q ^ 0, it must contain the set
G • q. Since |E| = n = |G|, we have E = G • q. Note G • q = G • q' for
a pair of points q, q' ^ 0 if and only if q7 G G • q. Therefore we have the
isomorphism Sn(A2 \ {0})G ~ (A2 \ {0})/G, which extends naturally to a
bijective morphism of Sn(A2)G onto A2/G. It follows that Sn(A2)G - A2/G
because A2/G is normal. •

Theorem 9.3 Let G C SL(2, C) be a finite subgroup of order n. Then there
is a unique irreducible component HilbG(A2) o/Hilbn(A2)G dominating A2/G,
which is a crepant (or equivalently a minimal) resolution of A2/G.

Proof The Hilbert-Chow morphism of Hilbn(A2) onto Sn(A2) is defined
by n(Z) = Supp(Z) (counted with the appropriate multiplicities) for a zero
dimensional subscheme Z of A2. Since Hilbn(P2) is a projective scheme by
Theorem 6.4, the Hilbert-Chow morphism of Hilbn(P2) is proper. Hence
the Hilbert-Chow morphism of Hilbn(A2) is proper, because it is obtained
by restricting the image variety Sn(P2) to Sn(A2). This induces a natural
morphism of HilbG(A2) onto Sn(A2)G - A2/G. Any point of Sn(A2)G\{0} is a
G-orbit of a point 0 ^ p G A2, which is a reduced zero dimensional subscheme
invariant under G. It follows that HilbG(A2) is birationally equivalent to
Sn(A2)G, so that it is a resolution of Sn(A2)G ~ A2/G.
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By [Fujiki83], Proposition 2.6, HilbG(A2) inherits a canonical holomorphic
symplectic structure from Hilb(A2). Since dimHilbG(A2) = dimA2/G = 2,
this implies that the dualizing sheaf of HilbG(A2) is trivial. This completes
the proof. •

Lemma 9.4 Let G be a finite subgroup of GL(n, C). Let S be a connected
reduced scheme, and X an ideal of OA^XS such that O^nxS/X is flat over S.
Let Xs := X <S) 0Anx{s}- Suppose that we are given a regular action of G on
An x S possibly depending nontrivially on S. If dim Supp(0Anx{s}/XS) = 0
for any s G 5 ; then the equivalence class of the G-module O^nx^/Xs is
independent of s.

Proof By the assumption hl{Okr,x{s)/Xs) = 0. Thus h°(OAnx{s}/Xs) is con-
stant on 5, because x(^Anx{s}As) is constant by [Hartshorne77], Chap. III.
Hence again by [ibid.] O^n^s/X is a locally free sheaf of O^-modules of finite
rank. Let E := OknxS/X and A(g,x) := det(z • id - T(g)) be the charac-
teristic polynomial of the action T(g) of g G G on E. Clearly A(#, x) is
independent of a local trivialization of the sheaf E. It follows that A(g, x) G
Hom(det E, det E)[x] ^ T(Os)[x], the polynomial ring of x over T{Os). More-
over coefficients of the polynomial A(g,x) in x are elementary symmetric
polynomials of eigenvalues of T(g). Since all the eigenvalues of T(g) are nth
roots of unity where n = |G|, coefficients of A(g,x) take values in a finite
subset of C over S. Since S is connected and reduced, they are constant. It
follows that A(gyx) G C[x], In particular the character TrT(g), the coeffi-
cient of x in A(̂ f, x) is independent of 5 G 5. Since any finite G-module is
uniquely determined up to equivalence by its character, the equivalence class
of the G-module C?Anx{s}/2a is independent of 5 G S. •

Corollary 9.5 Let G be a finite subgroup of SL(2, C), and I an ideal of
OA2 with I G HilbG(A2). Then as G-modules O^/I ~ C[G\, the regular
representation of G.

Corollary 9.6 Let I be an ideal o/0A2 with I G HilbG(A2). Any G-invariant
function vanishing at the origin is contained in I.

Proof Ok2JI ~ C[G] by Corollary 9.5. This implies that O&jl has a
unique trivial G-submodule spanned by constant functions of A2. It follows
that any G-invariant function vanishing at the origin is contained in / . •

Remark 9.7 By [Nakajima96b], Theorem 4.4, for / G Hilbn(A2), the follow-
ing conditions are equivalent,
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1. J G HilbG

2.

3.

10 The Main Theorem

10.1 Stratification of HilbG(A2) by IrrG

Let G be a finite subgroup of SL(2, C). As in 4.2, we write Irr G for the set of
all the equivalence classes of nontrivial irreducible G-modules, and Irr* G for
the union of Irr G and the trivial one dimensional G-module. Let V(p) G Irr G
be a G-module, and p: G —• GL(V(p))-the corresponding homomorphism.

Let X = XG := HilbG(A2) and S = SG := A2/G. Write m (respectively
ms) for the maximal ideal of A2 (respectively S) at the origin 0, and set
n := ms0A2- Let TT: X —• S be the natural morphism and E the exceptional
set of 7T. Let Irr E be the set of irreducible components of E. Any I e X
contained in E (to be exact, the subscheme defined by / belongs to X) is a
G-invariant ideal of O&2 which contains n by Corollary 9.6. For any p, p;,
and p" G Irr G, we define

V(J ) :=J / (mJ + n),

P(p,pf) := {I G HilbG(A2); V(J) D V(p) 0 V(pf)} ,

Q(p, p\ p") := {/ G HilbG(A2); V(7) D V(p) 0 V(p;) 0

Remark 10.2 Note that we allow p = p' in the definition of P(p,pf). Of
course if p ^ p', then F(p, p') = E(p) n E(p').

Definition 10.3 Two irreducible G-modules p and p' are said to be adjacent
if p 0 pnat contains p;, which happens if and only if p1 (8) pnat contains p.

In fact, since G C SL(2, C), we have Xnatl^"1) = Xnat(x) f°r all x G G
where xnat

 :== ^(Pnat)- Hence for any characters x a n ( i x' °f G

Thus the multiplicity of pf in p<S> pnat equals that of p in p' 0 pnat.
The Dynkin diagram F(IrrG) or the extended Dynkin diagram F(Irr*G)

of G is the graph whose vertices are Irr G or Irr* G respectively, with p and
p' joined by a simple edge if and only if p and p7 are adjacent.
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Pn Pn-1

P3

Pi

E6

Pi

•—•—#—•—•
P'l P2 P3 P2 Pi

Pi P2 P3 Pi P3 P2 PO

£ 8 ~1 Pi

P2 P4 P6 P5 P4 P3 P2 PO

Figure 5: The extended Dynkin diagrams and representations

Then our main theorem is stated as follows.

Theorem 10.4 Let G be a finite subgroup of SL(2, C). Then

1. the map p i—• E(p) is a bijective correspondence between Irr G and Irr E;

2. E(p) is a smooth rational curve with E(p)2 = —2 for any p G IrrG;

3. P(p, p') T̂  0 if and only if p and p' are adjacent In this case P(p, p') is a
single (reduced) point, at which E(p) and E{pf) intersect transversally;

I P(p, p) = Q{p, p', p") = 0 for any p, p', p" G Irr G.

In the An case, Theorem 10.4 follows from Theorem 9.3 and the theorems
in Section 12; in the other cases, it follows from Theorem 9.3, Theorem 10.7
and Remark 10.8.

By Theorem 10.4, (3), T(Irr G) is the same thing as the dual graph T(Irr E)
of E, in other words, the Dynkin diagram of the singularity SQ- Let h be the
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Coxeter number of F(Irr E). We also call h the Coxeter number of G. See
Table 2 and Section 11.1.

We define nonnegative integers d(p) for any p G Irr G as follows. If G
is cyclic, choose a character x of G s u c n that pnat = X © X~\ a n d define
e(xk) = &, d(xh) — l12^ — k\. Although there are two choices of the generator
X, the definition of the pair ( | — d(p), | + d(p)) = (e(p),n -h i — e(p)) is
independent of the choice. If G is not cyclic, then F(IrrG) is star-shaped
with a unique centre. For any p G IrrG, we define d(p) to be the distance
from the vertex p to the centre. It is obvious that d(p) = d(p') ± 1 if p and
p' G inG are adjacent. Also in the cyclic case if we define the centre to be
the midpoint of the graph, then d(p) is the distance from the centre.

For any positive integer m let Sm := 5m(pnat) be the symmetric m-tensors
of Pnat, that is, the space of homogeneous polynomials of degree m. We say
that a G-submodule W of m/n is homogeneous of degree m if it is generated
over C by homogeneous polynomials of degree m.

The G-module m/n splits as a direct sum of irreducible homogeneous G-
modules. If W is a direct sum of homogeneous G-submodules, then we denote
the homogeneous part of W of degree m by Sm(W). For any G-module W in
some 5m(m/n), we write Sj • W for the G-submodule of Sm+j(m/n) generated
over C by the products of Sj (m/n) and W. We denote by W[p] the p factor
of W, that is, the sum of all the copies of p in W\ and similarly, we denote
by [W : p] the multiplicity of p G Irr G in a G-module W.

We define

5McKay(m/n) =
pe Irr G

Theorem 10.5 (First duality theorem) Let G be any finite subgroup of
SL(2, C) and h its Coxeter number. Then as G-modules, we have

2. 5McKay(m/n) ~

S. Sh_k(m/n) 2̂  Sh+k(m/n) for any k;

I Sfc(m/n) = Ofork>h.

Theorem 10.6 (Second duality theorem) Assume that G is not cyclic.
Let h be the Coxeter number of G and Vh±d,^(p) := Sh±d^(m/n)[p] for any
pGlrrG. Then

1- Vh_d{p)(p) c- Vn+d{p)(p) 2̂  p 0 2 or p ifd(p) = 0, respectively d(p) > 1.
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2. If p and p' are adjacent with d(pf) = d(p) + 1 > 2, then

and

3. If d(p) = 0, we write pi G IrrG for i = 1,2,3 for the three irreducible
representations adjacent to p; then

ft) = {Si • V±(p)}[pi} ~ Pi for t = 1,2,3; and

2 ^ {Si • V|_i(

See Section 11 for the proof of Theorems 10.5-10.6. It is the detailed form
of the duality in Theorems 10.6 and 12.4 that we need for the explanation of
the McKay observation in Section 13.5.

The exceptional sets of HilbG(A2) are described in Theorems 10.7 and
12.3.

Theorem 10.7 Assume that G is not cyclic.

1. Assume that p is one of the endpoints of the Dynkin diagram. Then

I G E(p) \ \\}pi P{piP')j if and only if V(I) is a nonzero irreducible

G-submodule (^ p) of Vh_d{p)(p)®Vh+d{p){p) different from Vh+d{p)(p).

2. Assume d(p) > 1 and that p is not one of the endpoints of the Dynkin

diagram. Then I G E(p)\ ([j , P(p, pf) J if and only ifV(I) is a nonzero

irreducible G-submodule (~ p) of Vh_d^(p)®Vh+d^(p) different from

VH_d{p){p) andVH+d{p)(p).

3. Let p and p' be an adjacent pair with d(p') = d(p) + 1 > 2. Then
I G P(pyp') if and only if

We define the latter to be W(p,pf).

4. Assume d(p) = 0.

(a) I G E(p) \ (\Jp, P(p,p')) if and only if V(I) is a nonzero irre-

ducible G-module ofVh(p) different from {S\ • Vh_1(p
/)}[p] for any

p' adjacent to p where we note that Vh(p) c± p e 2 .
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(b) I e P{p, ff) ^® if and only if

We define the latter to be W(p,p').

The proofs of Theorems 10.4-10.7 are given in Sections 12-16 in the re-
spective cases.

Remark 10.8 One can recover / from V(I) by defining / = V(I)O&2+n. By
Theorem 10.7, the curve E(p) is identified with P (p0p) ~ P1, the projective
space of nontrivial proper G-submodules p in p 0 p.

Remark 10.9 The relations in Theorem 10.6, (2)-(3) as well as the following
observation explain why tensoring by pnat enters the McKay correspondence.
We observe

W(p, p1) = V±-d{p)(p) 0 V^d{pl){p') for d(p) > 1, d(pf) = d(p) + 1

W(p, p1) = {Si • VH^{ff)}\p] 0 V,+1(p
f) for d(p) = 0, d(p') = 1

= {Si'VH_1(p
f)}[p]®{S1.VH(p)}[pf}.H

11 Duality

11.1 Degrees of homogeneous generators

Let G be a noncyclic finite subgroup of SL(2,C). In this section we prove
Theorem 10.5, (3) and (4). Also assuming Theorem 10.6, (1) we prove Theo-
rem 10.6, (2) and the first half of (3). Theorem 10.5, (2) follows readily from
Theorem 10.6, (1). It remains to prove Theorem 10.5, (1), Theorem 10.6, (1)
and the second half of (3), which we prove by case by case examinations in
Sections 13-16. The cyclic case is treated in Section 12.

There are three G-invariant homogeneous polynomials (fi for i = 1,2,3
which generate the ring of all G-invariant polynomials. Let di := deg ^ . We
may assume that d\ < d<i < degcfa = h, where h is the Coxeter number
of G. We know that di -f d2 = d% + 2. We note that the triple di can
computed without using the classification of G, using instead the method
of [Pinkham80]. See Section 4, Table 4 for the values of the d». We set
5 m := 5m(m/n).

Lemma 11.2 Sm ^ 0 for 1 < m < h — 1 and Sm = 0 for m> h.
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Proof Choosing suitable <#, we may assume that the quotient space A2/G
is defined by one of the equations </?2 = F((pi, </?2) given in 1.1. See [Klein] and
[Pinkham80]. We also see ft = deg <p3 = deg <pi + deg <p2 — 2 by [Pinkham80].
Now we prove that </?i and tp2 have no common factors as polynomials in x
and y. For otherwise, there is ip G C[x, 2/] such that deg </? < di, and <£> divides
y?». Therefore y> also divides </?3, because of the relation ip\ — F(<pi,<p2). This
implies that the one dimensional subscheme of A2 defined by (p = 0 is mapped
to the origin of A2/G. This contradicts that A2 is finite over A2/G.

Thus (pi and (p2 have no common factors. Hence (piSm-di f! (p2Sm-d2 =
(Pi(P2Sm-di-d2 = 0 for ra < ft. It follows that dim Sm = dim Sm — dim Sm-d1 —
dim Sm-d2 for m < ft, and thus

{m + 1 for 1 < m < d\ — 1,

di for di < m < d2 - 1,
di + d2 — m — 1 for d2 < m < d3 — 1.

Similarly we have
dim Sh = dim Sh/C<pz — dim Sh-^ — dim ^ - ^

= ft - (ft + 1 - di) - (ft + 1 - d2) = di + d2 - ft - 2 = 0.

•

Corollary 11.3 dimm/n = dxd2 - 2 = 2|G| - 2.

Proof The first equality is clear from the proof of Lemma 11.2. The second
d\d<i — 2|G| follows from the classification of G. •

This corollary is not used elsewhere.

11.4 The bilinear form (/,#) on m/n
Let / , g G m be homogeneous. Then we define a bilinear form (/, g) as follows.
First we define (/, g) — 0 if deg(/) +deg(#) 7̂  ft. If deg(/) H-deg(^) = ft, then
in view of Lemma 11.2 we can express fg as a linear combination of ^ with
coefficients in OA2, say fg — a\(pi + a2ip2 + a3</?3 where a* is homogeneous and
a3 is a constant. We define

(f,9) -=^3.

This is well defined. In fact, assume that fg = &i<pi + 62^2 + ^3^3- Then we
have (as — 63)^3 = (61 — ai)<pi -f (62 — ^2)^2- By the proof of Lemma 11.2, <p$
is not a linear combination of ipi and y>2 with coefficients in O^. It follows
that a3 = 63. Moreover if either / 6 n or g G n, then (/, #) = 0. Therefore
the bilinear form is well defined on m/n.



Y. Ito and I. Nakamura 195

Lemma 11.5 1. (fg, h) = (/, gh) for all / , g, /i G m;

2. (f,g) = (o*(f),a*(g)) and (a*(f),g) = (/, ( 0 * 0 ? ) ) for all /,<? S m,
and all a G G;

& ( > ) : / x 9 •-* (/> #) ^5 a nondegenerate bilinear form on tn/n.

Proof (1) and (2) are clear. We prove (3). For it, we prove the following
claim.

Claim 11.6 Let f(x,y) be a homogeneous polynomial of degree p < h. If
xf(x,y) = yf(x,y) = 0 in xti/n, then f{x,y) = 0 in m/n.

In fact, by the assumption, there exist homogeneous ai and bi G m such
that xf = a\(p\ + ci2</?2 and yf = b\(p\ -f ^2^2- Hence we have

= 0.

We see that deg(yai — xbi) = p + 2 — d{ < h + 2 — di < d\ + d2 — d{ for i = 1,2,
because h -\- 2 — d\ -\- d2- Meanwhile </?i and (p2 have no nontrivial common
factors. It follows that yai — xbi — 0- This implies that x \ ai and y \ bi.
Hence / = 0 in m/n. •

We now proceed with the proof of Lemma 11.5, (3). Let / G m be homo-
geneous. Assume that (/, g) = 0 for any g G m/n. We prove that / = 0 in m/n
by descending induction on p := deg / . If p = h— 1, then / = 0 by Claim 11.6.
Assume p < h — 1. By the assumption, we get (xf,g) = (f,xg) = 0 and
(?//) 9) = (/> V9) — 0 f°r anY 9 £ m / n - By the induction hypothesis, xf = 0
and y / = 0 in m/n. Then by Claim 11.6 we have / = 0 in m/n. •

Lemma 11.7 Let V be a G-submodule of S(h/2)-k, and V* a G-submodule
of S(h/2)+k dual to V with respect to the bilinear form ( , ), in the sense that
( , ) defines a perfect pairing between V and V*. Then V is isomorphic to
the complex conjugate of V* as G-modules.

Proof Let Vc be an arbitrary G-module of S^/2)-k complementary to V.
Then we define V* to be the orthogonal complement in S(h/2)+k to Vc. By
Lemma 11.5, (2), cr*(V*) C V* for any a eG. Moreover by Lemma 11.5, (2)
^(^jV) = rFr((°~~1)*\v*)i w m c n is equal to the complex conjugate of 1r(a*y)
because any eigenvalue of Tr(a*v*) is a root of unity. Although the definition
of V* depends on the choice of F c , we always have V 2̂  the complex conjugate
of V*. •
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Corollary 11.8 Let V, V be G-submodules ofm/n. If V and the complex
conjugate of V are not isomorphic as G-modules, then V and V are orthog-
onal.

Lemma 11.9 Let p and p' be equivalence classes of irreducible G-modules
with p ^ p'. Let V ~ p and W ~ p1 be G-submodules in S(h/2)-k and
5(h/2)-fc+i respectively, and W* ~ {pi)* a dual to W in S(h/2)+k-i- If W C
Si-V, there is a G-submodule V* ofSx-W* dual to V. If [pnat® 0')* ' P] = h
then V* is uniquely determined.

Proof Let Vc and Wc be (homogeneous) complementary G-submodules to
V and W respectively. Thus by definition,

V®VC = S{h/2)-k and W®We = ~5W2)-h+i-

Let W* be the orthogonal complement to Wc in S(h/2)+k-i with respect to
( , ). If W C SiV, then there exists g,h eV such that xg + yh e W. By
Lemma 11.5, (3), there exists /* G W* such that (/*, xg-\-yh) ^ 0 so that we
first assume that {xf*, g) = (/*, xg) ^ 0. Let U be a minimal G-submodule of
m/n containing xf*. Then U contains V* dual to V by Lemma 11.5, (3) and
{xf*,g) 7̂  0. Obviously V* C S\W* and V* ~ the complex conjugate of V
by Lemma 11.7. If [Si • W* : p'\ < [pnat <S> {p'Y : p] = 1, then the uniqueness
of V* is clear. If {yf*,g) = {f*,yg) ^ 0, then we see the same by the same
argument. •

Remark 11.10 For any p" G Irr G, pnat 0 p" is a sum of G-submodules with
multiplicity one [McKay80] (recall that G C SL(2,C)), so that p has multi-
plicity at most one in Si • W*. Therefore the dual V* is uniquely determined
and it is the orthogonal complement of Vc in (Si • W*) D S(h/2)+k-i-

Lemma 11.9 implies the following. In the case of EQ, since

Si • S3\ff2] = S,[p[] + £4[P3] and Si • S3[//2'] = SA\p'[\ + SA[p3},

we have Si -Sg^] = S9[p^ SvS8[p'{] = S9[pf^\ and SvS8[p3] = Sg[pf
2}+S9[pf

2l
and vice versa. See Section 14.

11.11 Partial proofs of Theorems 10.5 and 10.6.
Since Tr f̂c is real for any ky Sk contains any G-module and its complex con-
jugate with equal multiplicities. Theorem 10.5, (3) is clear from Lemma 11.5,
(3) and Lemma 11.7. Theorem 10.5, (4) follows from Lemma 11.2. Theo-
rem 10.6, (2) as well as the first half of (3) are clear from Lemma 11.9.
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12 The cyclic groups An

12.1 Characters

Let x,y be coordinates on A2 and m = (x,y) be the maximal ideal of A2 at
the origin. Let G be the cyclic group of order n + 1 with generator a. Let e
be a primitive (n + l)st root of unity. We define the action of the generator
a on C2 by (xyy) •—» {x,y)a = (ea;,^1^/). The simple singularity of type ^4n

is the quotient 5G = A2/G. Let m,s be the maximal ideal of SQ at the origin
and n :=msO&2.

The Coxeter number h of An is equal to n + 1. Let po be the trivial
character, and pi for 1 < i < n the character with pi(cr) = e%. Then e(p») = i
and /i — e(pi) = n + l — i.

Lemma 12.2 Any I G HilbG(A2) is one of the following ideals of colength
n + 1:

/(E) := J ] mp = (xn+1 - an+1, xy - aft, 2/n+1 - 6n+1),

where E = G • (a, 6) zs a G-orbit of A2 disjoint from the origin; or

IiiPi : ft) := fax* - qiy
n+l-\xy,xi+\yn+2-%

for some 1 < i < n and some [p», ft] G P1.

Proof Let / G HilbG(A2) with / C m . Then by Corollary 9.5, O&/I ~
C[G] ~ ©^=0Pi as G-modules. Thanks to Corollary 9.6, we define N := m/n
and M := 7/n, and for each 2 ^ 0 , let M[pJ and N[pi] be the p^-part of
M, respectively A/". Then iV[pJ ~ pf2, spanned by x* and yn+l~\ while
M[pi] ^ pi for all 2 ^ 0 . It follows that for each z, there exists \pi,qi\ G P1

such that piX1 — qiyn+1~l G M. If pift 7̂  0 for some i, then setting u :=
PiX1 — qiyn+1~t

1 we have M = (u) + n/n and / = (n, xy) where i is obviously
uniquely determined by / . If M contains no PiX1 — qiyn+1~l with p f̂t ^ 0 for
any i, then / = (xj, yn+2~j,xy) for some j . •

Theorem 12.3 Let a and b be the parameters of A2 on which the group G
acts by g(a, b) = (ea, e~lb).

Let S = A2/G := SpecC[an+1,a6,6n+1] and S -> S its toric minimal
resolution, with affine charts Ui defined by

Ui := Spec C[si, U] for 1 < i < n + 1,

where s{ := ai/bnJtl~i and U := &n+2~i/ai"1. Then the isomorphism of S
with HilbG(A2) is given by (the morphism defined by the universal property of
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Hilbn(A2) from) two dimensional flat families of subschemes defined by the
G-invariant ideals ofO&2

li(su U) := {xl - siy
n+1-\ xy - Situ y71^ - t^'1)

forl<i<n + l.

Proof Note first that Ii(sh0) = Ii(l : Si) and Ii(0,U) = Ii-i(U : 1) for
z > 2 .

If ab = SiU ^ 0, we see li(suU) = (xn+1 - an+\xy - ab,yn+1 - bn+1).
In fact, let p = (a, b) ̂  (0,0) G A2 and E := {p • g\ g G G}. It is clear that
Zi{si,U) C trip so that Xi(si,U) C is by the G-invariance of Ti(si,U). Since
the colengths of Xi(si,ti) and /s in O&2 are equal to n + 1, Ti(si,ti) = 1% =

By the universality of Hilbn(A2) and by Lemma 12.2, we have a finite
birational morphism of S onto a smooth surface HilbG(A2). It follows that
5-HilbG(A2). •

Theorem 12.4 (Duality for An) Assume that G is cyclic. Then for any
p G IrrG there exists a unique pair VtJp) and V~+l_e,Ap) of homogeneous
G-submodules of Se(p) (m/n) [p] and 5n+i_c(p)(m/n)[p] such that

2. if p and p' are adjacent with e(p) = e(p') + 1, then

Proof First we prove uniqueness of V^(p). Since 5i = p\ 0 pni we have
unique choices V\~(p\) = S\[p\\ = {x} and V^{pn) = S\[pn] = {y}. Then we
have

v-+UPi) = {Si • K-i(A+i)}[Pi] = {yn+1-{}-

In fact, this follows from (2) by induction. This proves Theorem 12.4. •

Theorem 10.4 for G cyclic follows from setting E(pi) = E{. There is a way
of understanding Jt(p», qi) similar to that of Theorem 10.7.
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13 The binary dihedral groups Dn

13.1 Binary dihedral group

Let G be the subgroup of SL(2, C) of order An — 8 generated by two elements
a and r:

e 0 \ / 0 1\

0 s~^ ^ U oj'
where e is a primitive £ := (2n — 4)th root of unity. Then we have

The group G is called the binary dihedral group Dn_2- The Coxeter number
h of Dn is equal to 2n — 2. See Table 6 for the characters of Dn.

G acts on A2 from the right by (x,y) *-> (x,y)g for g G G. The ring of
all G-invariant polynomials is generated by xe -f ye, xy(xe — ye) and x2y1. By
Theorem 9.3, XG := HilbG(A2) is a minimal resolution of SG := A2/G with
a simple singularity of type Dn.

Remark 13.2 We note that if we let H be the (normal) subgroup of G
generated by a and TV := G/H, N acts on Hilbi/(A2) so that we have a
minimal resolution HilbN(Hilb//(A2))(- XG) of SG.

13.3 Symmetric tensors modulo n

Recall £ := 2n — 4. Let Sm be the space of symmetric m-tensors of pnat :=
P2> that is, the space of homogeneous polynomials of degree m and Sm the
image of 5 m in m/n. The spaces Sm decompose into irreducible G-modules as
follows. Let pi := Po+pi, pn-i '•= Pn-i+Pn a n d Pk '= Pj if k = j mod 2n —4.
Then we have

{Po + P3 + P5 H + Pm-i + Pm+I for ra = 0 mod 4,

Pi + P3 + P5 + • • • + Pm-i + Pm+i for m = 2 mod 4,

P2 + P4 + Pe + • • • + Pm-i + Pm+i for ra = 1,3 mod 4.

13.4 The submodules

By Table 7 we see that m/n ~ (C[G] ©Po)02- This isomorphism is realized by
giving G-submodules 2p̂  for z = 1, n— 1, n and 4p; for 2 < i < n — 2 explicitly
as follows. We define a G-submodule of m/n by Vi(pj) := 5;(m/n)[pj], and
define Vi(pj) to be a G-submodule of Si such that Vi(pj) ^ t^(pj) and K(Pj) =
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p

P'o

p'l

P2

Pk

Pn-2

Pn-1

P'n

1

1

1

2

2

2

1

1

a

1

1

€k-i + £-(^-i)

g.n-3 _|_ ̂ -(n-3)

-1

-1

r

1

-1

0

0

0

in

-in

d

(n-3)

n-3

n — 4

n-2-k

0

1

1

(fid)
-

(3,^-1)

[fc + M + 1 - A ; )
(n-1,n-1)

(n-2,n)

(n - 2, n)

Table 6: Character table of Dn

m

0

1

2

3

k
n-2

n-1

0

P2

Pi + P3

P2+P4

Pk-l + Pk+l

Pn-3 + Pn-1 + P'n

2pn-2

m

£ + 2

e + i
e

e-i

e-k + 2
n

co
l

0

P2

Pi +
P2 +

Pk-l

Pn-3

P3

P4

+ PM-1

+ Pn-1 + P'n

Table 7: Irreducible decompositions of Sm(Dn)

xy

xn-lyn-lxn-2yXyn-2

^n-1 q.n-l

xn-2 _ ^n^n-2

K-2(P;) xn-2

x£ -

, xyk

Ve-k+3(Pk) x£-k+2yM~M

K+i(Pn-2) xny,a:2/n

^n(Pn-l) Xy(xn~2 + Zn7/n~2)

xy(xn~2 — inyn~2)

Table 8:
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mod n. We use Vi(pj) and V*(pj) interchangeably whenever this is
harmless. We see easily that Vi(pj) ~ Pj or 0 except for (i, j) = (n — 1, n — 2),
while Vn-i(pn-2) — Pn-2- We list the nonzero G-submodules of m/n: it is easy
to see that n is generated by xe + y*, (x£ — ye)xy and x2y2. We also note that
xe+2, ye+2 G n and that m/n is spanned by x\ y\ xly and xyl for 1 < z < £ with
the single relation xe+ye = 0 mod n. Hence we see easily that m/n is the sum
of the above Vi(pj). It follows that m/n ~ EpGirrG 2 deg(p)p ~ (C[G] 0p o ) 0 2 .

13.5 A sketch for D5

Before starting on the general case, we sketch the case of D5 without rigorous
proofs. First we recall

Wi) =

We consider the case 1(W) G E(p[) \ P(p/
1,p2). Let I(W) := WOk2 + n

for any nonzero G-module W G P(F2(pi) + Ve(pi)) = F({xy,x6 - y6}) such
that W ^ V6(p[), that is, W ^ {x6 - y6}. Then we see that

5 5

X(W)/n = W + J2 SkW + n/n = W + ^ 5fc^(pi) + n/n
fc=i fc=i

Thus J (W) G HilbG(A2). It is clear that V(1(W)) := J(W)/mX(W) + n ~
W ~ p;. It follows that 1(W) G E(p[) \ P(p'l,p2). Hence we have

where 5i 0 V2(f/1) ^ SiV2(pi) ^ ^3(p2) ^ p2- The factor Si <g> V2(p[) ~
p2 among generators of P{p'l,p2) explains the relation between tensoring by
Si ĉ  p2 and the intersection of ^(pi) with E(p2) in McKay's observation.

Next we consider W G P(F3(p2) 0 V^(p2)) with W ^ ^(pa) , ^ ( A I ) . We
have

SfcVF + n/n

^ > x S6 + S7 + n/n

^ W + p3 + (pi + p'5) + (p'i + p3) + p2 ^ 5ZpeIrrGdeg(p)p.
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Since S6 = V6{p[) + SzV3(p2) ^ S3V3(p2), we have

lim 1{W) = V6(p[) + V3(p2)
W+V{p)

= l(V6(p
l
1)®V3(p2))eP(p'1,p2)

= l({S1V5(p2)}[p'1}®V3(p2)),

where V6(p\) = { S i V ^ ) } ^ ] * pi, and { ^ ( p , ) } ^ ] = W i ) * p[ is by
definition the sum of all the p[ factors of SiV^^) — Si<g> V5(p2)- Hence

lim I(W) = lim X(W) e P(p[,

The above argument explains the relation between tensoring by p2 =
pna t and the intersection of two rational curves. The argument also shows
that E(p) is naturally identified with F(V4-d(P)(p) + V±+d{P)(p)), the set of
all nontrivial proper G-submodules of V^_d(p)(p) + Vr

4+d(p)(p) ~ p 0 2 , which is
isomorphic to P1 by Schur's lemma.

Now we consider the general case. We restate Theorem 10.7 as follows.

Theorem 13.6 Let E be the exceptional set of the morphism TT: XQ —• SG,
and Sing(E) the singular points of E. Let E(p) be an irreducible component
of E for p elrvG and E°(p) := E(p) \ Sing(E). Then E°(p) and Smg(E)
are as follows:

Ef>(p')-{l(W)W C \
{Pl)~\{ hw^oV(p[) y

2 fc „ _

( V F ^ 5 V ( ) f o r 3 = n - l , n

and

\P(Pn-a,p'n_1),P(p»-2,p'B)
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where

i)) for2<k<n-4,
_3, Pn-2) = l(Vn(Pn-3) 0 K-l(A»-2)),

P(P n_2 , pj) = I(5iVn-a^-) 0 Vn(p£.)).

13.7 Proof of Theorem 13.6 - Start

For 2 < k < n — 2, write C(pk) for the set of all proper G-submodules
of Vk+\(pk) © Ve-k+i(pk)] similarly, let C(p[) be the set of all proper G-
submodules of V2{p'i) 0 Vtf(Pi) and for i = n — l ,n, let C(pQ be the set of
all proper G-submodules of Vn-2{Pi) 0 Ki(Pi)- ^ ^s c l e a r ^n a t the C(pk) and
C(p/

i) are rational curves. As we will see in the sequel, they are embedded
naturally into Grass(m/n, 2^ — 2).

Case 1(W) e E(p[) \ P(p'1,p2) Let 1(W) := WOA2 + n for any nonzero
G-module W G C(p[) with W ^ V/(pi). First assume W = V2(p'1). Then
it is easy to see that X(W)/n contains Vk+i(pk), V£-k+z(pk), K-i(Pn-2) and
14+1 (Pn-2) for any 2 < k < n — 3. Similarly I(W)/n contains K(Pn-i
V;(p;) as well as W = "^(pi). It follows that

£-1

n = W +

In particular, J(VK)/n ~ EpGirrGdeg(p)P- H e n c e x(w) e HilbG(A2). We
see that

:= I(W)/ {vM(W) + n} ~ W ~ p .̂

It follows that 1(W) G
Next we assume W ^ ^ (p i ) , ^e(pi)- Then we first see that x3y G

because x3y - (x3y - 2txM) = 2txe+2 G n. It follows that I(W)/n contains
Vl+l(p2), Vfc+i(pfc), Vi-k+s(Pk), KT-l(Pn-2), K+l(Pn-2), K(Pn-l) and K(Pn)
where 3 < k < n - 3. Since Si • W + 14+i(p2) = V3(p2) + Vi+i(P2) ^ P®2,
X(W)/n also contains 2p2. It follows that

i-2 e-3

l(W)/n = W+Y^ Sj^ipd = W + £ 5my2(p'1) + 5,+1.
m>0 m=0

Hence we have I(M^)/n ~ EpeirrGdes(P)P- Therefore I (W) € HilbG(A2).
By the above structure of X(W)/n, V(X(W)) ~ Ŵ  ~ f/v It follows that
I(W)€E(p'1)\P(p'1,p2).
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Case I(W) € P(p[,p2) Let W = W(p[,p2) := Ve(p[) ® V3(p2). Now
J(W)/n contains x2y and xy2, hence also Vj+^p*), V^_i+3(/oi) for 3 < i <
n - 3 , ^+i(p2), K+i(pn-2), K( /Ci) and K ^ ) . Similarly, T(W0/n contains
K'_1(pn_2). We note that {I(W)/n} [p'x] = W = W i ) = { î • VM/*)} [pi]
and {l(W)/n} [p2] = V3(p2) ® Ve+1(p2) = 5 t • V2(p[) e Ve+1(p2). It follows
that

t-i es

I(W)/n = W + Y, SmVM = W + J2 SmV3(p2) + Se+l.
m=0 m=0

Hence we have I(W)/n - J2peiwGde^(p)P' Therefore X(W) G HilbG(A2).
We also see that T(W) G P(p/

1,p2), because

v2(p[)} [P2]
[] e v3(P2) ~ p; e p2.

Case I (W) G JS(pfc) \ P(pk±\,Pk) for 2 < fc < n - 3 We consider now
W 6 C(pfc) = ¥{Pk C H+i^fc) e V^_fc+1(pfc)) with W ^ Vfc+i(pfc), ^ - f c + i ^ ) .
Let J (W) = WOK2 + n.

Hence we may assume that xk+1y — tye~k+1 € W for a nonzero constant t.
Since xk+3y = ia(a^+ 1» - V~fc+1) + tx2yl-k+1, and x2j/2 € n, 1(W) contains
xfc+3y. Similarly, V~* + 2 = ~y(xk+1y - tye-k+1) + xk+1y2 gives / - f c + 2 €
I{W). Hence we see that I(W)/n contains V^_j+i(pi) for 2 < i < k — 1,
Vi+1(pi) for A; + 2 < i < n - 3, V^_i+3(ft) for 2 < i < n - 3, K-i(/>n-2),
V ^ ^ a ) , ^ (p i ) , K ( P U I ) and Vn{p'n). Since V~ f c + 1 € V^_,+2(pfc+1), we
have Vi-k+3{pk) C I (W) /n and xk+2y = x(xfc+1y - V"f c + 1) +

/n. Hence Vk+2(pk+l) C I(W)/n if k < n - 4. It follows that

= W + Y!'\ SmVk+1(Pk)
 k \

It follows from W ~ pk that l(W)/n ~ Ep€irrGdeg(p)P- Therefore I(W) €
HilbG(A2). It is easy to see that V(I(W)) ~ W - pfc so that

Case 1(W) G P(pk,pk+1) Let W = W(pfc,Pfc+i) := Vi-fc+i(Pfc)0^
for 2 < A; < n - 4. For fc = n - 3, set

W = W(pn_3,Pn-2) := K(Pn-3) 0 K-l(Pn-2).

Now I (W)/n contains V/_*+i(pi) for 2 < i < fc, V^+i(pi) for fe + 1 < i < n - 3,
Ve-i+3{pi) for 2 < i < n - 2, V ^ p ^ ) and Vn(p5) for i = n - 1, n. Similarly
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J

•fc) 0 {Si • Vk+l(pk)} [pk+1] for 2 < k < n - 4,

K(Pn-3) 0 {Si • V;_2(Pn-3)} [Pn-2] for k = U - 3

{Si • l^_fc(pfc+i)} [pfc] © VJb+i(pfc) ~ Pfc © Pfc+i,

Case I(W) € E(pn-2) \ (P{pn-2, pn-z) U P ( A , - 2 , P ^ I ) U P(Pn-2, //„)) Let
Ŵ  € C(pn_2) = P(Vn-i(pn-2)), and define I(W) := WOA2 + n. Set

W0 = Si-Vn-2(f/n_1), Woo = Si-Vn-3(j/n) and ^1 = ^ ( ^ 2 ) .

Let H = zn-2 - i"/2yn-2 and G = xn~2 + in/2yn~2. Then for some t, we have
W = (xH - txG, yH + tyG). Assume t ^ 0,1,00, or equivalently, W ^ Wx

for A = 0,1,00. Then xn € l(W)/n, so that Ve(p[), Vt-i+l{pi) for 2 < i <
n — 3 and V£_i+3(/9j) for 2 < i < n — 2 are contained in X(W)/n. We also see
that xyH e K( iCi ) C I(W)/n and xyG e Vn(p'n) c J(W)/n. It follows
that

M-l

Since W =s pn_2, we have I(W)/n ^ EpeirrG
deg(p)p w i t h

It follows that X(W) € HilbG(A2).

Case 1(W) E f?0Ci) \ ^(p»-a. p;-i) Let W €
Vn(/4_i)). Assume W" ̂  Ki(Pn-i)- Then X(W)/n contains xny and hence
xn. It follows that J(W)/n contains VJ_i+i(p.), Vi_i+3(p<) for 2 < z < n - 3,
and Vn+i(pn_2). We also see that l(W)/n contains xn~l - in/2xyn~2 so that
{l(W)/n} fl yn_i(pn_2) c± pn_2. Similarly we see easily that Vi(pi), Vn(/(/n) C
I(W)/n. It follows that

2 M-l

m=l m=n+l

Since W =. p;_1; l(W)/n ~ E^ t rG deg(p)p- Therefore J(W) € E{p/n_x) C
HilbG(A2) with V{1(W)) ~ VF.

Case I(PV) € P(pn_2, f/n-i) We consider

w = w(pn_2, //„_!) := Si • K-2Gd)[p»-2] © K(P;_I) = w0 e V ^ P U ) -
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Then l(W)/n contains xn, therefore l(W)/n contains V^p'J, Vt-i+\{pi),
Ve-i+3{Pi) for 2 < i < n - 3, K+i(Pn-2) and Vn(p'n). Since W C X(W)/n,
we see that I(W)/n =* Ep€irrG

deg(/°)P- H e n c e ^(W) e p (P«-2 , /d ) C
HilbG(A2) with V(T(W)) cz W.

Case T(W) € E(p'n) \ P(pn-2,p'n) or I(W) e P(pn-2,p'n) This is similar
to the above, and we omit the details. •

Lemma 13.8 For p' adjacent to p, the limit ofX(W) as I(W) € E(p) ap-
proaches P(p,p') isT(W(p,p')).

Proof We first consider W € C(p[) with W ^ Ve(p[). Then by 13.7 we see
that 1(W) = W + V3(p2) + J2m>i SmVz{p2)- Hence we have

wte* X(W) = Ve(p[) + V3(p2) + J2 SmV3(P2)

= I(Ve(p[) © V3(p2)) = I(W(p[,p2)).

Next we consider W e C{p2) with W ^ V3(p2),Ve-i(p2). Then by 13.7
we have X(W) = W + V^pi) + Em>o SmV,{p3). Since VA{p3) C S1V3(p2), we
have

Suppose that W € C(pk) = P{Ve-k+1(pk) ®Vk+1(pk)) with W ? Vk+1(pk),
Ve-.k+i(pk). By 13.7 we see

ra>0 m>0

Thus for 2 < k < n — 4 we see that

lim Z(W)=I(W(pfc,Pfe+1))= lim

Similarly for W G C(pn_2) with VF ̂  WA for A = 0,1, oo we have

m>0 m>0 m>n
j=n—l,n

m>0 m>0
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m>0 m>0

because Vn(pn-z) C S{WQ + n. Consequently

» WA.-4)

= £ ^^(^-3)+£ j k
m>0 m>0 X

where W G C(pn_3), VK" G C(pn_2). The limit when W approaches Wo or
Woo is similar. •

To complete the proofs of Theorem 13.6, we also need to prove:

Lemma 13.9 E(p) and E(pf) intersects at P(p^p') transversally if p and p'
are adjacent.

Proof By the proof of Theorem 9.3, XG = HilbG(A2) is smooth, with tan-
gent space T[j](XG) at [/] the G-invariant subspace Homo 2 ( / , ( 9 A 2 / - 0 G of
Tj/](Hilbn(A2)), which is isomorphic to HomoA2(J, 0A2//) , where n = \G\.
Assume that p and p' are adjacent with d(pf) = d(p) -f 1. Let W(p,p') =
V$-d(p)(p) © VH_d{pf)(p'). Then l(W(p,p')) G P{p,p'). We prove the follow-
ing formula

T{I](XG) ~

ttomG(VH_d(p){p), Vh+d{p)(p)) 0

where / = T(W(p, pf)). First assume p = p2 and p' = p[. Then

A), V2(p[)) ©

Let (̂  be any element of Homo 2 (/, O&2/I)G. A nontrivial G-isomorphism
(po of V3(p2) onto Fi(p2) is given by (po{x2y) = x, <fo(xy2) = - y . Therefore
we may assume (p = apo mod V^_i(p2) for some constant c. Since y? defines
an OA2-h°m o m o rphis m) w e have yip(x2y) = x(p(xy2), so that 2cxy = 0 in
Ok2JL It follows that c = 0, and ^(Vr

3(p2)) C Vi_i(p2).
 T h u s t h e formula for

/ = I(W(p'v p2)) is proved.
Now we consider the general case. By 13.7 we see that {m//}[p] con-

tains Vh+d(p)(p) as a nontrivial factor, while {m//}^'] contains Vh-d{P>){p')
similarly. Moreover by the proof in 13.7 we see that either of the linear
subspaces RomG(V^_d{p)(p),V^+d{p)(p)) and HomG(Vh+d(p/)(p

/), VH_d{pl)(p'))
yield nontrivial deformations of the ideal / inside the exceptional set E.
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Since dimT[/](XG) = 2 by Theorem 9.3, these linear subspaces span T[J](XG)-

Hence we have

T[i](XG) ~

EomG(V^d{p)(p), V,+d{p)(p)) 0 EoraG(V,+d{pl}(p'), Vu^

with

~ EomG(V,_d{p)(p),V,+d{p)(p)),

')) ~ EoraG(V,+d{pl}(p'),V^d{pl](p')).

This completes the proof of Lemma 13.9 for p, p' ^ pn-2- The cases p = pn_2

are proved similarly. •

Lemma 13.10 Let E*(p) be the closure in E of the set

Then E*(p) is a smooth rational curve.

Proof By Lemma 13.9, E*(p) is smooth at X(W(p, p')) for p' adjacent to p.
It remains to prove the assertion elsewhere on E*(p).

Let C°(p) := {W G C(p)\W ± V^±d{p)} and / := X(W) for W G C°(p).
Since we have a flat family of ideals T{W) for W G C°(p), we have a
natural morphism t: C°(p) —» HilbG(A2), and a natural homomorphism
(<&,)*: T[w](C(p)) —>• T[/](HilbG(A2)). Equivalently there is a homomorphism

(OIL)*: Rom(W^2_d{p)(p) + V,+d{p)(p)/W^

Let <f G T[W](C(p)). Then (&)Jll(y?)(/) C m/ / because C(p) C £?. Recall
that {m//}[p0] = 0 by Corollary 9.6. Hence (di)*((p)(n) = 0. Since I/n is
generated by W by 13.7, (ck)*(<p) is induced from <p by extending it to 0 SkW
as an OA2-homomorphism. Note that we have

It follows that (dt)* is injective and that C°(p) is immersed at I (W). The
same argument applies as well when W = Vh+d^ if there is no adjacent p'
with d(pf) > d(p). Hence E*(p) is a smooth rational curve. •

We will see E(p) = E*(p) soon in 13.11.
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13.11 Proof of Theorem 13.6 - Conclusion
Let E be the exceptional set of TT, and E* the union of all E*(p) for p G Irr G.
Since E*(p) C E(p) by 13.7, i5* is a subset of i£. Since n is a birational
morphism, E is connected and set theoretically, it is the total fiber TT'^O)

over the singular point 0 G SG. Hence in particular P(p, p1) C E for any
p, p'. By Lemma 13.9, the dual graph of E* is the same as the Dynkin
diagram F(IrrG) of IrrG. Hence E* is connected because F(IrrG) is con-
nected. By Lemma 13.10 E* is smooth except at T(W{p, //)), while E* has
two smooth irreducible components E*(p) and E*{p') meeting transversally
at T(W(p, p1)) by Lemma 13.9. It follows that E* is a connected compo-
nent of E. Hence E* = E. It follows that E(p) = E*(p) for all p G IrrG,
P(p,pf) = {T(W(p, p'))} for p, pf adjacent, and P(p,pf) = 0 otherwise. Simi-
larly Q(p,p\p") = 0. Thus Theorem 13.6 is proved.

13.12 Conclusion
The proof of Theorem 13.6 also proves Theorems 10.4 and 10.7 automati-
cally. Theorems 10.5-10.6 are clear from Tables 7-8. Since any subscheme in
HilbG(A2) with support outside the exceptional set E is a G-orbit of \G\ dis-
tinct points in A2 \ {0}, the defining ideal / of it is given by using G-invariant
functions as follows

/ = (Fix, y) - F(a, 6), G(x, y) - G(a, 6), H(x, y) - ff(a, b)),

where F(x,y) = xe + y£, G(x,y) = xy(xe - y£), H{x,y) = x2y2 and (a, b) ^
(0,0). Thus we obtain a complete description of the ideals in HilbG(A2).

14 The binary tetrahedral group E$

14.1 Character table
The binary tetrahedral group G = T is defined as the subgroup of SL(2, C)
of order 24 generated by D2 = (a, r) and \x\

0 1\ 1 (e\ e7^

where e = e2?ri/8 [Slodowy80], p. 74. G acts on A2 from the right by (x, y) »-•
(x, y)g for g € G. D2 is a normal subgroup of G and the following is exact:

1 _> p 2 _> c —» Z/3Z —>• 1.

See Table 9 for the character table of G [SchurO7] and the other relevant
invariants. The Coxeter number h of EQ is equal to 12; here u = (—l+y/3i)/2.



210 Hilbert schemes and simple singularities

p

(«)

Po

Pi

P3

Pf2

P'l

P'l

1

1

1

1

2

3

2

1

2

1

2

- 1

1

1
2

3

- 2

1

- 2

1

3

r

6

1

0

- 1

0

1

0

1

4

4

1

1

0

CO2

u

5

4

1

- 1

0

—LO

LO

6

M4

4

1

- 1

0

-w 2

w2

—LO

LO

7

4

1

1

0

LO

LO

LJ2

d

(2)
1

0

1

2

1

2

(l±d)

-
(5,7)

(6,6)

(5,7)

(4,8)

(5,7)

(4,8)

Table 9: Character table of E6

14,2 Symmetric tensors modulo n

Let Sm be the space of homogeneous polynomials in x and y of degree m.
The G-modules Sm and 5 m := Sm(m/n) by p2 decompose into irreducible
G-modules. We define a G-submodule of m/n by Vi(pj) := Si(m/n)[pj] the
sum of all copies of p in S;(m/n), and define Vi(p^) to be a G-submodule of Si
such that Vi(pj) ĉ  Vi(pj), Vi{pj) = t^(pj) mod n. We use V^/^) and Vi(pj)
interchangeably whenever this is harmless. For a G-module W we define W[p]
to be the sum of all the copies of p in W.

It is known by [Klein], p. 51 that there are G-invariant polynomials A6i

A8, AQ and A& respectively of homogeneous degrees 6, 8, 12 and 12. In
his notation, we may assume that AQ = T, A8 = W and Ai2 = <p3- See
Section 14.3.

The decomposition of Sm and Sm for small values of m are given in Ta-
ble 10. The factors of 5 m in brackets are those in SMcKay We see by Ta-
ble 10 that V6±d{p)(p) ~ p 0 2 if d(p) = 0, or p if d(p) > 1. We also see that
S6-k ~ S6+fc for any k. Thus Theorems 10.5-10.6 for E6 follows from Table 10
immediately.
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m

0

1

2

3

4

5

6

7

8

9

10

11

12

Po

Pi

P3

Pi+Pi'
Pi + Pi + P3

f>2 + Pi + Pi'

Po + 2p3

2p2 + Pi + Pi'
PO + Pi + Pi + 2p3

p2 + 2p'2 + 2p2'

pi + p'/ + 3p3

2p2 + 2p'2 + 2p2'

2p0 + Pi + Pi' + 3p3

0

pi

Pz

Pi + Pi

(Pi + Pi') + P3
(P2 + Pi + Pi')

(2ps)
(p2 + p2 + p2')

(Pi+Pi') + P3
Pi + Pi'
P3

P2

0

Table 10: Irreducible decompositions of Sm(Ee)

m

1

2

3

3

4

4

4

5

5

5

6

P Kn(p)

P2 *Ej 2/

P3 x , xy, y

fin fl-^ 5 Q<2

P'2 5 1 > 5 2

Pi V

Pi' 1>
PZ P1P2,P2P3,PZP1

Pi 7i»72
p2 xy, yy

p<5 xii)«yuj

ps ^2(p3)^evr2(p3)^

m

7

7

7

8

8

8

9

9

10

11

P Vm(p)

P2 ^ 1 ^ ) *->2^

P2 5it/?, 5 2 ^

Pi' qif, qif

pi V»2

Pi' v2

PZ PlP2<P,PiPZ<P,PzPl<P

p'2 a;^2,^2

fin xip y^p

p3 x2<p2,xy<p2,y2tp2

P2 Qi^P 7 Q2^P

Table 11: Vm(p)(E6)
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14.3 Generators of Vj(p)

We prepare some notation for Table 11. Let

Pi = x2 - y2, = x2 + y2, p3 = xy,

qi = x3 + (2u + l)xy2, q2 = y3 + (2u +

si = x3 + {2UJ2 + l)xy2, s2 = y3 + (2u2

7 l = x5 - 5xy4, 72 = y5 - 5x4y, T =

We note that n is generated by T, W and </?3 (or ^ 3 ) by [Klein], p. 51.
Computations give Table 11. We note the relations

P2 = Pi * P2 = Pi * P2»

P2 = Pi • P2 = Pi • P2>

P2 = Pi ' P2 = Pi * P2,

P3 = Pi * P3 = Pi ' P3-

In view of Table 10, each irreducible G factor appears in Sm with multi-
plicity at most one except when m = 6, p = p3. Therefore the following
congruences of G-modules modulo n are clear from the fact that these G-
modules are nontrivial modulo n:

For instance, s»<p — q^
PiP2((P — ip) = 0 mod T,
mod T so that ]

Lemma 14.4 1.

0 mod T, so that V3(p2)(p = V3(p2)ip. Since
uip) = 0 mod T and p3pi{y> — UJ2^) = 0

p2 for m = 1,

P3 form = 2,

P2 + P2 / o r m = 3,
,Pi+P3 form = 4.

2. SmV4(p[) = S m + 4 /or m > 5, and 5my5(p2) = 5 m + iF 4 (p i ) for m > 1.

5. 5mt^(p2) = P3 /or m = 1, p2 H- p2' /or m = 2, ana1 5fc+5 /or m > 3.
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Proof (1) is clear for k = 1,2. Next we consider S3V4(p[). By Table 10
S3 W i ) - S3 ® W i ) - P2 + P2- We prove Sx - A6 ^ {S3F4(p'i)}[p2] =

For otherwise, A6 is divisible by ip G V^p^), whence A6/V G
W> a contradiction. Hence we have S^CPi) = P2 + P2- Similarly
= Po + Pi +Ps where {54F4(pi)}[po] = So-^s- The factors p'/ and p3

in S4V4(p
/
1) are not divisible by AQ. In fact, otherwise {S4V4(p'i)}[p3] = S2-AQ

because S2 ~ p3. It follows that AQ is divisible by <p, which is a contradiction.
Therefore 541/4(p

/
1) = p" + p3. Finally we see 55V4(p

/
1) = p2 + p2 + p'2' where

{55V4(p
/
1)}[p2J = 5i -As- The factors p2 and p2 in SsV^pi) are not divisible

by AQ. For instance if {SsV^pi)}^] = ^{p'2)' ^6> then since the generators
of V^p'2) are coprime, AQ is divisible by <p, a contradiction. It follows that
S^VA{P'I) = P2 + P2 = 59. The rest of (1) is clear. (2) is clear from (1).

Next, we prove that SfiVr
5(p2) = P3. First, Table 11 gives dim 5iVr

5(p2) = 4.
Thus S1V5O02) — P2&P2 — Po + P3- Hence {SiV5(p2)}[po\ = S0-AQ. It follows
that 5iVr

5(p2) = P3. Now consider 52V5(p2). Since dim5i (g) V${p2) = 4,
we have dim52 ® Vs(p2) > 5. We see that Sr2Vr

5(p2) = S2 <8> Vr
5(p2) = P2 +

p2 + p2', and that p2 - 5i • AQ C 52V
r
5(p2), Vr

3(p2
/)V4(p

/
1
/) = V7(p'2) ~ p2 and

Vs(//2)Vi(//i) = W 2 ) - P2- Hence S2V5(p2) = p2 + pg.
On the other hand, 5iV3(p

/
2
/) = Si <g> ^(p^) = p'/ + p3, so that SiV7(p

f
2) =

SiVs(p2)V4(Pi) = p[ + P3- We prove that SiV7{f/2) = Pi + P3- For otherwise,
by Table 10, we have {SiV7(p

f
2)}[p3] = 0 so that {SiV7(p'2)}[pz) = S2A6.

V7(p2) is divisible by ip, so that AQ is divisible by -0. Hence AQ/IP G ^ (p i ) ,
which contradicts S2 = p3. Therefore {Siy7(p2)}[p3] = P3 and Siy7(p2) =
pi + P3- Similarly SiV7(p2) = p'{ + P3. This proves (4). Moreover S3y5(p2) =
SiS2t4(p2) = S1(V7(p

f
2) + V7(p'2')) so that S3V5(p2) D p[ + p'[ + p3 - S8. This

proves (3). •

Lemma 14.5 Let Wk = Sx • V5(p
(
2

k)) (~ p3) for any k = 0,1,2; ^/iere p2
fc) =

p2,p'2ip2. Let W e P(y6(p3)). Then S{W = p2 + p2 + p2 if and only if
W ^ Wk for k = 1,2,3.

Proof We see S1-W1 = S2- %{p'2) = S3 • V4(p[) = p2 + p2 by Lemma 14.4.
Similarly Si • W2 — S3 • V^p") = P2 + P2- Also by Lemma 14.4, (3) we have
S'i-Wro = /t/2 + /oi/.

Conversely assume VF ^ W^ for any A:. Choose and fix a G-module
isomorphism h\ W\ -* W2. For instance, h(pk<p) = Lo~kpkip- Then h induces
a natural isomorphism {Si ® h}[p2]: {Si <S> Wi}[p2] —> {S\ 0 W2}[p2], which
induces an isomorphism {Si • ̂ }[p2]- {Si • Wi}[p2] —»• {Si • VK2}[p2]. Since
S7 contains a single p2, we have {Si • Wi}[p2] ~ {Si • W2MP2] (— P2) by
{Si • /i}[p2]- It follows that {Si • h}[p2] is a nonzero constant multiple of the
identity. Since VQ (p3) = Wi ® W2, this proves uniqueness of the G-submodule
W ^ p3 of V6{p3) such that {Si • W}[p2] = 0. Since {Si • W0}[p2] = 0, we
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have {5i • W}[p2] 7̂  0 by the assumption W ^ Wo. Similarly there exists
a unique proper G-submodule W G V§(pz) such that {S\ • VF}[p'2] = 0 or
{5i • W}[f%] = 0. As we saw above, {Sx • Wx}[fJ2] = 0 and {Si • W2}[^] = 0.
Therefore Sx-W = p2 +p'2 + p2 if W ^ Wk for A; = 0,1,2. •

14.6 Proof of Theorem 10.7 in the E§ case

Consider / G XQ in the exceptional set E, or equivalently, / G XQ with
/ C m . For a finite submodule W of m we define T(W) = WO&2 -f- n and
V{T(W)) := 2"(W)/mX(W) + n. We write = for congruence modulo n.

Case 1(W) G E°(p[) Let W G P(Vr
4(pi)ey8(pi)), so that W c- p^. Suppose

that W ^ Vs{p'i) and set X(W) = WOk2 + n. Since 5 i 2 = 0, by_Lemma_14.4
we have Sk • W = 5fc • F4(pi) for jk > 4. Also by Lemma 14.4 Sk • Vi(pi) = ~Sk±4

for A; > 5. Hence 5fc C l(W)/n for jfe > 9. Since Sk-W = Sk- V4(p[) mod 59

for /c > 1, we deduce that

4 11

k- F4(P'I) = W J2 W

We see by Lemma 14.4

W + S,V4(p[) = p[ + p'[ + p3 = i ( 5 4 + S8),

S1V4(p[) + 53V4(P
/
1) = P2 + P2 + P2 = \(S* + 57),

52V4(^i) = Pa = ^ 5 6 .

By duality, we have l(W)/n = EPeirrGdeg(p)P- T n u s ^ ( ^ ) G ^ G a n d

V(X(W)) - VK.

Case J ( i y ) G ^°(p2) Let_W G P(^5(p2) 0 ^7(p2)) with W ~ p2. Suppose
^ 7̂  Vi(//2), V7(f/2). Since 51 2 = 0, we have Sk-W = Sk- V5(p'2) = Sk±5 for
k > 5_by the condition W_^ V7((p'2). We also see that S4 • W = S4 • V s ^ )
mod Sn = 59 . Therefore S9 C I ( V ) / n . Hence 5fc • W = Sk • V5(p'2) mod 5 9

for ife > 2. Since 5i • V ^ ) = p3 and 5i • V7(p'2) = p[ + p3, we have Si^W =
p[ + p 3 and {5i • W}[#] = V8(pl) C X ( ^ ) / n by the assumption W ^ V5(p'2).
Since S3V5(pf2) = p7/ + p3, we have 5 8 = %{&) 0 53V

r
5(p2) C l{W)/n. It
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follows that

2 11

n = W + ]T 5, • Vs(fif2) = W + J2 Sk • V5(p'2) + Yl$k a n d

k=\ k=8

= p2 + pi + P2 + Pa = i (5 5 + 56 + S7).

Hence I(W)/n = EPeirrGdeg(p)P- T h u s J ( w ) € XG with F(J(W)) - W>\

Case J(VK) G £°(pi') or 1(W) G JS0^') These cases are similar.

Case X(W) G E°(p2) Let W G P(V5(p2)_eVr
7(p2)), so that W ~ p2. Suppose

that W ^ F7(p2). As above, we see that Sk C I(W)/n for k > 10. It follows
that S3'W = S3- F5(p2) mod 51 0 = S8. Therefore 5fc C 2"(W)/n_ for jfc > 8.
Similarly S2-W = 52• F5(p2) = p2 + p2 mod 5 8 and Si• W = Si• ?5(p2) = Pa
mod S8- It follows that

2 11

Sk • V5(p2) + J^Sk, and
fc=8

W + SMb*) + S2V5(p2) = p2 + p'2 + Pi + P3 = \(S~5 + S6 + S7).

Hence l(W)/n = EpeirrGde&(p)P- T h u s T(W) € XG with V(1(W)) ~ W.

Case I (W) e E°(p3) Let W € P(V6(p3))- Let Wk = S1 • V5(p
(
2

k)) for any
k = 0,1,2 where /4 = P2,P2,P2- Now we suppose that W ^ Wk- Then
Si • W = S7 by Lemma 14.5 so that I(VT) contains S^ for any k > 7. It
follows that

11

= W + J2S><W = w + J2^-
fc>l k=7

Hence I(W)/n = Ep€irrGdeg(p)P. and s o x(w) € ^ G with V(I(W)) s W.

Case I (W) € P W , / 4 ) Let W = W(pi,p'2) := V8(p'i) © ^(/>'2). Recall
that W = {5X • W2)}[p' i] © V5(pi) = ^ (p i ) © Si • W i ) - By Lemma 14.4,
we see that Sx • V5(pi) = /9s, & • W 2 ) = P2 + p'2'» & • ̂ (/>2) = Pi + Pi
and 5fc C I ( W ) / n for Jk > 8. It follows that I (W) /n = £peIr rGdeg(/>)p by
Table 10. Therefore 1{W) € XG with V(I(W)) ^ W.
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Case I(W) e P(pf2,ps) Let W = W(pf2jP3) := W 2 ) © S i W 2 ) = W 2 ) ®
Wi. We recall that 5i • Wi = p2 + P2, so that Sk C I (W) /n for A; > 7.
Since Wi = p3 we have J (W)/n = YlpeirrG^e^(p)P by Table 10. Therefore
X{W) e XG with V(X(W)) ~ W\

Cases I(W) e P(p2,P3) or X(W) € P(p2,p3) Similar.
The following Lemma is proved in the same manner as before. It allows us

to complete the proof of Theorem 10.7 by the same argument as in Section 13.

Lemma 14.7 Each E(p) is a smooth rational curve. Moreover, if p and p'
are adjacent then

1. as T(W) £ E(p) approaches the point P{p,p'), the limit of X(W) is

2. E(p) and E{p') intersect transversally at P(p,p').

14.8 Conclusion
Theorem 10.4 also follows from Lemma 14.7. Theorem 10.7, (3) follows from
Tables 10-11 and Lemma 14.5.

Let / G XQ- If Supp(0A2/-O is n ° t the origin, then

I = (T(x, y) - T{a, b)^\x, y) - ^3(a, 6), W(x, y) - W(a, b))

where (a, b) ̂  (0,0).
By the same argument as in Section 13 we thus obtain a complete descrip-

tion of the G-invariant ideals in XQ-

15 The binary octahedral group £7

15.1 Character table
The binary octahedral group O is defined as the subgroup of SL(2, C) of order
48 generated by T = (a, r, ji) and K\

1 (e1 er

where e = e27ri/8 [Slodowy80], p. 73. G acts on A2 from the right by (x,y) >->
(x, y)g for g € G. D2 and T are normal subgroups of G and the following
sequences are exact:

1 -> T -> G -> Z/2Z -> 1
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and

1 -> D2 -> G -> S3 -> 1,

where S3 is the symmetric group on 3 letters.
See Table 12 for the character table of G and other relevant invariants.

E-j has Coxeter number h = 18.

15.2 Symmetric tensors modulo n

The G-modules Sm and Sm := Sm(xti/n) by pnat := P2 for small values of
m split into irreducible G-modules as in Table 13. The factors of Sm in
brackets are those in SMcKay We use the same notation Vm(p) and Vm(p) for
p G Irr G as before. Let (p = pi + 4o;p3, ^ = P2 + ̂ 2ph T(x, y) = (x4 — y4)xy.
In Table 14 we denote by Ŵ- ~ p4 the G-submodules of Vg(p4) ĉ  p j 2 ;

^ := Si •

Lemma 15.3 The G-module SmVk(p) splits into irreducible G-submodules as
in Table 15. We read the table as S^V^Pi) = P3, ^V^P^) = Ps + P3 anc^ so

on.

Proof The assertions for (m, k) = (1,6), (2,6), (3,6) are clear. There are
three generators As, Au and A\s of respective degrees 8, 12 and 18 for the ring
of G-invariant polynomials. We know that As = ipt/), A& = T2 by [Klein],
p. 54.

Note first that Sm = 5m_8 • A8 0 Sm for ra = 10,11 and

= (p;2 + P3) 0 pi = P2 + p3, S5V6(p[) = (p2 + p4) 0 pi = p2 + P4-

If {S4V6(/>i)}[P3] = 0 in S10, then { ^ ^ ( p i ) } ^ ] = S2 - A8. A8 would be
divisible by T, a generator of Ve(pf

1). However, this is impossible. Hence
{S4F6(pi)}[P3] = P3 so that S4V

r
6(pi) = P2 + P3- S5V^(pi) = P2 + p4 is proved

similarly.

Since S e W i ) = (P ! ) 2 + Ps + P3 = Po + Ps + P3, S6V6(/>i) = Pa + P3 or
p3. If SeVeiA) = p3, then 56[p3] • Ve(f/X) is divisible by T2, so that 56[p3] is
divisible by T. Since degT = 6, this is impossible. Hence 5eVr

6(p
/
1) = P3 + p'3.

Next we have S7Ve(p[) = p2 + p2 + p4 and { S V ^ P i ) } ^ ] = P2 • ^12. If
{ S r W i t t N = 0, then {57y6(p

/
1)}[p4] = F7[p4]T/6(pi) = p4- A12 or p4-A8. In

the first case, Vr[p4] is divisible by T, which is impossible because degT = 6
and dim Si = 2 < degp4 = 4. In the second case, Vy[p4] is divisible by As,
which is impossible. It follows that {S7V

r
6(pi)}[p4] = p4. If {Sr

7V^(//1)}[^] =
0, then V7[p2]V6(pi) = p'2 • A& or p'2 -As- In the first case Vi\p^ is divisible by
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p

It
Po

P2

P3

P4

A
A
Pi
A

1

1

1

I

2

3

4

3

2

1

2

2

- 1

1

1

- 2

3

- 4

3

- 2

1

2

3

8

1

1

0

- 1

0

1

1

- 1

4

M2

8

1

- 1

0

1

0

- 1

1

- 1

5

T

6

1

0

- 1

0

- 1

0

1

2

6

K

6

1

\ /2

1

0

- 1

- l

0

7

TK

12

1

0

- 1

0

1

0

- I

0

8

K3

6

1

1

0

- 1

V2
- 1

0

(3)

2

1

0

1

2

3

1

(fid)

-

(7,H)

(8,10)

(9,9)

(8,10)

(7,11)

(6,12)

(8,10)

Table 12: Character table of E7

m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Sm

Pi

P3

P4

A + A
P2 + P4

Pi + P3 + A

Pi + A + P4
Po + p2 -h P3 + P3

P2 + 2p4

p2' + 2 p 3 + p 3

p2 + p2 + 2p4

Po + Pi + A + P3 + 2p3

p2 + 2p2 + 2p4

pi + p2' + 2p3 + 2p3

P2 + p2 + 3p4

po + 2p2 + 2p3 + 2p3

2p2 + A + 3P4
po + pi + p'2' 4- 3p3 + 2p3

sm
Pi

P3

P4

P'i + P's

A + P4
(Pi)+P3+P3

(P2 + A) + P4
(P2+P3+P3)
(2p4)

(P2 + P3 + A)

(Pi + A) + P4
(Pi)+P3+P3

A + P4
P2 + P3

P4

P3

P2

0

Table 13: Irreducible decompositions of 5m(E7) and Sm(E7)
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m

7

11

8

10

9

9

9

9

8

10

7

11

6

12

8

10

P

Pi

Pi

P3

Ps

P4

W2'

w3

P's

P3

p'l

p'l

Pi
Pi
p'l1

p'i

Vm(p)

7x4y3 + y7, -x7 - 7x3y4

x10y - 6xV + 5zV, -zy10 + 6xV - 5xgy2

4x10 H- 60x6y4,5x9y + 54x5y5 4- 5a;?/9

60x4y6 + 4y10

rrrll TTT TTT- TTT/ TTT/ rrrll £ft9lA/" _1_ l/i/o = yy q -f- Uy = I/I/' _i_ l/y <̂ ^ fi

12x6y3 H- 12x2?/7, x9 — 10a:5y4 H- xi/8

—x8y + 10x4?/5 — y9,12x7y2 + 12a;3?/6

- 3 x 8 j / 2 - 14x4?/6 +1/1 0 ,8x7y3 + 8 z V

j.io 14x6?/4 3x2fu8

xT,yT

- l l x V - 22x42/7 + y11, Ux3y8 + 22a;V - a?11

T

x12 - 33xV - 33zV + y12

x^yi\) — xy5(p, —x5ytp -f xy^ij)

Table 14:

T, which contradicts Table 14. In the second case V7[p2] is divisible by As,
absurd. Hence {S7Ve(p/

1)}[pf
2] = p2- It follows that SVt^(pi) = P2 + P4 = 5i3.

We note next that dimSiVn(p2) > 3. If dimSiVn(p
f
2) = 3, then there

exists an / G Sio such that Vn(p'2) = 5i • / . Hence / G Sio[pi] = {0},
a contradiction. Hence dimSiVii(//2) = 4, so that SiVn(p2) = p[ + P3. If
{SiViMM} = 0, we have {S1V11(p

f
2)}[pf

3} = V,[pf
3] • A8 by Table 13. Since

dim Si < degp;
3 = 3, there exists a nontrivial element of {SiViiO^)}^]

divisible by both x and A$. Hence Vn(p2) contains a nontrivial element
divisible by As. This implies that Vn(p2) is divisible by As. Then Vz(p'2) =
Vii(f/2)Aal = p2, which contradicts ^3 = p4. Hence SiVn(p2) = p[ + P3.

It is clear from P2 0 P2 = Ai an<^ Table 13 that SiVs(p2) = p±.
Next 52 0 Vsip'i) = P3 + P3 by Table 12. Since dim S2Vs(p2) > 4, we have

S 2 W 2 ) = P3+P'3- If {SiVsipWiPz) = 0, then {52y8(p2
/)}[p3] = S2-As. Since
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m

1

2

3

4

5

6

7

1

1

k

6

6

6

6

6

6

6

11

8

P

Pi

A
A

Srr

P2

A
PA

P'2'

P2

P3

A
Pi
P4

+ P3

+ P4

+ P3
+ P4

+ P3

m

2

3

1

2

3

4

5

1

1

k

8

8

7

7

7

7

7

10

10

P

P2

P2

P3

P3

P3

P2

P3

P4

A
Pf2

Pi
P2

P2

^Vk(p)

+ P3
+ P2 + P4

+ P3
+ P4

+ P3 + P3
+ P4

+ P4

Table 15: Decomposition of

degp2 < deg/?3 and Vs(p2) is generated by (p2 and /02, there exists a nontrivial
element of {S^Vs^OMPs] divisible by both (p2 and A$. Since ip and ip are
coprime, 5io contains a nontrivial element divisible by tp2ip, a contradiction.
If {52t4(p20}[p3] = 0, then {S2Vs{A)}\f/3] = S2 • A8 = p3, a contradiction.
Hence 52^8(^2') = p3 + P3-

Next we consider SsVs(p2
f)' Since dim52Vs(p2) = 6 by the above proof,

we have dim53V
r
8(p2

/) > 7. By Table 12 53 (8) V s ^ ) = p2 + p2 + P4 so that
53V8(p2) = P2+P2+P4. Assume 53Vi(pg) 7̂  P2+P2+P4- Then by Table 13 the
only possibility is that {S3Vs{p%)}\p4\ = 0. Assume {53V8(p2

/)}[p4] = 53-^8
so that there exists an element of { S ^ V s ^ ) } ^ ] divisible by both ip2 and A$.
Therefore there exists a nontrivial element of S3 divisible by ?/>, which is a
contradiction. Hence S3V$(p2

f) = P2 H" P2 + P4-
Clearly 5iVr(p2) = Po 4- p3, S2V7(p2) = p2 + P4- Hence SiV7(p2) = p3 and

52V7(p2) = P4-
Next S3®VT(P2) = P4®P2 = P 5 + / 9 3 + / ^ by Table 12. Since dim52F7(p2) =

6, we have dim53Vr(p2) > 7 so that 53 0y7(p2) = P2+P3 + P3- It is clear that
{SiV7(p2)}[p0} = So • A*, {S2F7(p2)}[p2] = 5i • A*. Hence {53y7(p2)}[p3] =
52 • As. I t is clear that {S3V7(p2)}[p'3] ^S2-As and {S3V7{p2)}[p'2'] ^ S2 • As.
Hence SsV7{p2) =p/

2
/ + p3.

_Next we see dim S4V7(p2) = 10, 54y7(p2) c± 540F7(p2) = p2 + 2p4. Hence
S'4V7(p2) = p2H-p4 by Table 13. It is easy to see that dim Sr>V7(p2) = 12. Hence
S5V7(p2) = 550F7(p2) = pi+P2+P3+2p3 so that S5V7(p2) = p i+p3+p3 = 5 i 2

by Table 13.
Similarly we see easily that dimSiFio(p3) = dim5iFio(p3) = 6. Hence

SiV10(ps) = p2 + p4, SxVM) = p2 + p4. If {5iFio(p3)}[p4] = 0, then
{SiVio(P3)}[P4] = S3 - A$. Therefore there exists a nontrivial element of
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Vio(P3) divisible by Ag so that Vio(p3) is divisible by A%. This implies that
Vio(p3) = 0. But by the choice of it, Vio(p3) ^ Vio(p3), a contradiction. This
completes the proof. •

Corollary 15.4 1. S^Pi) = W 2 ) , S2W1) = t/8(p3), S ^ ^ ) =
Vs(ps).

2. S3 W 2 ' ) = Sn, S5V7{p2) = 5ia, S7 W i ) = 5 i 3 .

5- «52V8(p3) = f/<2 + P3; £2^8(P2) = P3 + P3; S2Vs(pz) = P2 + P3-

Proof Clear. •

We omit the proof of Theorem 10.7 because we need only to follow the
proof in the EQ case verbatim.

15.5 Conclusion
We also can give a complete description of G-invariant ideals in XQ. Let

x = x12 - 33x8y4 - 3 3 a V + y12, F(x, y) = XT, W(x, y) = ^ .

Let / € XQ- If SUPP(OA2/ / ) is not the origin, then we know that

/ = (W(x, y) - W(a, 6),T2(x,y) - T2(a, 6), F(x,y) - F(a, b)),

where (a, b) ̂  (0,0).

16 The binary icosahedral group Eg

16.1 Character table
The binary icosahedral group I is defined as the subgroup of SL(2, C) of order
120 generated by a and r:

(£_£4) £2_l

•2 -e3 e - e

where e — e27™/5. We note a5 = r2 = — 1. G acts on A2 from the right by
(xyy) i—• (x,y)g for g € G. G is isomorphic to SL(2,F5). An isomorphism of
G with SL(2,F5) is given by a h-> (jj §) , r ^ (g §). Let 77 = £2 = e47ri/5. In
Slodowy's notation [Slodowy80], p. 74

1 / 1 4 1

_ IV >" V 1

See Table 16 for the character table of G [SchurO7] and the other relevant
invariants. The Coxeter number h of E$ is equal to 30; here /J^ = l±J^.
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p

tt
Po

P2

P3

P4

P5

P6

P4

P2

P'i

1

1

1

1

2

3

4

5

6

4

2

3

2

- 1

1

1

- 2

3

- 4

5

- 6

4

- 2

3

3

a

12

1

M+

M+

1

0

- 1

- 1

t*~

4

<72

12

1

- 1

0

1

- 1

5

a3

12

1

1

0

- 1

- 1

M+

M+

6

a4

12

1

M+

- 1

0

1

- 1

- / * "

7

r

30

1

0

- 1

0

1

0

0

0

- 1

8

<J2T

20

1

- 1

0

1

- 1

0

1

- 1

0

9

<J7T

20

1

1

0

- 1

- 1

0

1

1

0

d

(5)
4

3

2

1

0

1

2

1

(f±<0

-
(11,19)

(12,18)

(13,17)

(14,16)

(15,15)

(14,16)

(13,17)

(14,16)

Table 16: Character table of Es

m

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

sm
0

P2

P3

P4

P5

P6

P̂  + Pl
P2 + P6

P4 + P5

P4+P6

P3 + P'i + P5

(P2) + P4 + P6

(P3) + P'4 + P5

(p2 + p4) + P6

(P3+P4 + P5)

(2pe)

m

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

Sm

0

P2

P3

P4

P5

P6

P3+P4

P2 + P6

P4 + P5

P4 + P6

P3 + P'i +

(P2) + P4

(P3)+P4

(P2 + P4)

(P'i + P4-

P5

+ P6

+ P5

+ P6

fPs)

Table 17: Irreducible decompositions of Sm(E8)
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m

1

2

3

4

5

6

7

8

9

1

1

k

11

11

11

11

11

11

11

11

11

18

17

P

P2

Pa

PA

SMP)

P3

PA

P5

P6

P'i + P't

P2 + PG

P4 + P5

P4+P6

PS + P3 + P5

P2+P4

P3+P5

m

1

1

2

3

4

5

1

1

2

3

k

16

13

13

13

13

13

16

14

14

14

P

P5

P2

P4

Pi

SmVk(p)

PA + PS

P'A

P6

P'i + P5

P4 + P6

P3 + P4 + P5

P2 + P6

P6

P4 + P5

P2 + P4 + P6

Table 18: Irreducible decompositions of SmVk(p)

16.2 Symmetric tensors modulo n
The G-modules Sm •= Sm(m/n) by pnat := P2 for small values of m split into
irreducible G-modules as in Table 17. The factors of Sm in brackets are those
in SMcKay We use the same notation Vm(p) and Vm(p) for p G Irr G as before.

We define irreducible G-submodules of Vis(p6) (— p®2) and cr̂ , r̂  by

:= x1 0 66x5y5 - lly10,

:= x1 0 - 39x5y5 - 26y10,

<r2 := - l l x 1 0 - 6fe5y5 +
r2 := -26x10 + 3 9 x V +

Lemma 16.3 TTie G-modules SmVk(p) split into irreducible G-submodules as
in Table 18.

Proof We give a brief proof of the lemma. Recall that the ring of G-
invariant polynomials is generated by three elements Ai2, A2o and A30 of
degree 12, 20, 30 respectively. See [Klein], p. 55 or Table 4. Note that
Si 0 Vn(p2) = P2 ® P2 = Po + P3- Hence Si ® Vii(p2) = Pô 4i2 + P3- In fact
A12 = xy(x10 + l lx5y5 - y10) by [Klein], p. 56. It follows that SiVn(p2) =
p3._ Similarly Sfc ® Vii(p2) D Sfc_ij4i2. Therefore S2 ® Vn(p2) = p2 + p4,
S2Vii(P2) = P4, S3®Fn(p2) = P3 + P5, S3Vii(p2) =_p5, S4®Vrn(p2) = p4 + P6,
S4V

rn(p2) = p6, S5 ® Fn(p2) = p3' + p4 + Ps, S5Vn(p2) = pi 4- p4. All of
these are proved as in Lemma 15.3. In fact, for instance dimS^Vn(j)2) = 7
by Table 19, and p6 0 P2 = P3 +P4 + P5 so that S5Vn(p2) = p3 + P4.
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We see S6Vn(p2) = p'2+P6 because S_i7 = p'2+P4+P6
P2<8>{pf3+p4) = p'2+2p6 contains no p^.Sis = P3+P4+P5 and P2®5eVii(P2) =
P2®(p'2+P6) contains no p3, whence SVVii(p2) = p\+ph- Similarly 5sVn(p2) =
p4 + p6 because 5i9 = p2 + P4 + Pe, p2 ® SVVii(p2) = p2 + p4 + 2p6. By
Table 17 S20 = Pa + P3 + /05. p2 <8> SsVii(p2) = p3 + 2p5 + pg + p'A. Hence
59^n(p2) = p3 + P3 + p5 = S20.

-SiVis^a) = p2 -h P4 follows from comparison of S\ ® V^8(p3) and S19 and
the fact that any polynomial in Fis(p3) is not divisible by A\2-

Similarly SiVn(pt) = p3 + Ps, SiVietPs) = P4 + Pe and 5iFi3(p2) = f/4.
Since p3 0 p2 = P6, we see 52Vi3(p2) = pe- One checks dim53l43(p2) =
dim5iW"4 = 8 by using Table 19. It follows from this that 53V

ri3(p
/
2) =

P3 + P5- Similarly it is clear that S4V13 (p2) = £4 ® Vi3(p2) = p4 -f p$ and
55Vi3(p2) = 55 0 V13(p'2) = 518. Note dimSfcVi4(p3') = 3(* + 1) for fc = 1,2,3
so that SkVu(pl) = Sk <S> Vu(p'i)- It follows from it that SkVu(p%) = Sk ® p3'
for fc = l,2,3._In particular, S2V1A(f%) = p3 0 p3 = p4 + p5, S3V1A(f%) =
P2 + P4 + Pe = 5i7. •

Corollary 16.4 1. 5,Vn(p2) = Vh+fc(pfc+2) /or 1 < ^ < 3;

g) = S17.

3. S2Vi4(P5) = pg + /t/4, 52Vi4(pi) = pg + p6, 52Vi4(pg) = P4 + P5-

Proof By Table 19, dim5iW^ = 9, dim SiWl = 8, dim5iW5 = 7. Hence
S2VU(pg) = Siw*' = P* + Ps, 52Vi4(pi) = 52F14(p4) = 5iWJ = p'i + p5,
55Vn(p2) = 52t714(p5) = 5x^5 = P'i + P4- •

In order to prove Theorem 10.7 in the Eg case we have only to follow the
proof of Theorem 10.7 in the Dn or Ee case verbatim. We omit the details.

17 Fine
We would like to mention some related problems that are unsolved or are the
subject of current research.

Conjecture 17.1 Let G be any finite subgroup of SL(3,C). Then HilbG(A3)
is a crepant smooth resolution of A3/G.

The conjecture is solved affirmatively in the Abelian case [Nakamura98],
where for any finite Abelian subgroup G of GL(n,C) the Hilbert scheme
HilbG(An) is described as a (possibly nonnormal) toric variety. There is
a McKay correspondence [Reid97], [INkjm98] similar to [GSV83]. See also
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m

11

19

12

18

13

17

14

16

13

17

14

16

P

P2

P2

P3

P3

P*

P4

Pb

Ps

P2

dk

Vm(p)

X0i, -y<?2

- 5 7 z i y + 247xwy9 + 171a;5y14 + y19

-x19 + 171x14y5 - 247x9yw - 57x4y15

dj o\i —oju y — oj/y ) y o2

-12x15y3 + U7x10y8 + 126o;5y13 + y18

4 5 z 1 V - 130x9yg - 45x4yu

7*18 IQfiT1^?/5 4- 11 7 T 8 7 / 1 ^ -1- 1 9 T 3 ? / 1 5

x3au -3x12y + 22x7y6 - 7x2yn

-2xl5y2 + 52xwy7 + 91x5y12 + y17

l O z V - 65a;V - 35x4y13

-35a;13y4 + 65x8y9 + 10x3y14

-x17 + 91xny5 - 52x7yw - 2x2y15

x4au -2x13y + 33x8y6 - 8x3yn

-5x12y2 - 5x2y12

64x15t/ + 728xlo2/6 + 2/16

66X1 V -f 676x9?/7 - 9 1 z V 2

56x13y3 + 741X8/ - 56x3y13

91x12y4 + 676a;7?/9 — 66x2y14

x16 + 728x6t/10 - 64xV5

2/3r2, - x 3 n

x17 + U9x12y5 + 187X7?/10 + 17x2y15

-17x15y2 + 187xxV - 119x52/12 + y17

ô  — 1 A.1* i/ i ZIQT1 i/

7x12y2 - 48x7i/7 - 7 * y 2

49x10j/4 + 14a;5y9 + y14

3x15y - 143x10y6 - 39x5yn + y16

-25x13y3 - 25x3y13

x16 + 39xny5 - 143x6yw - 3xy15

Table 19: Vm(p)(Ea)
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m

14

16

15

15

15

15

P

P4

P6

wh

Vm(p)

• ^ i / ' 2 ? •*' ' 1 j i / ' 2 ) •*/ i / ' 1

-2x1 5y + 77xwy6 - 84x5yn + y16

of- 19 d -i -« n 7 Q i r- 9 14

35x y + llOx y + 15x 2/
15xiV ~ l l O x V + 35x42/i2

_x1 6 — 84xu2/5 — 77x62/i° — 2x2/15

W» + WJ = VFi + W5 = W5 4- WT c p f

:= 51^4(^2) (^ p6)

x i 5 + 84xlo2/5 + 77x52/i° + 22/15

-x142/ + 14xV - 49x42/U

-7xi32/2 + 4 8 x V + 7x32/12

7x12y3 - 4 8 x V - 7x22/13

-49xn2/4 - 14xV - X2/14

-2x1 5 + 77xlo2/5 - 84xs2/i° + y15

•= S^M) (- Pe)

x15 + 39xlo2/5 - 143x52/10 - 3y15

-2xuy + 78x92/6 + 52x42/n

x132/2 - 39x82/7 - 26x32/12

-26x122/3 + 3 9 x V + x22/13

52xu2/4 - 78x62/9 - 2xyu

3xi5 - 143xlo2/5 - 39x52/10 + y15

:= S i M P s ) (^ /36)

5x15 + 330xlo2/5 - 55x52/i°

-7x142/ + 198xV - 43x42/n

-19x132/2 + 6 6 x V - 31x32/i2

-43xn2/4 - 198xV - 7x2/14

-55xlo2/5 - 330x52/10 + 5y15

Table 19: Vm(p)(Es), continued
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[Nakamura98]. In general the normalization of HilbG(An) is a torus embed-
ding associated with a certain fan Fan(G) given explicitly by using some
combinatorial data arising from the given group G. However, in general it
is not known whether HilbG(An) is normal. There are various examples of
HilbG(An). Reid gave some examples of singular HilbG for finite Abelian
subgroups G in GL(3, C) in private correspondence.

If G is the cyclic subgroup of SL(4, C) of order two generated by minus the
identity then HilbG(A4) is nonsingular; however, it is not a crepant resolution
of A4/G. There are also some examples of Abelian subgroups of SL(4, C) for
which HilbG(A4) is singular, although a crepant resolution does exist. The
simplest example is the Abelian subgroup of order eight consisting of diago-
nal 4 x 4 matrices with diagonal coefficients ±1 . [Kidoh98] gave a concrete
description of HilbG(A2) for a finite Abelian subgroup G of GL(2, C) by using
two kinds of continued fractions.

We will treat the non-Abelian, cases of Conjecture 17.1 elsewhere [GNS98];
in almost all the non-Abelian cases, a certain beautiful duality in m/n is
observed [GNS98]. See also Section 7.

The following question would be important for future applications:

Problem 17.2 Let G be a finite subgroup of SL(n, C), N a normal subgroup
of G. When is HilbG(An) ~ HilbG/N(Hilbiv(An))?

Unfortunately the answer is negative in general in dimension three. This will
appear in [GNS98].
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Bounds for Seshadri constants

Oliver Kiichle* Andreas Steffens*

Introduction
This paper develops a new approach to bounding Seshadri constants of nef
and big line bundles at a general point of a complex projective variety. A
modification of this approach even allows us to give bounds valid at arbitrary
points.

The Seshadri constant e{L, x)y introduced by Demailly [De92], measures
the local positivity of a nef line bundle L at a point x € X of a complex
projective variety X; it can be defined as

f L - C
:= inf < —, x) := inf

CBX
< —
{mn\tx(C)

1
\ ,)

where the infimum is taken over all reduced irreducible curves C C X passing
through x. The interest in Seshadri "constants comes in part from the fact
that they govern an elementary method for producing sections in adjoint line
bundles Ox(Kx + rL) with certain properties. This connects the theory of
Seshadri constants to the famous conjectures of Fujita on global generation
and very ampleness of such bundles (cf. §1 below for further characterizations
and properties of Seshadri constants; see also [De92] and [EKL]).

There has been considerable progress in the study of Seshadri constants
in recent years, starting with Ein and Lazarsfeld's result (cf. [EL]) that the
Seshadri constant of an ample line bundle on a smooth surface is > 1 for
all except possibly countably many points. On the other hand, examples
by Miranda (cf. [EKL, 1.5]) show that for any integer n > 2 and any real
number 6 > 0 there is a smooth n-fold X, an ample line bundle L on X and a
point x G X with e(L, x) < 8\ in other words, there does not exist a universal
lower bound for Seshadri constants valid for all X and ample L at every point
xeX.

Then it was proved by Ein, Kiichle and Lazarsfeld [EKL] that, for a nef
and big line bundle L on a projective n-fold, the Seshadri constant at very

* Supported by the Deutsche Forschungsgemeinschaft
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236 Bounds for Seshadri constants

general points (that is, outside a countable union of proper subvarieties) is
bounded below by 1/n, which implies the existence of a lower bound at general
points depending only on n.

Finally, we want to mention the recent papers by Lazarsfeld [La] and
Nakamaye [Na] dealing with Seshadri constants on Abelian varieties, as well
as variants due to Kiichle [Kii], Xu [Xu95] and Paoletti [Pa] concerning Se-
shadri constants along several points and higher dimensional subvarieties re-
spectively.

Our approach to bounding Seshadri constants is based on considering
families of divisors with high multiplicity at assigned points. The method
itself relies upon ideas of Demailly's paper [De93] as explained and translated
into the language of algebraic geometry by Ein, Lazarsfeld and Nakamaye
[ELN]. Very roughly, the idea is to start with an effective divisor E in a
linear system \kL\ (for k ^> 0) with large multiplicity at #, and to consider
the locus V of points where the singularities of E are "concentrated" in a
certain way. The possibility that V is zero dimensional imposes constraints
on the local positivity of L at x in a sense. Otherwise one uses variational
techniques to give a lower bound on the degree of V.

In contrast to [De93] and [ELN], instead of making a positivity assumption
on the tangent bundle of the manifold in question to be able to "differentiate",
we apply the strategy of differentiation in parameter directions in the spirit of
[EKL]. The result of this method is the following theorem on linear system,
which might also be of interest in other contexts:

Theorem 1 Let X be a smooth projective n-fold, L a nef and big line bundle
on X and a > 0 a rational number such that Ln > an. Let

o = Pi < fa < • • • < A* < Ai+i = OL

be any sequence of rational numbers and x G X a very general point. Then
one of the following holds:

(a) there exist k ^> 0 and a divisor E G \kL\ having an isolated singularity
with multiplicity at least fc(/?n+i — /3n) at x, or

(b) there exists a proper subvariety V C X through x of codimension c <n
such that
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To pass from Theorem 1 to actually bounding the Seshadri constant, we
use a rescaling trick (cf. Remark 3.2) in combination with the well-known
characterization of Seshadri constants via the generation of 5-jets by certain
adjoint linear systems (cf. Theorem 1.5). The bound we get does not improve
that of [EKL] in general, although the method at hand may give better results
in certain cases, since our bound can be expressed more flexibly in terms of
the degrees of subvarieties with respect to the line bundle in question:

Theorem 2 Let L be a nef line bundle on an irreducible protective n-fold
X, and x £ X a very general point. Suppose given positive rational numbers
ax , . . . , anj and set 7 = 1 + X™=i &%- For some real number e > 0, suppose
that every d-dimensional subvariety V C X containing x (for any d with
1 < d < n) satisfies

Thene{L,x) >e.

After writing a first draft of this paper, we realized that the rescaling argu-
ment mentioned above can also be applied in the context of [ELN], leading,
somewhat surprisingly, to bounds for Seshadri constants valid at arbitrary
points; however, these bounds depend on the line bundle L and the manifold
X, or rather, its tangent bundle 2*:

Corollary 3 Let X be a smooth protective n-fold, x G X any point, A an
ample line bundle and S > 0 a real number such that Tx {$A) is nef. Then

This gives, in particular, bounds valid at arbitrary points for the Seshadri
constants of the canonical line bundle Kx = (/\nTx)* or its inverse if these
are ample, or for any ample line bundle in case Kx is trivial (cf. Remark 4.4).

Corollary 3 accords with, and should be compared to, bounds following
from recent work of Angehrn and Siu [AS] on the basepoint freeness of adjoint
linear systems (cf. 4.5), and Demailly's original very ampleness criteria [De93].

The paper is organized as follows. After fixing notation and establishing
the general setup, we recall some basic facts about Seshadri constants and
collect some auxiliary statements in §1. Then, in §2, we prove the main
technical result, Theorem 1. Finally we give the applications to bounding
Seshadri constants at general points in §3, and at arbitrary points in §4.
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Notation and the general setup

0.1 Throughout this paper we work over the field C of complex numbers.
Given a variety V, a statement valid for a very general point y G Y
is a statement which holds for all points in the complement of some
countable union of proper subvarieties of Y.

0.2 Given a smooth variety Y, an integer m > 0 and a subvariety W C Y
we denote by T^' the symbolic power sheaf of all functions vanishing
to order at least m along W. Then T$ = %w is the ideal sheaf of W,
and 2^m) = 1% for a smooth subvariety Z CY.

0.3 Let M be a line bundle on a smooth variety Y. Given a divisor E G \kM\
we call the normalized multiplicity

•mdy{E)=

the index of E at a point y G Y.

0.4 For a line bundle L and a coherent sheaf of ideals J on 7 , we denote
by \L (g) J\ the linear subsystem of the complete linear system \L\ cor-
responding to sections in L ® J. Given such a system \L ® J\ ^ 0
on y , the base locus Bs \L ® J\ is the support of the intersection of all
members of \L (g) J\.

0.5 We will be concerned with the following setup: let X be a smooth irre-
ducible n-dimensional projective variety, T a smooth irreducible affine
variety and g: T —• X a quasi-finite dominant morphism with graph F;
examples of this situation are provided by Zariski open subsets T C X.
Let pvx and prT denote the projections from Y = X x T to its factors.
Note that these restrict to dominant maps from F to X respectively T.
Given a Zariski closed subset (or subscheme) Z C X x T, we consider
the fibre Zt of prT over t G T as a subset (or subscheme) of X. Simi-
larly, Zx C T is the fibre of Z over x G l Given a sheaf f o n l x T
we write ^ i for the induced sheaf on X.
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1 Preliminaries

In this section we collect some preliminary results needed in the sequel. We
start with some remarks concerning multiplicity loci in a family. Let E be
an effective divisor on a smooth variety Y. Then the function y H-> m\ilty(E)
is Zariski upper-semicontinuous on Y. For any given irreducible subvariety
Z C Y we write multz(E) for the value of mult2(E) at a general point z e Z.
The following lemma allows us to calculate multiplicities fibrewise.

Lemma 1.1 (cf. [EKL, 2.1]) Let X andT be smooth irreducible varieties,
and suppose that Z C X xT is an irreducible subvariety which dominates T.
Let E C X x T be an effective divisor. Then for a general point t € T, and
any irreducible component Wt C Zt of the fibre Zt, we have

mult Wt (Et) = multz {E). D

The next two elementary lemmas give a way of detecting irreducible com-
ponents of base loci, and show that being an irreducible component is well-
behaved in families.

Lemma 1.2 Let m be a positive integer, M a line bundle on a smooth variety
V and V C W C Y subvarieties such that V is an irreducible component of
W. Suppose that

(1) lw 0 M is generated by global sections, and

Then V is an irreducible component of Bs \Ty ® M\.

Proof Consider the inclusions

V C Bs |2^m) (8) Af | C Bs \IW 0 M\ C W, (*)

where the first inclusion is obvious, the second follows from (2), and the third
from the fact that Bs \lw 0 M\ = W because lw 0 M is globally generated
according to (1).

Now let Z C Bs |Ty 0 M\ be any irreducible component containing V.
Then (*) and the assumption that V C W is an irreducible component imply
V = Z, hence the claim follows. •

Lemma 1.3 Let f: Y —> Z be a morphism between irreducible varieties, and
V C W C Y subvarieties such that V is an irreducible component of W, and
f restricts to a dominant map from V to Z.

Then over a general point z G Z, every irreducible component Uz of Vz

has dimension dim V — dimZ and is an irreducible component ofWz.
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Proof For the first part we refer to [Ha, II, Ex 3.22]. The second assertion
comes down to an easy dimension count as follows: write

W = V U V

with V C Y a subvariety not containing V, so that dim V > dim(V n V). If
the map from V f) V to Z is not dominant, then Vz and Vz do not meet in a
general fibre and the claim follows.

Otherwise, over general z G Z, we obtain:

dim Vz = dim V — dim Y

H V) - dimF = dim(V n Vf)z,

and therefore dimUz > dim(V fl V')z > dim(C/z C\ Vz), where Uz C Vz is any
irreducible component. Considering the decomposition Vz = UZUUZ, where
Uz <£ U'z, we conclude d\mUz > dim(Uz D (U'z U Vz)), which shows that Uz is
an irreducible component of Wz = Uz U (V^ U C/̂ ). D

For the reader's convenience we recall some well-known facts concerning
Seshadri constants. The next lemma deals with the Seshadri constant at
general points versus that at very general points (compare [EKL, 1.4]).

Lemma 1.4 Let X be a smooth projective variety and L a nef and big line
bundle on X. Suppose e(L, y) = e for a point y G X. Then for any real S > 0
there exists a Zariski open neighbourhood U(S) cXofy such that

e{L,x)>e-6 for all x eU(6). •

Finally we recall the relations between isolated singularities, generation
of higher jets, and Seshadri constants (cf. [ELN, 1.1], [EKL, 1.3]).

Theorem 1.5 Let X be a smooth projective n-fold and L a nef and big line
bundle on X.

(1) Suppose there exists a divisor E G \hL\ having an isolated singularity
of index >n + satxeX. Then H\X, OX(KX + L) 0 Tx+

l) = 0.
In particular, \KX + L\ generates s-jets at x, i.e., we have a surjective
evaluation map

H°{X, OX(KX 4- L)) -+ Jf°(X, OX(KX + L) 0 Ox/I
s
x
+1).

(2) Let e(L,x) be the Seshadri constant of L at x. If

s n
e(L,x) e(L)X)1

then \KX + rL\ generates s-jets at x G X.
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(3) Conversely, if e(L, x) < a, then for all s0 > 0 and all real c there exists

ans > so and anr > — + c such that \Kx +rL\ does not generate s-jets
,-, a

atx. •

2 Proof of Theorem 1

2.1 Partitions of the interval [0, a]

Let a G Q + be such that Ln > a, and 0 = fa < fe < • • • < Pn+i = a a
partition of the interval [0, a] with rational fa. In the applications in §3 we
will use a clever choice of the fa, which we call "rescaling" of the interval

2.2 Families of divisors
Pick an arbitrary point y e X and a smooth affine neighbourhood T C X of
y in X. Then the embedding g: T c-> X satisfies the properties of 0.5. Note
that (very) general points of T correspond to (very) general points of X. We
will use the notations introduced in 0.5 henceforth.

Arguing as in [EKL, 3.8], for k ^> 0 with ak G Z we obtain divisors
£k G | pr^(A;L)| in X xT satisfying

indr(ffc) > a.

The argument is, in brief, that for any x G X one finds a divisor E G \kL\
with mn\tx(E) > ak by using Riemann-Roch and a parameter count. Hence
the torsion free C

has positive rank, and is globally generated since T is affine. Therefore via
the evaluation map pr£ R —> pr^(A;L) ® Jp , a nonzero section <3> of R gives
the desired divisor £&.

2.3 The multiplicity schemes ZG{£)
For k > 0 with ak G Z, we set

Then by 2.2, Ak is nonempty for sufficiently large fc. For nonzero
and any rational number a > 0, we define

£*(£*) = {v = OM) € 5fc | ind^flb) > a } .
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Note that Za(£k) is a Zariski closed subset of X x T. Its natural scheme
structure is given locally by the vanishing of all partial derivatives of order
< kcr of a local equation of £*. We are only interested in Za(£k) as an
algebraic set, and for a general choice of £*.

The following lemma, which is an analog of [ELN, 3.8], says that the
multiplicity loci Za(£k) are independent of k and the choice of a general
£k G Ak as soon as A: is sufficiently large.

Lemma 2.3.1 For fixed a there is a positive integer kQ such that Za{£kx) =

Proof (compare [ELN]) For simplicity, as a and a are fixed, we write Z(k)
for Za(£k). Choose an integer ra > 2 such that Ak ^ 0 for k > m. Fixing an
integer a > ra, we claim that there exists a positive integer k(a) such that

Z(r) C Z(a) whenever r > k(a). (*)

To prove the claim, suppose that y £ Z(a), so that there exists rj > 0 satis-
fying

m\ilty(£a) < aa — r).

Since the index is a discrete invariant, rj is bounded below independently of
y; in fact if ma G Z then rj > 1/ra. Suppose b > m is an integer coprime to
a. Then any integer r > ab can be expressed as r = aa + /3b with a, /? G Z
and 0 < (3 < a. Consider the divisor £'r = a£a + /?£*, G Ar. Then

multy(£r) < 1 + multy(£;) = 1 + a • multy(£a) + /? • multy(£6)

< 1 -f aaa — ar] + (3 • imilty(£b)

where the first inequality is a consequence of a general version of Bertini's
Theorem for the general £r G Ar (see, for example, [Xu96]). Since r),fi and
b are bounded independently of r, it follows that m\i\ty(£r) < ra for r > 0.
Hence y £ Z(r) for all sufficiently large r, as claimed.

If Z(r) = £(a) for all r » 0 we are finished. Otherwise by (*), there
exists a1 > 0 such that £(a;) C Z(a). The argument can then be repeated
with a' instead of a. Since this process must stop after a finite number of
steps, the lemma follows. •

The next lemma is an adaptation of [ELN, 1.5, 1.6] to our situation. We
present a sketch proof for the reader's convenience.
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Lemma 2.3.2 (Gap Lemma) Let £ C X x T be a family of effective di-
visors on X with indr(£) > OL along the graph F C X x T of g: T —> X.
Define

Z0 = X xT and

Zj = Zpj{£) = {ye£ | i n d ^ f ) ^ } for 1 < j < n + 1

(with Pi as above). Then there exists an index c with 1 < c < n, and an
irreducible subvariety V C X x T such that:

(1) codim(V) = c,

(2) r c V , and

(3) V is an irreducible component of both Zc and Zc+\.

This means that the index of £ "jumps" by at least /?c+i — /?c along V,
that is, indy(£) > (3c+\ for every y G V and there is an open set U C X x T
meeting V such that indv(f) < /3C for every v eU\V.

Sketch of Proof The sets Z{ lie in a chain

T C Zn+1 C • • • C Zx = £ C Zo = X x T.

Starting with Zn+i and working up in dimension, we can choose irreducible
components Vj of Zj containing F such that VJ+i C Vj. So we arrive at a
chain of irreducible varieties

T C Vn+i C Vn C ... C Vi C Vo = X x T,

and since X x T is irreducible of dimension 2n = dim(F) + n, at least two
consecutive links in the chain must coincide, say Vc = Vc+i, and we take
V = Vc. Using elementary combinatorial arguments one shows that also the
condition codim(V) = c can be achieved. For details we refer to [ELN], proof
of Lemma 1.6. •

2.4 The "jumping" locus as base locus of a certain
linear system

By Lemma 2.3.1, there exists an integer k0 such that the multiplicity loci
ZpX£k), for 1 < i < n + 1, are independent of k as soon as k > ko and
£k € Ak is general. Therefore also the multiplicity "jumping" loci V obtained
by the Gap Lemma 2.3.2 can be chosen independently of £ = £k and k up to
the above restrictions. Fix such a V and put /? = fic+i — (3C.
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Proposition 2.4.1 For all sufficiently divisible k » 0 the jumping locus V
is an irreducible component of the base locus of the linear system

Here sufficiently divisible means that fak G Z for all i = 1 , . . . , n + 1.

We start by recalling some general facts concerning differentiating sec-
tions of line bundles pi*x(kL) in parameter directions and its connection with
certain multiplicity loci (cf. also [EKL, §2] and [ELN, §2]).

Let /De
XxT(pr:x(kL)) be the sheaf of differential operators of order < £ on

pr*x(kL) and Vl
T the sheaf of differential operators of order < £ on T. Since

there is a canonical inclusion of vector bundles

the sections of T)j< act naturally on the space of sections of pr^ (A;L). A section
ip G T(X x T, pr^-(A:L)) determines a sheaf homomorphism

If we represent r/j locally by a function / , then Qt(ip) just takes a differential
operator D to the function D(f). Since pr^-(A:L) is a line bundle, there exists
a sheaf of ideals Xs^ ) such that

Let I/J be a defining section for a divisor £ G | pr^-(A;L)|. Then we claim that

{(x,t) G X x T | multt(fx) > ^ } . (2.4.2)

Indeed, the scheme structure on the right hand side is given locally by the
vanishing of all partial derivatives of order < £ in the T direction of a local
equation for £.

Note also that the sheaves 2s£(1/,) (g> pr^(A;Z/) are generated by global sec-
tions, because they are quotients of the globally generated sheaf pr^ ( £ )

Proof of Proposition 2.4.1 The plan is to apply Lemma 1.2. By assump-
tion,

afc, p = (3ck and q = (3k are integers.

Let £ G Ak be a divisor determining V and -0 a section defining £. For
integers £ put T,e = E^(/0). We claim that

(2.4.3)
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To prove this, let / be a local equation for £ over some open set U. Then
2EP_I is locally generated by all functions

On the other hand we have D(f) G lv for every D G T^^1 (pr*x(kL))(U),

since V is an irreducible component of ZE±a_(£). And in particular D(f) G 2y

for every D G (p4^ + 9 " 1 ) (C7) . Hence for all D G p r j ^ " 1 the function
D(f) vanishes to order > q on V, which proves (2.4.3).

Since 2"EP_I 0 pr^(A;L) is globally generated, applying Lemma 1.2 to our
situation will give the desired result once we show that V is also an irreducible
component of £p_i. This is the content of Lemma 2.4.4 below. •

Lemma 2.4.4 For ok a positive integer, let £ G |pr^(fcL)| be an effective
divisor on X x T and V C Za(£) an irreducible component dominating X.
Then V is also an irreducible component of T,ka-i(£)•

Proof By definition Za{£) C £fc<7_i(£). Let W C £fc<r-i(£) be an irre-
ducible component containing V. If we can show that W C Za{£), then we
are done, because that implies V = W. Lemma 1.1 shows that indw(£) =
indw^(£) for general x € X and any irreducible component Wx of Wx. Hence
the assertion follows from m&wx{£x) > 0", where we used (2.4.2). •

Corollary 2.4.5 For all sufficiently divisible k ^> 0, we have

C

Proof By the above, any sufficiently general £ £ Ak determines the same
V, in particular, such an £ satisfies indv(£) > fic, and this implies that
£ £ pEp-i ® Prx(k£)l by (2.4.2), where again we assume that ak, p = f3ck
and q = /3k are integers. The claim then follows from (2.4.3). •

Proposition 2.4.6 For all sufficiently divisible k > 0 and for very general
teT, the following hold:

(1) There exists an irreducible subvariety V C X of codimension c contain-
ing g(t) which is an irreducible component of the base locus of the linear
system

on X such that multy D>kf3 for all D e\Jk\. In particular, if c — n,
i.e., V = T, then by Bertini's Theorem there exists a divisor D G \kL\
having an isolated singularity of index > (3 at the point x = g(t).
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(2) dimH°(X,I^t) ® kL) < dimH°(X, Jk).

Proof To begin with, we study the situation for a fixed k. First we note
that after possibly shrinking T, we can assume that the coherent sheaf T =
Xy ' 0 pr^(A:L) is flat over T. In fact prT: X x T —> T is projective and T
is affine and integral, hence the assertion follows by considering the Hilbert
polynomials of the Tt (cf. also [Ha, III.9.9]): these do not depend on t for t
in an open dense subset of T.

After possibly shrinking T more, it follows from semicontinuity that there
is a natural isomorphism

H°(X x T, T) <g> k(t) ~ H°{X, Tt) (*)

(cf. [Ha, III. 12.9]). In other words, taking global sections of T commutes with
restricting to fibres over general t G T, and therefore (Bs |«F|)t = Bs | Jk\ for
such t.

Now we can prove (1). By Proposition 2.4.1 we have F C V C Bs | f |
with V an irreducible component of Bs |^"|, hence Lemma 1.3 shows that any
irreducible component V of Vt is an (n—c)-dimensional irreducible component
of (Bs|J"|)t = Bs|Jib|. It remains to show that mn\tv D > k(3 for all D G
1^1 = |^*t|. But this follows from (*) and Lemma 1.2.

Assertion (2) follows in the same way from Corollary 2.4.5 and the fact
that

(T(otk)\ _ (Tak\ _

V r )t~ ^ r '*"

To complete the proof of the proposition we only have to remark that, since
V does not depend on k, the above arguments work simultaneously for all
divisible k > 0 if we replace the general t G T by a very general t G T. •

2.5 Bounding the degree of irreducible components of
base loci

In this section we complete the proof of Theorem 1 by bounding the degree
of the irreducible component V of Proposition 2.4.6, using a strategy essen-
tially due to Fujita (see [Fu82], [Fu94]). Alternatively one could carry out an
approach via graded linear systems as in [ELN], leading to slightly weaker
bounds.

Let k » 0 be sufficiently large and divisible, and fix a very general t G T.
Let Jk = {X^k))t 0 kL and V C X be as in Proposition 2.4.6; recall that V
depends on t but not on fc, and that V is an (n — c)-dimensional irreducible
component of Bs|j7ik|- We may assume that dimV > 0, since otherwise the
assertion of Theorem 1 follows from Proposition 2.4.6, (1).
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2.5.1 Resolving the base locus of A := \Jk\, we can find a sequence

X = Xs —• • • • —> Xr —• Xr—i —y ''• —y X\ —y XQ = X

of birational morphisms r»: Xi—> X»_i together with linear systems A» on X{
such that

(1) Ao = A.

(2) T;: X* —> Xi-i is the blowup of a smooth subvariety d of Xi-\.

(3) r*Ai_i = A» H- ra^ for some nonnegative integers m*, where £* is the
exceptional divisor on Xi lying over C* and Ei <jL BsA;.

(4) BsAs = 0.

Let r = rs o . • • o n be the composite, #* the pullback of Ei to X\ and
YJ = T(E*), SO that yj coincides with the image of Cj in X.

Let F» denote the pullback to X' of the general member of the linear
system A» on A"*. Finally, let H be a general member of As, F = r*(fcL), and
2? the fixed part of r*A, so that H = F - E, where £7 = X^=1 rrii£?.

By assumption there exists an index r with Yr = V, and

rar > fc/3 (2.5.2)

since multy(D) > fc/? for all D G |j7fc|. We also may and will assume that
the resolution r is chosen in such a way that dim Y{ < dim V = n — c for all
i < r, and in particular V = Yr is birational to Cr.

Lemma 2.5.3 Fn~c • £7 • Hc~l > kn-cmc
r degL V.

Proof First of all note that, since F and H are nef and E — mrE* is an
effective divisor, we have

Fn~c • E - Hc~l > mrF
n-c • E; • Hc~\ (*)

Then one proceeds exactly as in the proof of [Fu82, Lemma 3.2] by first
showing

Fn-c . pe > pn-c . ^ . j^c-1 ^ ^

This inequality is proved inductively, and reduces to checking the inequality
Hc-b-lF*Fn-c(Fr - H) > 0 for b > 0, which follows from the semipositivity
of Fr

6 on the class representing Fn~c • E' for all components E' C E.
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Finally one computes both sides of the inequality (**). Since diml^ < n—c
for all i < r, we have

Fn-c. Fc = Fn-c .(F-J2rniE*)c = Fn~c • (F - mrE*r)
c,

i<r

hence Fn~c • Fr
c = Fn — m^degkL(V) by the birationality of the morphism

Cr -+ Yr = V. A similar argument shows Fn~c • Fr • Hc~l = Fn - mrE; •
Hc~l - Fn~c. Combining this with (*) and (**) proves the lemma. •

Lemma 2.5.4 For any e > 0 there exist a sufficiently large and divisible k
and a resolution r: X' —> X of the rational map given by \Jk\ satisfying the
properties in 2.5.1 and such that Hn = (F - E)n > kn(Ln - an - e).

Proof The proof follows closely the proof of [Fu94, Theorem]. We therefore
only give an outline, indicating the necessary modifications. For varying k,
consider \Jk\ and denote by (X'k,Hk) the pair (X',H) obtained as in 2.5.1.
We derive a contradiction assuming that Hk < kn(Ln — an — e) on X'k for all
large and divisible k.

Letting e grow if necessary, we may assume that

on X'e for one fixed large and divisible I. Now, for any integer s > 0, we claim
that

which is proved exactly as in [Fu94] by using the lower bound on if" and
considering an appropriate resolution of A = \Jse\. Prom Proposition 2.4.6,
(2) and asymptotic Riemann-Roch we then obtain

^ (Ln - an) + tp(s) < h°(X, I™1 ® s£L) < h°{X, Jst)

where tp and -0 are functions with lims^oo ^ = lims^oo ^ = 0. This gives
the desired contradiction. •

Before stating the main result of this section which will complete the proof
of Theorem 1, we need to recall some well-known facts (cf. [De93, 5.2], [Fu82,
1.2]).
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Lemma 2.5.5 Let F, H be nef divisors on a smooth protective n-fold Y.
Then:

(1) Fd - Hn~d > ^{F^y^/(Hn)n-d holds for allO<d<n.

(2) IfE = F-H is effective, then Fa • Hn~a > Fb • Hn~h for anya>b. D

Proposition 2.5.6 In the above notation the degree ofV satisfies

Proof By Lemma 2.5.3 we have

V < j-1—Fn~c - E - Hc-\- kn-cmc

Note that Fn~c • E • Hc~x = (F n " c + 1 • Hc~l - Fn~c • Hc). So if we bound the
first term using Lemma 2.5.5, (2) and the second using (1), we find

< T—^—
~ kn-cmc

r

-—
kn-cmc

r

(Ln - {Ln

+1. Hc~l - Fn~c • Hc)
k m r

 ;

< ( (

kn-cmc
r

where the last steps are Lemma 2.5.4 plus the fact that degL V is integral,
and (2.5.2). •

3 Applications
Theorem 3.1 Let X be a smooth protective n-fold, x G X a very general
point and L a nef and big line bundle. Let r and s be positive integers, 7 > 1
a rational number satisfying (rL)n > (j(n + s))n, and <*i,..., an_i positive
rational numbers with Yl^i a* = 7 — 1. Suppose that \Kx + rL\ does not
generate s-jets at x.

Then there is a proper subvariety V C X of positive dimension d contain-
ing x with

(rL)- ) )
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Proof Put I! = rL, a = Pn+i = l(n+s), Pn = (7~l)(n+s)> a nd recursively
downwards $ = pi+\ — an_i(n -f s) for 2 = n — 1,.. . , 1. Let x G I be a very
general point and apply Theorem 1. In case (a) there exists k > 0 and a
divisor E G \kL'\ having an isolated singularity of index > n + s at x, hence
by Theorem 1.5, (1) the linear system \Kx + L'\ = \Kx + rL\ generates s-jets
at x. Therefore there is a subvariety V C X with the claimed properties. •

Remark 3.2 Up to the assumption on the positivity of Tx and the genericity
of x G X, Theorem 3.1 looks similar to [ELN, Theorem 4.1]. Note however
that in the estimate of the degree deg^ V we have (n+s)d compared to (n+s)n

in [ELN], which turns out to be crucial when bounding the Seshadri constant.
This improvement is achieved by "rescaling" the interval [0, a] as in 2.1.

3.3 Proof of Theorem 2
First we note that, since we are only considering general points, there is no
loss of generality in supposing that X is smooth (see [EKL, 3.2] for the precise
argument).

Suppose that e(L,x) < e. Then by Theorem 1.5, (3) there exist positive
integers s and r with r > ^j1 such that \Kx + TL\ does not separate s-jets
at x. By assumption we have

So we apply Theorem 3.1 to obtain a subvariety V 3 x oi positive dimension d
satisfying a degree bound which, due to the trivial estimate 1— y/(l — a)n~d <
1 for 0 < a < 1 can be replaced by

Ld • V < edlnad
d-

n,

leading to a contradiction. •

Remark 3.4 Prom Theorem 1 one can deduce easily various boundedness
statements by specifying the c :̂

(a) Setting OL\ = • • • = an = 1, we get the universal bound e(L,x) > n~n

for the Seshadri constant.

(b) With the following choice, one comes closer to the bound of [EKL]: put
on = (n - l)(2~i(l - 21"n)-\ and define /x(d) := miny {Ld • V}, where
the minimum runs over all d-dimensional subvarieties V C X containing
very general points. Then
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4 Bounds at an arbitrary point

In this section, we show how to apply the strategy of §3 to obtain certain
bounds for Seshadri constants at arbitrary points using the following result
of [ELN]:

Theorem 4.1 (Ein—Lazarsfeld—Nakamaye) Let x € X be any point of a
smooth n-fold X. Let A be an ample line bundle on X and S > 0 a real
number such that Tx(SA) is nef. Suppose that

0 = A < • • • < AH-I < v ^

are rational numbers. Then either

(a) there exists E G \kA\ (for k > 0) with an isolated singularity at x of
index

TTwT' or

(b) there exists an irreducible subvariety V 3 x of codimension cj^n with

Theorem 4.1 follows from [ELN, Theorem 3.9] together with [ELN, 1.5,
1.6] and the remark (from the proof "of Theorem 3.9) that V is in any event
an irreducible component of the base locus of |2y ®Ox(k(l + 5cr)A))\ on X;
when V is O-dimensional, this gives the divisor in (a) by Bertini's Theorem.

Then the argument proceeds as in §3:

Corollary 4.2 Let X, A and 5 be as in (4-1), and moreover, let r, 5 be positive
integers, and 7 > 1 a rational number such that (rA)n > (7(71 + s))n. Let.
a i , . . . , a n - i be positive rational numbers with

5 , N "-1

(

Then for any x € X either Kx + rA separates s-jets at x, or there exists
a subvariety V C X through x of dimension d>l and degree
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Proof Put A' = rA,(3n+l = 7(n + a),& = (n + s) • YXi <** a n d A =
/?»+! — an-i(n H- 5). Then apply Theorem 4.1 to A' and 5' = *, and use
Theorem 1.5, (1). D

Theorem 4.3 Lei X, A and S be as in J^.l, moreover let e > 0 be real and
a i , . . . , a n positive rational numbers. Let x € X be any point and suppose
that, for any 1 < d < n, any d-dimensional subvariety V C X containing x
satisfies

n-d

Thene(A,x) >e.

Proof Fix x G X and suppose e(A,x) < e. Then there exist positive
integers r, s with r > (s + n)/e such that \Kx + TA\ does not generate s-jets
at x. Put 7 = 1 + (1 + ;(n + s)) ^r=iX ai- T h e n by assumption

Then we arrive at a contradiction because Corollary 4.2 gives the existence
of V 3 x of dimension d > 1 with

D

Setting ai = • • • = an = 1 one obtains Corollary 3 of the introduction.

Remark 4.4 It is well known that, for a very ample line bundle if on X, the
twisted tangent bundle Tx{Kx+nH) is globally generated, and in particular
nef (cf. [De93, 12.1]). In case A = Kx is ample on X one therefore can use
one of the available effectivity statements for very ampleness of ample line
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bundles (e.g. [De93]) to determine explicit values for £, making Theorem 4.3
or Corollary 3 effective, in the sense that the bounds for the Seshadri constant
of Kx at any x G X only depend on the dimension n. The same argument
works in case A = —Kx is ample, or for any ample A in case Kx is trivial.

Remark 4.5 Finally, let us compare Corollary 3 with the bounds that can be
obtained using Angehrn and Siu's basepoint-free Theorem. Namely, Angehrn
and Siu prove that, for an ample line bundle A on X, the adjoint line bundles
mA + Kx are free for m > \n(n + 1) + 1. An elementary argument (see
for example [Kii, 3.3]) shows that e(A,x) > 1 for all ample basepoint-free
line bundles A. Moreover, if Tx(SA) is nef, then so is the Q-line bundle
M := det(Tx{SA)) = —Kx H- n5A. Seshadri constants by definition have the
sublinearity property

e(XL + \xM, x)>\- e(L, x) + [i • e(Af, x)

for nef line bundles L, M and any rational A, \i > 0. This shows that
2

£ ( A ' x ) - n ( n + 25 + l) + 2 '
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Degenerate double covers
of the projective plane

Marco Manetti

Abstract

We prove that the set of canonical models of surfaces of general
type which are double covers of P2 branched over a plane curve of
degree 2h is a connected component of the moduli space if and only if
h is even. To get a connected component when h is odd, we must add
some special surfaces called degenerate double covers o/P2.

Moreover, we show that the theory of simple iterated double covers
(cf. [Ma3]) "works" for every degenerate double cover of P2; this allows
us to construct many examples of connected components of the moduli
space having simple iterated double covers of P2 as generic members.

0 Introduction

Double covers of rational surfaces play an important role in the theory of
minimal surfaces of general type, especially those with small c2 (cf. [Horl]).
For example, if 5 is a smooth minimal surface with K\ = 2 and pg(S) = 3,
then its canonical model is a double cover of P2, while if K$ = 8 and pg(S) = 6
then S is either a deformation of a double cover of P2, or a deformation of a
double cover of P1 x P1 ([B-P-V, p. 231]).

One of the main goals of this paper is to determine all smooth surfaces of
general type that are (smooth) deformations in the large of a double cover of
P2. In other words, if M denotes the coarse moduli space of surfaces of general
type ([Gi]) and So —> P2 is a double cover (branched over a nonsingular curve),
we want to describe all surfaces S whose classes [S] G M. are in the same
connected component as [So]. It is important to say that, as we consider only
smooth deformations, the minimal resolution of double covers of P2 branched
over very singular curves are not in the same connected component of [So].

* Research carried out under the EU HCM project AGE (Algebraic Geometry in Eu-
rope), contract number ERBCHRXCT 940557.
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256 Degenerate double covers of the projective plane

For every ft > 4, let iV(P2,£>(ft)) C M be the (irreducible) subset of
surfaces whose canonical model is a double cover of P2 branched over a plane
curve D C P2 of degree 2ft. Equivalently N(F2,O(h)) C M is the set of
double covers of P2 branched over a curve of degree 2ft with at most simple
singularities [B-P-V, II.8]. It is not difficult to prove that N(P2,0(h)) is an
open subset of the moduli space, but the above examples show that it is not
closed in general. Our first result is the following:

Theorem A Let ft > 4 be a fixed integer and set N = N(F2,0(h)).

(1) N is open in the moduli space.

(2) N is closed in the moduli space if and only if ft is even.

(3) If ft is odd then the closure of N in the moduli space is open.

(4) The closure of 7V(P2,(9(ft)) in the moduli space is a connected compo-
nent.

We recall that the local analytic structure of M at a point [S] is isomorphic
to the quotient of the base space of the semiuniversal deformation of the
canonical model 5c a n by the (finite) group of automorphisms of S (cf. [Gi],
[Ma4]) and the subset MK2,X C M of minimal surfaces with fixed K2,x 1S

a quasiprojective variety. (1) is therefore an easy application of well-known
theorems about deformations of double covers of smooth surfaces, while (4)
is an immediate consequence of (1), (2) and (3).

The idea of the proof of (2) and (3) is the following: let {5t}, t G A be a
flat family of minimal surfaces of general type such that [St] G 7V(P2,0(h))
for every t ^ 0. Denoting by Yo the canonical model of 50, we use the results
of [Mai] to prove that either [So] G iV(P2,(9(ft)), or Yo is a double cover
of Wo, the projective cone over the rational normal curve of degree 4 in P4,
nonflat over the vertex iu0 G Wo; in the latter case we call Yo a degenerate
double cover of P2. (As the referee points out, degenerate double cover of P2

and their deformations can also be described easily in terms of subvarieties
of the weighted projective space P(l, 1,1,2, d).)

It is then clear that (3) is a consequence of the local irreducibility of the
moduli space M at every degenerate double cover Fo of P2; this is proved in
§4 by giving an explicit description of the Kuranishi family of Yo.

We also prove the vanishing of some Ext groups on Yo) these results allow
us to apply the machinery of [Ma3] of simple iterated double covers to give a
large number of examples of connected components of the moduli space. A
finite map between normal algebraic surfaces p: X —>> Y is called a simple
iterated double cover associated to a sequence of line bundles L i , . . . ,Ln G
Pic Y if the following conditions hold:
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(1) There exist normal surfaces X = Xo,..., Xn — Y and flat double covers
7Tj: Xi-i —> Xi such tha t p = ?rn o • • • o TTI .

(2) If pi = ?rn o • • • o TTJ+1 : Xi —> y is the composite of the TTJ for j > i,
then we have the eigensheaf decomposition T T ^ C ^ - I = Ox{ ®p*(—Li)
for each i = 1 , . . . , n.

We say that a simple iterated double cover ?r: X —> y is smooth if each
X; is smooth. By [Ma3, 2.1], TT: X —>• y is smooth if and only if X is smooth.

For any sequence L\,..., Ln G PicP2, define Af(P2, L i , . . . , Ln) to be the
locus in the moduli space M of surfaces of general type whose canonical
model is a simple iterated double cover of P2 associated to L i , . . . , Ln. The
subset 7V(P2, L i , . . . , Ln) is parametrized by a Zariski open subset of the space
of sections of a decomposable vector bundle of rank 2n — 1 over P2 (cf. [Ma3]),
and therefore it is irreducible and unirational.

Theorem B Set N = JV(P 2 ,L u . . . ,L n ) with k = degLi} and write ~N for
the closure of N in the moduli space.

(1) If ln > 4 and U > 2/j+i for i = 1 , . . . , n — 1 then N is an open subset of
the moduli space.

(2) Assume in addition to (1) that lu..., /n_i are even integers, ln is odd
and [S] e N \ N; then the canonical model of S is a simple iterated
double cover of a degenerate double cover of P2 and has unobstructed
deformations.

(3) If ln > 5 is odd, U is even and U > 2li+i for each i = 1 , . . . , n — 1 then
N is a connected component of the moduli space M.

In the last section of this paper we see, using Theorem B, (3) that simple
iterated double covers of P2 give examples of distinct connected components
of moduli space whose general members are smooth simple iterated double
covers of P2 with fixed numerical invariants.

This paper is considered as the ideal continuation of [Mai] and [Ma3].
To avoid the excessive number of pages necessary for a selfcontained proof of
Theorems A and B, we often use the results of the above papers.

An earlier version of this paper formed part of the author's thesis [Ma4].
It is a pleasure to thank my advisor F. Catanese, and also L. Badescu and
C. Ciliberto for their interest in this work and many fruitful discussions.
Thanks also to the referee for several useful remarks.
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Notation
We work exclusively over the complex field C; for any algebraic variety X, we
write fi^ for the sheaf of Kahler differentials and 6X = {^xV f°r t n e sheaf
of tangent vector fields. If X is normal we denote by Kx its Weil canonical
divisor.

By a deformation we mean any flat family over a connected base; a small
deformation means a deformation over a germ of a complex space. Thus to
say that a class C of surfaces is stable under small deformations means that
for every deformation / : X -> B and every point b e B such that f~x(b) £ C,
there exists an analytic neighbourhood b G U C B such that f~l(u) G C for
every u G U.

We denote by Defx the functor of infinitesimal deformations of X from
the category of local Artinian C-algebras to pointed sets ([Sch]), by Tx =
Defx(C[£]/(£2)) its tangent space, and, if Tx is finite dimensional, by DefX
the base space of the semiuniversal deformation of X (also called Kuranishi
family). We define in a similar way Def(x,o)5 ^(xo) an<^ Def(X, 0) for any
isolated singularity (X, 0).

According to [Ca3] a surface singularity (X, 0) is called a half rational
double point (or half R.D.P.) if it is the quotient of a rational double point
by an analytic involution. The half rational double points are completely
classified in [Ca3].

For every q > 0 we denote by ¥q = P(Opi 0 Opi(q)) the Segre-Hirzebruch
surface; if p: ¥q —> P1 is the natural fibration we denote by CTQO, / , OQ G PicF9

the classes of the unique section of p with negative selfintersection, of the
fibre of p and of a section disjoint from a^. It is well known that ao, / are
generators of the Picard group, a0 ~ a^ + qf, a% = — a^ = q, and the
canonical bundle is K = —a0 — a^ — 2 / .

1 Degenerations of double covers of P2

Throughout this paper we denote by Wo C P5 the projective cone over the
rational normal curve of degree 4 in P4 and by w0 G Wo its singular point.
The minimal resolution of Wo is the Segre-Hirzebruch surface F4. It is well
known that Wo is a degeneration of P2 and, according to [Ca3, §2] and [Mai,
Theorem 15 and Theorem 8], P2 and Wo are the only degenerations of the
projective plane with at worst half R.D.P.s

Lemma 1.1 Let a C Wo C P5 be a generic hyperplane section. Then a is a
generator of Pic Wo = Z.

IfW-+Aisa deformation of Wo such that Wt = P2 for every t ^ 0,
then every line bundle on WQ extends to a line bundle on W. Moreover, if L



Marco Manetti 259

is a line bundle on W such that Lo = aa then Lt = Of>2(2a) for t ^ 0.

Proof Let 7: X = F4 —>- Wo be the minimal resolution. Since a doesn't
contain the vertex w0 of the cone and a2 = 4, 7~1(cr) must be a section cr0.
The singularity at WQ is rational, which identifies Pic \VQ with the set of line
bundle LQ on X such that Lo • CTQO = 0. Since q(Wo) = p^(Wo) = 0, the
restriction PicW —> Pic Wo is an isomorphism by ([Mai, Lemma 2]). After
a possible restriction of the family W —>• A to an open disk 0 G A' C A of
smaller radius we can assume W embedded in P5 x A (cf. [Mai, Prop. 3])
and the restriction of Ops(a) to Wt for t / 0 is a very ample line bundle with
selfintersection 4a2. The conclusion is now trivial. •

Lemma 1.2 Let f'.y-^Abea proper flat family of normal surfaces such
that Yt is a smooth surface for every t ^ 0, and lo has at worst R.D.P.s.

Let T: y -+ y be an involution preserving f such that Yt/r = P2 for every
t^O. Then either:

(i) Y0/T = P2, or

(ii) YO/T = Wo. The double cover TT: YQ —> Wo is branched exactly over
the vertex Wo G Wo and over a divisor Df ~ (2a — l)a with wo ^ D'.
For t±Q,Yt-¥ Yt/r = P2 is branched over D't ~ O(4a - 2) and the
divisibility of the canonical class r(Yt) is even.

Proof The fact that the quotient family y/r —> A has normal fibres fol-
lows from the general fact [L-W, 5.6] that smoothings of normal two dimen-
sional singularities are preserved under finite group actions which are free
in codimension 3. We also note that in our particular case, if TT : 3̂  —> y/r
is the projection, then 7r*Oy = Oy/T 0 M, where M is the O& module of
anti-invariant functions, and this decomposition commutes with base change
£ - > A .

YO/T is a normal degeneration of P2 with at worst half R.D.P.s, and there-
fore either Y0/r = P2 or Y0/r = WQ. Assume Y0/r = W0] then, since (Wo, wo)
is not a rational double point, y0 = ir'1^) is a fixed point of the involution
r. By [Ma3, Prop. 3.2 and Table 2], the singularity (>o,2/o) is a simple node
defined by the equation x% + x\ + x\ = 0 and the involution r is conjugate
to xi i-» — Xi for i = 0,1,2. In particular y0 is an isolated fixed point of the
involution.

Let 5: S -*Yobe the resolution of the node (Yo, y0) and E = S~l(y0) C 5
the corresponding nodal curve, i.e., a smooth rational curve with selfinter-
section E2 = — 2. The action of r can be lifted to an action on 5, and it is
easy to see that S/r = X — F4. Moreover the flat double cover IT : 5 -» F4 is
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branched over D = a^ U D', where a^ D D' = 0, and since this divisor must
be 2-divisible in PicF4, D' ~ (2a - l)a0 and ^(a^ U D') = aa0 - 2 / where /
denotes the fibre of F4. •

We now recall some results of [Ma3] about flat double covers of surfaces
and their deformations. Let IT: X —> Y be a flat double cover of normal
surfaces and L —>> Y the line bundle such that TT*OX = Oy 0 Oy(—L).

The surface X can be described as a hypersurface of L defined by the equa-
tion z2 = / , where z is a coordinate in the fibres of L and / £ H°(Oy(2L)).
Clearly R = {z = 0} C X and D = {/ = 0} C Y are exactly the ramification
and the branch divisors of TT. The line bundle L and the branch divisor D
determine the double cover uniquely up to isomorphism. In this situation we
say that X is a flat double cover of Y associated to the line bundle L. If
ip G H°(OY{2L)) the surface given by the equation z2 = f + tp is called a
natural deformation of X.

Applying the functor Home>x(—, Ox) to the exact sequence of sheaves

0 -> 7r*nY -> fi^ -> £>*(-#) -+ 0 (1.3)

on X gives the exact sequence

k Oy) 0 E x t J , ^ , -L). (1.3')

Now there exists an isomorphism Extl
Ox(OR(-R),Ox) = H°(OR(7r*D)) =

H°(OD{D)), and if q(Y) = 0 then the image of e is exactly the space of first
order natural deformations of X. In particular if Y = P2 and the degree of
L is > 4 then e is surjective, so that by the Kodaira-Spencer criterion the
family of natural deformations is complete, and then double covers of P2 are
stable under small deformations.

This proves that 7V(P2,0(h)) is open in the moduli space for every ft > 4
and that

iV0(P
2,O(ft)) = {[S] € JV(P2,(9(ft)) I Ks is ample}

is an open dense subset of it. More generally, the following holds:

Proposition 1.4 ([Ma3], 2.3) In the above notation, let X -» Y -» H be
a deformation of the map TT parametrized by a smooth germ (if, 0) and let
rx: (ff,0) -> DeiX, rY\ (11,0) -> Defy be the induced maps. Assume:

1. ry is smooth.

2. The image of rx contains the natural deformations.
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3. ExtJ^ftJ,, -L) = 0 and H\OY) = 0.

Then the morphism rx is smooth.

Definition 1.5 Let a > 3 be an integer and IT: S -» F4 the double cover
associated to L = aa0 — 2 / branched over the disjoint union of a^ and a
divisor D' ~ (2a — 1)<T0 with at worst simple singularities ([B-P-V, II.8]).
E = TT~1(<7OO) is a nodal curve; taking its contraction 5: S —> Yo we get a
surface with at worst rational double points which is a double cover of the
cone Wo- We say that Yo is a degenerate double cover o/P2. The number a
determines Ky0 = 8(a — 2)2 and is called the discrete building datum of Yo.

If a = 2 the above construction still makes sense. In this case, we obtain
a well-studied class of K3 surfaces [Sai, §5], [Hor2].

Theorem 1.6 For even h > A, the set N = N(F2,O(h)) is a connected
component of the moduli space. If h is odd then the set N \ N is contained
in the set of degenerate double covers of P2 with discrete building datum a =

Proof Note first that N and iVo have the same closure in the moduli space.
If [So] G Af0, then by the valuative criterion, there exists a deformation
/ : 5 -» A of So with [St] £ iV0 for every t ^ 0, and an involution r act-
ing on the punctured family 5* —>• A* such that St/r = P2 for every t / 0.
Let Y -> A be the relative canonical model of 5 —> A. Then Yo is a nor-
mal surface with at worst rational double points and ample canonical bundle
and Yt = St for every t ^ 0. It is now an immediate consequence of [F-P,
Prop. 4.4] (cf. also [Ma5]) that r extends to a biregular involution of Y. As is
well known, in general r does not necessarily extend to a biregular involution
of 5 (cf. [Ca3]).

The theorem now follows from Lemma 1.2. •

Remark 1.7 In the notation of 1.4, if Defx is prorepresentable (e.g., if
H°(0X) = 0), then it can be proved that Proposition 1.4 holds without the
assumption that (H, 0) is smooth. Philosophically, this means that if X -> Y
is a flat double cover of normal surfaces ramified over a sufficiently ample
divisor then Def X is isomorphic to the product of Defy with a smooth germ
(CO).

One of the main goals of the next sections is to prove that every degenerate
double cover Yo has unobstructed deformations. The natural double cover
7T: YQ -> Wo is not flat and so we cannot apply the above result (fortunately,
since Def WQ is not irreducible, cf. [Rie]).
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2 Vanishing theorems for degenerate double
covers of P2

Before proving the main results of this section we need an explicit description
of all cotangent vector fields with fixed poles on a Segre-Hirzebruch surface
¥q, q > 1. For this, we use the description

Fg = (C2 - {0}) x (C2 - {0})/ ~

where (Zo>Ji,*o,*i) ~ (Mb AZi, \q[ito,/j,ti) for any A,/i 6 C*.
From now on, by the standard torus action on ¥q we mean the faithful

(C*)2 action given by

(C*)2 3 (£,jy): (/o,Mo,*i) •"> (*o,#i,»#o, h).

Wq is covered by four affine planes C2 ~ Uij = {l(tj / 0}, which are invariant
under the standard torus action. In this affine covering, we choose local
coordinates as follows:

^o,i • z = h/lo and 5 = to/till,

Uo,o: z = li/l0 and s' =

Ui,o : z' = lo/h and y' = f/

C/i,i : z' = lQ/li and y =

We call £/o,i the principal affine subset and z, s principal affine coordinates.
The other pairs of affine coordinates are related to s, z by

z' = Z-\ s' = s~l y = sz~q and y' = s~lzq = y~l.

The map ¥q -> P1, (/o,^i,^o5^i) •-> (^o,̂ i) represents the Segre-Hirzebruch
surface as a rational geometrically ruled surface, where a^ : {£i = 0}, <7o :
{to = 0} and / : {l\ = 0}. Note that the rational function y gives the rational
equivalence a^ ~ cr0 — qf.

Lemma 2.2 h°(¥q,Q}(pao + r^oo)) = qp2 - 1 /or ever?/ p, g > 0 and r > 0.

Proof / /^(^(poo + ĉToo)) is the vector space of rational cotangent vector
fields having at most poles of order p and r along <7o and o^ respectively.
The standard torus action induces an eigenspace decomposition
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where u G Maj if and only if

u = aa,hz
a~lsbdz + /3a,bz

asb-lds

on the open set C/0,i, for some complex numbers aa,b, fiat-
The same u is written in £/o,o as

and in CT̂ i

Note that aont/o,i • {* = 0}, aoon£/0,i = 0, tfoHC/o.o = 0, ^oon£/0,o : {«' = 0},
o~o H f/ifi : {y = 0} and (Too fl f/^i = 0. From the above local description of
to it follows immediately that u ^ 0 implies 6 < 0, and then there exists an
isomorphism / /^(^(pao + raoo)) = ^ ( ^ H P ^ O ) ) - By reflexivity, every section
of Q}(pao) on t/o,i U C/o,o U f/î i extends to a unique section on F9, so that the
following set of rational cotangent vector fields

r za-1sbdz for a > 1, 0 > 6 > - p , a + 1 + qb < 0,

for a > 0, - 1 > b > 1 - p, a + bq < 0,

+ zasb~lds for - 1 > b > 1 - p, a + 6g = 0

are gp2 — 1 bihomogeneous sections of ftl(pao); to prove that these form a
basis is an easy calculation that we omit. •

Corollary 2.3 For every p,q,r > 0, A 1 ^ * 0 ) = q-l, hl (¥q, ft
1 (pa0)) = 1

+ r / ) ) = 0.

Proof The equality ft1 (1^,0) = q - 1 is well known ([Ko]). By the Hodge
decomposition and Serre duality we have /^(Fg,^1) = h2(¥q,9(K)) = 0 and
h2(¥qj Q1) = 0 , and since both —K and pa0 are effective divisors also h2(Fq,0)
and h2(¥q,Q

1(pao)) vanish. By Riemann-Roch and Lemma 2.2 we then get
h1(FqiQ

1{pao)) = l.
For every p, r > 0 it follows from standard exact sequences that

hl(Yq, nl(pa0 + r / ) ) < A 1 ^ , J i 1 ^ + / ) ) = h°(¥q, fi1^ + / ) ) - 9,

and using the method of proof of Lemma 2.2 we easily see that za~ls~ldz,
for 0 < a < q - 1 is a basis of ff^F^fi^oo + / ) ) , and the right-hand side
above is 0. D

Proposition 2.4 For the surface ¥q, q > 0 we have:
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(i) H°(aa0 + bf) ^ 0 if and only ifa>0 and aq + b>0.

(ii) The linear system \aa0 + bf\ contains a reduced divisor if and only if
either a > 0, b > — q or a = 0, b > 0.

(Hi) Hl(aGQ -f bf) = 0 if and only if either a = —1 or a > 0,6 > - 1 or

(iv) For every pair of positive integers p,r, the natural map

H°(pa0) ® H°{ra0) -» H°((p + r)a0)

is surjective; in particular the image of¥q by the complete linear system
|(7o| is protectively normal.

(v) P_x(F,) = A ° ( - K F , ) = max(9,g + 6).

Proof (i) and (ii) are clear since |cro|, | / | are base point free and &<*> G
\ao — Qf\- By Serre duality it is sufficient to study the vanishing of h1 only
for a > — 1. Using standard exact sequences and induction on |6| we have

hl(-Go + bf) = hl(-a0) = 0 for every be Z,

and if b > —1, by induction on a > 0 we have

h\aa0 + bf) < hl(-a0 + bf) = 0.

If a > 0 and b < — 2 then we can write aa0 + bf = a^ -f JD where by (i) and
Serre duality h2(D) = 0, thus

+ 6/) > / ^ ( a ^ t a a o + bf)) = hl{OFi(b)) > 0.

In the principal affine coordinates z, s a bihomogeneous basis of H°(pa0) is
given by the monomials s~azb with 0 < a < p and 0 < b < aq, so that (iv)
follows immediately.

For every q > 0 we have - X = a0-{-aoo-\-2f and if2 = 8. If q < 3 by (iii)
and Serre duality i / H " ^ ) = H2(-K) = 0 and P_x = 9 by Riemann-Roch.
If q > 3 then - X • a^ < 0 and P_i = /i°(a0 + 2/) = q + 6. •

Throughout the rest of this section a is a fixed integer > 3. Let X be the
Segre-Hirzebruch surface F4 and TT: S —> X the double cover ramified over
D = Goo U D1 with £)' a reduced divisor linearly equivalent to (2a — l)cr0. We
assume that 5 has at worst rational double points and write R C 5 for the
ramification divisor.

We have TT*O5 = Ox © Ox(-L) where L = aa0 - 2 / and E = T r " 1 ^ )
is a nodal curve. Denote by 5: S -> FQ the contraction of £"; then Fo is a
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surface with at worst rational double points and ample canonical bundle. We
call S(E) = yo the vertex of the degenerate double cover Yo.

By abuse of notation we use the same letter o to denote the line bundles
cr0 e PicX, 7T*(7o e Pic 5 and 5*7rV0 € PicYo- By the Hurwitz formula

Lemma 2.5 Hl(Yo,pa) = 0 for every integer p.

Proof By the Leray spectral sequence we have

H\YQ,pa) = H\S,po) = H\X,pa) 0 Hl(X, (p - a)a + 2/)

and the lemma follows from Proposition 2.4, (iii). •

Lemma 2.6 For every smooth curve C contained in a smooth surface S,

Proof There exists an inclusion i7°(^0 OC(C)) C Hl
c(F) for any locally

free sheaf T on 5 (this is proved in [B-W, 1.5] for the tangent sheaf, but
the same proof works for any locally free sheaf) and according to the exact
sequence of differentials H°(OC) C H0^ 0 0C(C)). •

Lemma 2.7 If p > 2a then tf&QKKs+pa)) < 1.

Proof We consider the exact sequence on 5 (cf. (1.3))

0 -» Tr'i&xiKx + L + pa)) -> QKKs+pa) -> OR{ir*{Kx +pa)) -• 0,

where R C 5 is the ramification divisor.
Using the previous results, we get

h\GD{Kx+po))
< h\X, (p - 2)a + 2/) + h2{X, Kx + (p- 2a)a + 4/) = 0,

h\Slx(Kx + L + pa)) + h\Q>x{Kx +pa)) = 1

for p > 2a, and the proof follows from the equality hl{OR{ir*{Kx +pa))) =
hl{OD{Kx+pa)). D

Theorem 2.8 In the above notation, Extyo(Qyo, —pa) = 0 for every p > 2a.
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Proof YQ is a Gorenstein surface, in particular KYo + per is a Cartier divisor.
By Serre duality ([Hal, p. 243])

(nYo(KYo +pa),KYoy = H\SIYQ{KYQ + pa)).

We use the following exact sequence of sheaves on lo ([Kas], [Pi2])

0 - • J£o -». 8,(11 -^Cyo^0,

where for every open subset E C U C S and every u) G H°(U, £1$), a(w) = 0
if and only if the holomorphic 2-form da; vanishes on E. We observe im-
mediately that QYo, being locally generated by closed 1-forms, is contained
in the kernel of a; the converse inclusion requires some computation ([Kas,
p. 55]). Note moreover that, according to ([Ste], [Pil, App.]), the sheaf 6*Ql

s

is reflexive, and then the exactness of the above sequence is equivalent to the
equality H1

{yo}{Y0in
1
Yo) = C.

Twisting the above exact sequence by KYo +pa = 6*(KS + p<r) we get

0 -> nY(KYo + pa) -> S&KKs+pa) -±> Cy0 -+ 0.

Our first step is to prove that ^ ( ^ ( i ^ + pa)) = frfaQKKs+pcr)) for
p > 2a, that is, that a is surjective on global sections. Actually the following
stronger result holds:

Lemma 2.9 In the above notation if p > 2 then the composite of H°(a) with
the pullback map TT*: H*(Q}X(KX +pv)) -> ^(^(Ks-\-pcr)) is surjective.

Proof Let 5, z be the principal affine coordinates on X = F4 and consider
v = s~2dz(dz A ds) e HQ(Sll

x(Kx +P<T)). In the open set C/O,o C X with
coordinates z, 5;, we have LJ — dz{ds* A dz), and a^ = {s' = 0}; locally,
5 is the double cover of X defined by the equation £2 = s', so that TT*UJ =
2£dz(df Adz).

Now d£ A dz extends to a holomorphic invertible section of Ks in a neigh-
bourhood of E and then, up to nonzero scalar multiplication, a(7r*uj) =
a{£dz) ^ 0 since d(f dz) = d£ A dz. •

The Leray spectral sequence gives an exact sequence

0 -> Hl(6mnl
s(Ks+p(T)) -> H^&siKs+pa)) - ^ H°{R%nl

s{Ks+p<T)),

and if r ^ 0 then by Lemma 2.7 the proof is complete.
For any open set E C U C 5 there exists an exact sequence

0 -+ H°{U,nl
s{Ks+p<T)) A H°(U\E,nl

s(Ks +pa))
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On the open set V = S(U) C Y, the coherent sheaf 5*Q\(Ks+pcr) is reflexive,
in particular the above map (3 is an isomorphism and the map rjj is injective.

Since H^^^Ks + per)) = H^(Ql
s) ^ 0 the above inclusion factors as

Hl
E(tol

s) C Hl(SMKs +pcr)) ^ H^U^

and then r = limru ^ 0. D

3 Deformations of degenerate double covers
locally trivial at the vertex

Let a, TT: S —>• X and 6: S —)• Fo be as in Definition 1.5. Then TT is a flat
double cover, and there exists a family of natural deformations of 5 obtained
by deforming the branch divisor D = a^ UD' ~ 2acr — 4 / . Since a^ is a fixed
part of the linear system \D\, the natural deformations are parametrized by
H°{X,(2a-l)a).

The singularity (YOj y0) is rational, so that, as in [B-W], we can define the
blowdown morphism /?: Defs —> Defy0. It is clear that every (infinitesimal)
natural deformation of 5 is trivial in a neighbourhood of E and its blowdown
is a deformation of Yo, locally trivial at yo.

Thus taking first order deformations gives a commutative diagram

H°(X,(2a-l)a)

Pir IP

where f3 is the blowdown map and T1LT(yOj2/o) the kernel of the natural
restriction map Ty0 -» T}YoyQy Note that natural deformations never give a
complete family of deformations of 5, because the nodal curve E contributes
to the space Tj ([B-W]).

Theorem 3.1 The above map p is surjective and the blowdown of the family
of natural deformations of S is a complete family of deformations ofYo, locally
trivial at the vertex, with smooth base space.

Proof The exact sequence (1.3') in this particular case becomes

H°(OR(n*D)) -i+ Extl
s{nl

s, Os) ^ H\ex) 0 Hl(0x(-L)),
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and the image of e is the set of first order natural deformations. Given an open
subset V C X, the inclusion 7r*fi^ -» fij, induces a commutative diagram

-L)) ^ H\0v)®H\0v(-L)).

Lemma 3.2 In the above set-up, if a^ C V, then j v is injective.

Proof of 3.2 It is clearly sufficient to prove that the two natural maps

7 l : H\ex) ->• Hl{6x ®OaJ, 72: H
l{Ox{-L)) -> H\OX(-L) ® 0 , J

are isomorphisms.
Note first that h\0x ®Oaoo) = 3, hl(9x(-L) ® Offoo) = 1 and by Corol-

lary 2.3, h\ex) = 3, / i 1 (^(-^)) = Vi&xda - 2)o0)) = 1, /i2(fe(-aoo)) =

Hence 71 is surjective and then it is an isomorphism. To show that 72 is
surjective, we prove that the natural map H2(8X(—L — G^)) -» H2(0x(—L))
or its Serre dual H°(O^((a - 2)a0)) -> #°(ft^((a - 2)a0 + cjoo)) is an isomor-
phism, but this is exactly the result of Lemma 2.2. •

Returning to the proof of Theorem 3.1, we note that the open sets 7r~1(Vr),
<7oo C V are a fundamental system of neighbourhoods of E. Thus from
Lemma 3.2 it follows that for every open subset U C S with E C U, the
kernel of the natural map

, Os) -> E x t J ^ , Ov)a:

is contained in the set of first order natural deformations ker a = im£.
We now apply this fact to a smooth open subset E C U such that S(U)

is an affine open neighbourhood of y0. According to the Cartesian diagram
([B-W])

rj ^ H\U,6V)

Hi IPu
rpl r . rp\
1Y0 > 1YOiyo

we have /3(ker a) = ker r = T1LT(YQ, y0) and since p = ft o 5, the first part of
the theorem is proved.

For the second part, we introduce the functor on Artin rings LT(Y0, y0) of
deformations of Yo which are locally trivial at the point y0. More generally, for
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every complex space Z with isolated singularities and for every finite subset
{zi,..., zn} C Z, we can define the functor D of deformations of Z which
are locally trivial at the points zx,..., zn. This functor has been studied by
several authors (cf. [F-M]); for example in [G-K, §1], it is proved that:

1. D satisfies the Schlessinger conditions [Sch, H1-H3].

2. There exists a closed analytic subgerm (possibly nonreduced) V of Def Z
such that the restriction of the semiuniversal deformation of Z to V is
a complete family of deformations locally trivial at 2 1 , . . . , zn.

3. The Zariski tangent space of V is the kernel of the differential of the
natural morphism Def Z -> Yl{ Def(Z, Zi).

Applying these results to the functor LT(Yo,yo) c o n c l udes the proof. •

4 The Kuranishi family of a degenerate
double cover

Let 7T: Yo —>• Wo be a degenerate double cover of P2 ramified over the union
of the vertex w0 and a divisor D' ~ (2a — l)a with a > 3. Here we construct
explicitly a smooth complete family of deformations of Yo. This will imply
in particular that the moduli space at Yo is locally irreducible and then the
closure in the moduli space of the set iV(P2,0(h)) is a connected component
for every h > 4.

The idea is to describe deformations of Yo as canonical coverings of suitable
deformations of the cone Wo and then prove that they give a complete family.

We first recall some well-known facts about cyclic coverings associated to
Q-Cartier divisors. For every normal complex space X we denote by A4x
the sheaf of meromorphic functions on X and for every analytic Weil divisor
D C X by Ox{D) the reflexive subsheaf of Mx of meromorphic functions
/ such that div(/) + D > 0. We keep this explicit description of Ox{D)
throughout this section.

Let L be a Weil divisor on a normal irreducible variety X such that nL
is Cartier and let s G HQ{X,nL) be a meromorphic function such that the
divisor D = div(s) + nL is reduced and is contained in the set of points where
L is Cartier.

Multiplication by s gives a morphism of Ox-modules Ox{—nL) —> Ox
and we may define in a natural way a coherent analytic reflexive Ox-algebra
(cf. [Reid, 3.6], [E-V, 1.4]):

n- l n-1

i=0
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If (X, x) is a normal analytic singularity, its local analytic class group is
by definition the quotient of the free Abelian group generated by the germs
of analytic Weil divisors modulo the subgroup of principal divisors. For a
2-dimensional rational singularity, it is a finite group naturally isomorphic to
the first homology group of the link of X ([Bri]).

Lemma 4.1 Let n,L,s,D be as above. If x £ D then up to isomorphism,
the local analytic Ox-algebra Ax(L,s) only depends on the class of L in the
local analytic class group of the analytic singularity (X, x).

Proof Let n, Z/, 5', D' be another set of data with x <£ D' and assume that
L — V is principal at x. This means that there exists an analytic open
neighbourhood U of x and a meromorphic function f on U such that L =
II + div(/) and div(5)i[/ = — nL, div(5/)i[/ = —nil.

Therefore s~1s'f~n is an invertible holomorphic function on U and, pos-
sibly shrinking U, we may assume that it admits an nth root g. Thus
s = s'(fg)n and the multiplication map (fg)1: Ou{—iL') —> Ou{—iL) gives
the required isomorphism. •

The cyclic group \in acts on the algebra A by

and then the finite map

TT: Z = Specanx(^t(L, s)) -> X

is a cyclic covering of normal varieties (here Specan ([Fi, 1.14]) is the analytic
spectrum; if X is projective then by GAGA principles it is the same as the
usual algebraic spectrum ([Hal, II, Ex. 5.17)]).

According to Lemma 4.1, if x £ div(s) 4-nL, the germ of the covering over
the point x is independent of s.

Corollary 4.2 In the above set-up, assume X compact and let T be a suffi-
ciently small analytic open neighbourhood of s in H°(X,nL). Let TT: ZT ->
X x T be the cyclic covering of degree n associated to the Weil divisor L xT
and multiplication given by s(x,t) = t{x), t eT.

If X —> S is a flat map such that the composite Z —>> X —>• 5 is flat then
also the composite ZT-^XxT->SxTis flat.

Proof Let U C X be the open subset where L is Cartier. If T is sufficiently
small then st{x) = 0 for some t € T implies that x e U. Hence if x <£ U
then by Lemma 3.1 the germ of ZT over (x, s) is locally isomorphic to Z x T.
On the other hand the map U xT —> S xT is flat and the restriction of the



Marco Manetti 271

algebra A over U x T is locally free and then the restriction of n over U x T
is a flat map. •

Therefore, in the case S = point, we have a morphism from deformations
of s to deformations of Z. Consider for example the hypersurface Z C P3 x C
with equation zxz2 — z\ = tz\ for t e C , and the involution r : Z —>> Z given

Let £: Z —» C be the projection on the coordinate £ and Zt the projective
subvariety of Z of points with fixed t. It is immediate to observe that Zt

is a smooth quadric for t / 0, whereas Zo is the cone over a nonsingular
conic, and t gives the semiuniversal deformation of the isolated singularity
(Zo, (1,0,0,0,0)).

The quotient Z/r is the variety W C P5 x C defined by the equation

rank ( x2 x3 x4 | < 1, (4.3)
xA

where x0 = z\, X\ — z\, x2 — Z\z3, x3 = z\, x4 = z2z3, x5 = z\.
The quotient family W -» C, (#, £) i-> £ is a deformation of Wo and is

exactly the degeneration of P2 obtained by sweeping out the cone over the
Veronese surface V Cf5. To see this, let C(V, v) C P6 be the projective cone
over the image of the map P2 —> P^, X\ = UQ, X2 = lio^i, x3 = it2, x4 = ^1^2,
x5 = u\, x§ — UQU2 — u\. It is defined by the equation

( xi x2 x3 -f x6\
x2 x3 xA < 1. (4.4)

£3 + o;6 x4 x5 /
V is the intersection of C(V, v) with the hyperplane x0 = 0 and the vertex v
is the point with homogeneous coordinates (1,0,0,0,0,0,0).

Let Ht C P6, t e C be the hyperplane given by the equation x6 — tx0 =0.
Then Ht D V = V PI {x6 = 0} is a smooth hyperplane section and the surface
Wi = C(V, v) Pi ift is exactly the surface defined in (4.3).

Let H CW be the Weil divisor defined by the equation x2 = x3 = x± = 0.
Then Ow{—H) is the ideal sheaf of H, and 2H is the hyperplane section x3 =
0 of W. In fact the closed subset {xi = x3 = x5 = 0} has codimension 3 in VF
and then it is sufficient to prove the equality 2H = div(x3) on its complement.
An easy computation shows that on every affine subset tyn{xi ^ 0} i = 1,3,5
the equality of ideals (x2x~l,x3x^1,x*x~1)2 = (xzx^1) holds.

Note that n*Oz = Ow © {ZQ/Z3)OW{—H) and then there exists an iso-
morphism of Oiy-algebras ir*Oz = Ow © Ow(-H), where the algebra struc-
ture on the right is induced by multiplication XQ/X3: OW{—2H) -> Ow

Now let 7r0: Yo —> Wo C P5 be a fixed degenerate double cover. Then,
according to Proposition 2.4, WQ is projectively normal in P5 and then there
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exists a section s0 £ #°(P5, O(2a — 1)) such that TT0 is ramified over the union
of {WQ} with the divisor of the restriction of SQ to Wo-

Let T be a small open neighbourhood of s0 and consider the double cover

YT = SpecsnWxT(OwxT ® OWxT{-(2a - 1 )# x T)) -> W x T,

where the algebra structure is induced by the section s(x, t) = st(x) for st €T
and x G W. This makes sense since 2H x T i s a Cartier divisor linearly
equivalent to {s(x,t) = 0}.

By our previous results (4.1, 4.2) it follows that:

(i) The map Yr —> T is a deformation of the space

Y = Specan^(eV © Ow(-{2a -

with the algebra structure induced by s0.

(ii) Over the vertex w0 the space Y is isomorphic to the above space Z and
then the composite Y —> W —> C gives a complete deformation of the
node (Y0,y0).

It is now easy to prove the following

Theorem 4.5 In the above notation the composite

f: YT^WxT^CxT

is a smooth complete family of deformations of YQ .

Proof We need to prove that /~1(0, so) = ^o a n d that the Kodaira-Spencer
map of the family is surjective.

By definition / "HO,^) = SpecWo (0Wo®{Ow(-(2a-1)H)®OWQ)) while
by definition and from the normality of YQ we have YQ = SpecWo(Ow0 ©
Ow0{—L)) where L = aa — 2/, and Z c Wo is a line through w0.

Note that all lines through w0 are linearly equivalent, L is linearly equiv-
alent to (4a — 2)1, the intersection Ho — H fl WQ is the union of the two lines
'i = {#i = x2 = x$ = x± = 0}, Z2 = {#5 = x2 = xs = x± = 0} and then
the natural map j n : Ow(nH) (8) Ow0 —> Ow0{2nl) is an isomorphism over
WQ \ {w0} for every integer n.

In a neighbourhood of the vertex tu0, since the sheaf Ow{nH) is reflexive
on W and invertible for even n, by [E-V, 2.1], the map j n is injective for
every n and an isomorphism for even n. Moreover, the ideal of Ho C WQ is
generated by X2XQX,X^XQ1 ,X^XQ1 and then j _ i is also surjective. Tensoring
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with the line bundle Ow{2pH), p £ Z, we get the surjectivity of j n for every
integer n. In particular, since 2\-2a is an isomorphism, Yo is a fibre of / .

By (ii) the composite of the Kodaira-Spencer map of / with the natural
restriction map r: Tl(Y0) -» T^Y^^o) is surjective, therefore it is sufficient
to prove that YT contains every deformation locally trivial at the vertex. But
this is an immediate consequence of Theorem 3.1 and the surjectivity of the
map tf^P5,0{2a - 1)) -> H°(W0, (2a - l)cr) = #°(F4, (2a - l)a). •

Corollary 4.6 Every degenerate double cover deforms to a smooth double
cover ofF2; in particular, for every odd integer h>h, the subset N(F2, O(h))
is not closed in the moduli space.

Corollary 4.7 The line bundle a ofY$ can be extended to every deformation
ofY0.

Proof The pullback of the hyperplane section 2H to Yr is an extension of
a to a complete family. •

Proof of Theorem A (1) and (2) follow from Theorem 1.6. According
to Theorem 4.5 the set of (possibly degenerate) double covers of P2 is stable
under small deformations, therefore N is locally open in the moduli space,
proving (3) and (4). •

5 Simple iterated double covers of P2

and their deformations
This section is almost entirely devoted to the proof of Theorem B of the
introduction. The first preliminary result we need is the following

Lemma 5.1 Let n: X —> Y be a simple iterated double cover associated to
a sequence Li,...,Ln G Pic Y. Assume that Y and L\,..., Ln satisfy the
conditions:

(a) Defy is smooth.

(b) L i , . . . , Ln extends to a complete deformation ofY.

(c) For every h>0 and 0 < i < j \ < • • • < jh < n,

h

S = l



274 Degenerate double covers of the projective plane

(d) H1(OY) = 0.

(e) For every h > 0 and every sequence 1 < j \ < 32 < ''' < jh < n,

h h

L,J = O and H\Y^ ~Ljs) = 0.
S=l 5 = 1

(f) H°(Li) ^ 0 for every i, and H°(Y, 2L{ - Lj) = 0 for every j < i.

Then Def X is smooth, every deformation of X is a simple iterated dou-
ble cover of a deformation of Y and if M G Pic Y extends to a complete
deformation ofY then TT*M extends to a complete deformation of X.

Proof Using the computation (involving (f)) about Ext groups in the proof
of [Ma3, 2.7] and induction on n, we can reduce the proof of the lemma to the
case n = 1. In this case the cohomological conditions (c), (d) and (e) become

H\Oy) = H\Y,-L) = H\Y,2L) = ExtJ>y(^,-L) = 0.

Then X is defined in the total space of the line bundle L by the equation z2 =
vp with vp e H°(Y,2L). Let Y -> Def Y be the Kuranishi family of Y and
LePicY the extension of L (which is unique by (d)). Since Hl(Y, 2L) = 0,
by semicontinuity and base change there exists a subspace V C H°(Y,2L)
such that the natural restriction V —> H°(Y, 2L) is an isomorphism.

Taking if CV a small neighbourhood of v0 we can consider the flat double
cover 7T: X -> Y x V defined by the equation

z2 = v(y) with y G Y and v eV.

By construction the flat maps

X -^YxV ->DefYxV

are deformations of the double cover IT : X —> Y and satisfy the assumptions
of Proposition 1.4. Therefore^ is a (complete deformation^of X, Def X is
smooth and it is clear that if M £ PicY extends M then TT*M extends IT*M.

Note that if the generic deformation of Y is smooth and the linear system \2L\
is base point free then a generic small deformation of X is also smooth. •

We recall that Ext^ 2(fip2,CV2(-/&)) = 0 for every h ^ 3 and therefore
we have the result:

Corollary 5.2 Let IT: X —>• P2 be a simple iterated double cover associated
to the sequence of line bundles L\,..., Ln with deg Li — l{. If U > 2l{+i and
ln > 4 then every deformation of X is a simple iterated double cover of P2

and the set iV(P2, L i , . . . , Ln) is open in the moduli space.
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Proof Immediate consequence of Lemma 5.1. •

Next we want to classify all the possible degenerations of simple iterated
double covers of P2. For reasons that will be clear later, we consider only the
case where the degrees U satisfy certain numerical conditions.

Definition 5.3 A sequence of line bundles L i , . . . , Ln, Li = O^(k) is called
a good sequence if it satisfies the following 3 conditions:

(1) li > 4 for every i = 1 , . . . , n.

(2) U > 2Zi+i for every i = 1 , . . . , n - 1.

(3) ln is odd and ^ is even for i = 1 , . . . , n — 1.

A good simple iterated double cover of P2 is, by definition, a simple iterated
double cover associated to a good sequence.

Proposition 5.4 Let L i , . . . , L n G PicP2 be a good sequence, Li = O(k)
and let XQ be the canonical model of a surface belonging to the closure of
AT(P2, L i , . . . ,Ln) . Then either XQ is a simple iterated double cover off2

associated to L i , . . . , L n , or there exists a degenerate double cover YQ of P2

with discrete building datum a = | ( / n + 1) such that XQ is a simple iterated
double cover o/Yo associated to the sequence M\,..., Mn_i ; Mi = (li/2)o~.

Proof Note that if TT : X -» P2 is a smooth simple iterated double cover
associated to a good sequence O{k) then Kx = ^*O(^2k — 3) is ample and
then the subset No C N of surfaces with smooth canonical models is a Zariski
open dense subset, in particular the closure of A^ is the same as the closure
of N in the moduli space.

Let / : X —> A be a deformation of XQ such that Xt is a smooth simple
iterated double cover of P2 associated to Lu . . . , Ln for t ^ 0.

We now prove by induction on n that, up to base change, there exists a
factorization

where g is a deformation of a (possibly degenerate) double cover YQ of the
projective plane with Yt a smooth double cover associated to LnJor t ^ 0, and
p is a simple iterated double cover of Y associated to M i , . . . , Mn_i with Mi
the unique extension of M, to Y (if Yo is not degenerate we set Mi = g^Li).

This holds trivially if n = 1, so we assume n > 1. As in the proof of
Theorem 1.6, after a possible base change, the action of the trivial involution
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r of the surfaces Xt extends to an action over X, and we have a quotient
family

/ ' : Z = X/T-+ A.

Now Zt is a simple iterated double cover of P2 associated to the sequence
Z/2,. . . , Ln for t ^ 0. By the Hurwitz formula, for t ^ 0 the canonical bundle
of Zt is the pullback of Op2(/2 + • • • + ln ~ 3) and then its divisibility in
i72(Zi,Z) is even. By [Ma3, 3.1], ZQ has at worst rational double points
and the double cover TT: X —> Z is flat. Now by the Brieskorn-Tyurina
simultaneous resolution and by semicontinuity, the minimal resolution of ZQ
is a smooth minimal surface of general type and, taking the relative canonical
model of Z we have, up to a base change, a factorization

X ^ Z = X/r A Zcan - ^ Y -±> A,

with p, g and Y as in the induction hypothesis.
Thus, to conclude the proof we only need to show that S is an isomorphism,

i.e., that the canonical line bundle of Zo is ample. Since TT is flat there exists
a decomposition

where H is^a line bundle over Z such that Ht is the pullback of L\ for every
t ^ 0. If Mi G P icF is the extension of \{ln + l)cr then M\^ is the pullback
of L\ over Yt\ moreover, since q(ZQ) = 0, we have H = 5*p*Mi by injectivity
of the extension ([Ma3, 3.8]).

Assume that KZo is not ample; then S contracts some irreducible curve C
with KZo • C = 0, Ho • C = 0. If C" C Xo is the strict transform of C then by
the Hurwitz formula KXo • C = 0, which is a contradiction. •

Proof of Theorem B Theorem B, (1) is exactly Lemma 5.1 applied to
the case Y = P2, Li = O^2(li). In B.2, L i , . . . , Ln is a good sequence (Def-
inition 5.3), so that by Proposition 5.4, if [S] e N \ N then the canonical
model of 5 is a simple iterated double cover of F , a degenerate double cover
of P2 with discrete building datum a = \{ln + 1), associated to the sequence
Mi , . . . ,M n _ i e P icF, Mi = (k/2)a and the smoothness of DeiX follows
from Lemma 5.1 and the vanishing theorems of §2.

B.3 follows immediately from B.I, B.2 and the local properties of the
moduli space of surfaces of general type. •
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6 Some examples
For every smooth surface of general type 5 we denote by Is = Kg — 8x(0s)
its index and by r(S) the divisibility of the canonical class:

r(S) = max{r G N | ks = re for some c G H2(S, Z)}.

If 5 is a smooth simple iterated double cover of P2 associated to a good
sequence L i , . . . , Ln with deg(Li) = liy then using the formulas of [Ma3] we
have TTI(5) = 0, and

so that the invariants if2,/ and r only depend on the two positive integers
X and £/2.

Example 6.1 For n = 3 we can consider the two sequences

(M 2 , / 3 ) = (3T-24 ,T ,5 ) and (l[J'2J
f
3) = (3T - 22, T - 6,9).

Then £ /< = £ / - , £ /? = E *i2 and for every even T > 26, both U = 0(/;)
and LJ = 0(/J) are good sequences.

For T = 26 the associated simple iterated double covers have K2 = 53792,
/ = -28928, c2 = 70288, r = 82. It is not difficult to prove that every two
distinct good sequences L i , . . . , Ln, M i , . . . , Mm give distinct connected com-
ponents AT(P2, L i , . . . , Ln) and AT(P2, M i , . . . , Mm). To see this, it is enough
to show that for the generic [S] G 7V(P2, Lu . . . , Ln) we have Aut 5 = Z/2Z =
{1, r } . In fact S/r must necessarily belongs to AT(P2, L 2 , . . . , Ln), and then
we use induction on n.

We don't prove here the above statement about automorphisms. However,
this is a straightforward generalization of the analogous result for simple
iterated double covers of P1 x P1 proved in [Ma3], as well as an immediate
application of a general result about automorphisms of generic simple cyclic
covers proved in [Ma5].

Example 6.2 Let X -» P2, Y -> P1 x P1 be simple iterated double covers
associated to Lx = 0(26), L2 = 0(12), L3 = 0(5) and L[ = 0(20,40), L'2 =
0(22,2). A calculation shows that X and Y have the same invariants if2, / , r,
and it is not difficult to see that X, Y do not belong to the same connected
component of the moduli space.

In fact the equation of a generic Y is

(z2 = f + wh with / G #°(0(40,80)) and h G #°(0(18,78)),

\ w2 = with g G #°(0(44,4)),
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where / , g,h are generic, and the arguments of [Ma3] show that the only
automorphisms of Y are the identity and the "trivial" involution z K->> -Z.
Its quotient is the surface Y\ — {w2 = g}. Since the invariants of Y\ are
different from those of surfaces in iV(P2, L2, L3), the surface Y cannot belong
to7V(P2,Ll5L2,L3).

Although explicitly finding simple iterated double covers of P2 having
the same invariants is not easy, it is not difficult to use these surfaces to
obtain again a lower bound of the form S > (K2ylo&K2 for the number of
connected components of moduli space, where c is a positive constant. In
fact for sufficiently large n, if qn is the number of sequences l\,...,ln such
that J2 U = Tn = 8 • 3n + 3, ln > 5 odd, k even for i < n and U > 2li+i then
log Qn > an2 for a positive constant a independent of n. For each of these qn

sequences, its quadratic sum ]T]Z? is smaller than T2, and then there exists
at least qn/T

2 good sequences giving simple iterated double covers with the
same invariants K2 = 2nT2 and / = 2n(l - ] P I2). An easy computation along
the lines of [Ma3, §5] gives the claimed lower bound for S.
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The geometry underlying
mirror symmetry

David R. Morrison

Abstract
The recent result of Strominger, Yau and Zaslow relating mirror

symmetry to the quantum field theory notion of T-duality is rein-
terpreted as providing a way of characterizing geometrically which
Calabi-Yau manifolds have mirror partners. The geometric descrip-
tion is rather surprising: one Calabi-Yau manifold should serve as a
compactified, complexified moduli space for special Lagrangian tori
on the other. We formulate some precise mathematical conjectures
concerning how these moduli spaces are to be compactified and com-
plexified, as well as a definition of geometric mirror pairs (in arbitrary
dimension) which is independent of those conjectures. We investigate
how this new geometric description ought to be related to the mathe-
matical statements which have previously been extracted from mirror
symmetry. In particular, we discuss how the moduli spaces of the 'mir-
ror' Calabi-Yau manifolds should be related to one another, and how
appropriate subspaces of the homology groups of those manifolds could
be related. We treat the case of K3 surfaces in some detail.

Precise mathematical formulations of the phenomenon in string theory
known as "mirror symmetry" [21, 33, 19, 27] have proved elusive up until
now, largely due to one of the more mysterious aspects of that symmetry: as
traditionally formulated, mirror symmetry predicts an equivalence between
physical theories associated to certain pairs of Calabi-Yau manifolds, but does
not specify any geometric relationship between those manifolds. However,
such a geometric relationship has recently been discovered in a beautiful paper
of Strominger, Yau and Zaslow [53]. Briefly put, these authors find that the
mirror partner X of a given Calabi-Yau threefold Y should be realized as the
(compactified and complexified) moduli space for special Lagrangian tori on
Y.

This relationship was derived in [53] from the assumption that the physical
theories associated to the pair of Calabi-Yau threefolds satisfy a strong prop-
erty called "quantum mirror symmetry" [52, 6, 12, 42]. In the present paper,
we invert the logic, and use this geometric relationship as a characterization

283
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of mirror pairs, which we formulate in arbitrary dimension.1 On the one hand,
this characterization can be stated in purely mathematical terms, providing a
criterion by which mathematicians can recognize mirror pairs. On the other
hand, the characterization contains the essential ingredients needed to apply
the quantum field theory argument known as "T-duality" which could in prin-
ciple establish the equivalence of the associated string theories at the level of
physical rigor (cf. [45, 53]).2 This geometric characterization thus appears to
capture the essence of mirror symmetry in mathematical terms.

This paper is organized as follows. In Section 1, we give a brief sum-
mary of quantum mirror symmetry and review the derivation of the geomet-
ric relationship given in [53]. In Section 2, we discuss the theory of special
Lagrangian submanifolds [29] and their moduli spaces [37], and explain how
these moduli spaces should be compactified and complexified (following [53]).
In Section 3, we review in detail the topological and Hodge theoretic prop-
erties which have formed the basis for previous mathematical discussions of
mirror symmetry. We then formulate in Section 4 our characterization of
geometric mirror pairs, which we (conjecturally) relate to those topological
and Hodge theoretic properties. In Section 5 we present some new results
concerning the geometric mirror relationship, including a discussion of how
it leads to a connection between certain subspaces of Hn(Y) and Heyen(X),
and in Section 6 we discuss geometric mirror symmetry for K3 surfaces.

1 Quantum mirror symmetry

Moduli spaces which occur in physics often differ somewhat between the clas-
sical and quantum versions of the same theory. For example, the essential
mathematical data needed to specify the two dimensional conformal field the-
ory associated to a Calabi-Yau manifold X consists of a Ricci flat metric gij
on X and an R/Z-valued harmonic 2-form B G H2{X,R/Z). The classical
version of this theory is independent of B and invariant under rescaling the
metric; one might thus call the set of all diffeomorphism classes of Ricci flat
metrics of fixed volume on X the "classical moduli space" of the theory. The
volume of the metric and the 2-form B must be included in the moduli space
once quantum effects are taken into account; in a "semiclassical approxima-
tion" to the quantum moduli space, one treats the data (gij.B) (modulo
diffeomorphism) as providing a complete description of that space. However,

xOur definition appears to produce valid mirror pairs of conformal field theories in any
dimension, even though the string theoretic arguments of [53] cannot be directly extended
to arbitrary dimension to conclude that all mirror pairs ought to arise in this fashion.

2There are some additional details which need to be understood before this can be
regarded as fully established in physics.
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a closer analysis of the physical theory reveals that this is indeed only an ap-
proximation to the quantum moduli space, with the necessary modifications
becoming more and more significant as the volume is decreased. The ultimate
source of these modifications—which are of a type referred to as "nonpertur-
bative" in physics—is the set of holomorphic curves on X and their moduli
spaces. A convenient mathematical way of describing how these modifica-
tions work is this: there are certain "correlation functions" of the physical
theory, which are described near the large volume limit as power series whose
coefficients are determined by the numbers of holomorphic 2-spheres on X.3

The quantum moduli space should then be identified as the natural domain
of definition for these correlation functions. To construct it starting from the
semiclassical approximation, one first restricts to the open set in which the
power series converge, and then extends by analytic continuation to find the
complete moduli space.4 We refer to this space as the quantum conformal
field theory moduli space MCFT(X). (When necessary, we use the notation
MQFT(X) to refer to the semiclassical approximation to this space.)

A similar story has emerged within the last year concerning the moduli
spaces for type IIA and IIB string theories compactified on a Calabi-Yau
threefold X. The classical low energy physics derived from these string the-
ories is determined by a quantum conformal field theory, so one might think
of the quantum conformal field theory moduli space described above as being
a "classical moduli space" for these theories.

In the semiclassical approximation to the quantum moduli spaces of these
string theories, we encounter additional mathematical data which must be
specified. In the case of the IIA theory, the new data consist of a choice
of a nonzero complex number (called the "axion-dilaton expectation value"),
together with an R/Z-valued harmonic 3-form C e H3{X,R/Z). This last
object has a familiar mathematical interpretation as a point in the interme-
diate Jacobian of X (taking a complex structure on X for which the metric
is Kahler). In the case of the IIB theory on a Calabi-Yau threefold Y, the
corresponding new data are a choice of nonzero "axion-dilaton expectation
value" as before, together with what we might call a quantum R/Z-valued
harmonic even class C G W^en(Y,R/Z). The word "quantum" and the sub-
script Q here refer to the fact that we must use the quantum cohomology
lattice rather than the ordinary cohomology lattice in determining when two

3There axe several possible (equivalent) mathematical interpretations which can be given
to these correlation functions: they can be interpreted as defining a new ring structure on
the cohomology (defining the so-called quantum cohomology ring) or they can be regarded
as defining a variation of Hodge structure over the moduli space. We review this in more
detail in Section 3 below.

4There can also be modifications caused by higher genus curves [5], but these are less
drastic and are not important for our purposes here.
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harmonic classes C are equivalent. (The details of this difference are not im-
portant here; we refer the interested reader to [6, 42].) For both the IIA and
IIB theories, a choice of such "data" as above can be used to describe a low
energy supergravity theory in four dimensions.

Just as in the earlier example, there are additional corrections to the
semiclassical description of the moduli space coming from "nonperturbative
effects" [52, 26, 12]; some of these go by the name of "Dirichlet branes," or
"D-branes" for short. The source of these D-brane corrections differs for the
two string theories we are considering: in the type IIA theory, they come from
moduli spaces of algebraic cycles on X equipped with flat f/(l)-bundles, or
more generally, from moduli spaces of coherent sheaves on X.5 In the type IIB
theory, the D-brane corrections come from (complexified) moduli spaces of so-
called supersymmetric 3-cycles on Y, the mathematics of which we describe
in the next section. Just as the correlation functions which we could use to
determine the structure of the quantum conformal field theory moduli space
involved a series expansion with contributions from the holomorphic spheres,
the correlation functions in this theory will receive contributions from the
coherent sheaves or supersymmetric 3-cycles, with the precise nature of the
contribution arising from an integral over the corresponding moduli space.

Quantum mirror symmetry is the assertion that there should exist pairs
of Calabi-Yau threefolds6 (X, Y) such that the type IIA string theory com-
pactified on X is isomorphic to the type IIB string theory compactified on
Y; there should be compatible isomorphisms of both the classical and quan-
tum theories. The isomorphism of the classical theories is the statement that
the corresponding (quantum corrected) conformal field theories should be iso-
morphic. This is the version of mirror symmetry which was translated into
mathematical terms some time ago, and leads to the surprising statements
relating the quantum cohomology on X to the geometric variation of Hodge
structure on Y (and vice versa).

On the other hand, the isomorphism of the quantum theories has only
recently been explored.7 At the semiclassical level, one infers isomorphisms

5 A D-brane in type IIA theory is ordinarily described as a complex submanifold Z
together with a flat [/(l)-bundle on that submanifold; the associated holomorphic line
bundle on Z can be extended by zero to give a coherent sheaf on X. The arbitrary coherent
sheaves which we consider here correspond to what are called "bound states of D-branes"
in physics. (This same observation has been independently made by Maxim Kontsevich,
and by Jeff Harvey and Greg Moore.)

6There are versions of quantum mirror symmetry which can be formulated in other
(low) dimensions, but since these are statements about compactifying ten dimensional
string theories, they cannot be extended to arbitrarily high dimension.

7The speculation some time ago by Donagi and Markman [22] that some sort of Fourier
transform should relate the continuous data provided by the intermediate Jacobian to the
discrete data provided by the holomorphic curves is closely related to these isomorphisms
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between the intermediate Jacobian of X (the 3-form discussed above), and an
analogue of that intermediate Jacobian in quantum cohomology of Y. The
full quantum isomorphism would involve properties of the coherent sheaves
on X, as related to the supersymmetric 3-cycles on Y. In fact, there should
be enough correlation functions in the quantum theory to fully measure the
structure of the individual moduli spaces of these sheaves and cycles, so we
should anticipate that the moduli spaces themselves are isomorphic.8 It is
this observation which was the key to the Strominger-Yau-Zaslow argument.

Strominger, Yau and Zaslow observe that the algebraic 0-cycles of length
one on X (which can be thought of as torsion sheaves supported at a single
point) have as their moduli space X itself. According to quantum mirror
symmetry, then, there should be a supersymmetric 3-cycle M onY with pre-
cisely the same moduli space, that is, the moduli space of M should be X.
Since the complex dimension of the moduli space is three, it follows from
a result of McLean [37] (see the next section) that b\(M) = 3. Now as we
explain in the next section, the complexified moduli space X for the super-
symmetric 3-cycles parameterizes both the choice of 3-cycle M and the choice
of a flat U(l)-bundle on M. Fixing the cycle but varying the bundle gives a
real 3-torus on X (since b\{M) = 3), which turns out to be a supersymmetric
cjyle on that space. This is the "inverse" mirror transform, based on a cycle
M which is in fact a 3-torus. Thus, by applying mirror symmetry twice if
necessary, we see that we can—without loss of generality—take the original
supersymmetric 3-cycle M to be a 3-torus. In this case, we say that Y has
a supersymmetric T3 -fibration; note that singular fibers must in general be
allowed in such fibrations.

We have thus obtained the rough geometric characterization of the pair
(X, Y) stated in the introduction: X should be the moduli space for super-
symmetric 3-tori on Y. This characterization is "rough" due to technical
difficulties involving both the compactifications of these moduli spaces, and
the complex structures on them. We take a different path in Section 4 below,
and give a precise geometric characterization which sidesteps these issues.

This line of argument can be pushed a bit farther, by considering the
algebraic 3-cycle on X in the fundamental class equipped with a flat U(l)-
bundle (which must be trivial, and corresponds to the coherent sheaf Ox)-
There is precisely one of these, so we find a moduli space consisting of a single

of quantum theories.
8In the case of coherent sheaves, one should not use the usual moduli spaces from

algebraic geometry, but rather some sort of "virtual fundamental cycle" on the algebraic
geometric moduli space, whose dimension coincides with the "expected dimension" of the
algebraic geometric moduli space as computed from the Riemann-Roch theorem. When
the moduli problem is unobstructed, this virtual fundamental cycle should coincide with
the usual fundamental cycle on the algebraic geometric moduli space.



288 The geometry underlying mirror symmetry

point. Its mirror should then be a supersymmetric 3-cycle M' with bi(M') =
0. Moreover, we should expect quantum mirror symmetry to preserve the
intersection theory of the cycles represented by D-branes (up to sign), so
that, since the 0-cycle and 6-cycle on X have intersection number one, we
should expect M and M' to have intersection number one if M' is oriented
properly. In other words, the supersymmetric T3-fibration on Y should have
a section,9 and the base of the fibration should satisfy b\ = 0.

The final step in the physics discussion given in [53] is to observe that
given a Calabi-Yau threefold with a supersymmetric T3-fibration and a mirror
partner, the mirror partner can be recovered by dualizing the tori in the
fibration, at least generically. This suggests that by applying an appropriate
duality transformation to the path integral—in quantum field theory this is
known as the "T-duality argument"—one should be able to conclude that
mirror symmetry does indeed hold for the corresponding physical theories.
Strominger, Yau and Zaslow take the first steps towards constructing such an
argument, at appropriate limit points of the moduli space. To complete the
argument and extend it to general points in the moduli space, one would need
to understand the behavior of the T-duality transformations near the singular
fibers; to this end, a detailed mathematical study of the possible singular
fibers is needed. Some preliminary information about these singularities can
be found in [29, 17] (see also [28]).

2 Moduli of special Lagrangian submanifolds

The structure of the supersymmetric 3-cycles which played a role in the previ-
ous section was determined in [12], where it was found that they are familiar
mathematical objects known as special Lagrangian submanifolds. These are
a particular class of submanifolds of Calabi-Yau manifolds first studied by
Harvey and Lawson [29]. We proceed to the definitions.

A Calabi-Yau manifold is a compact connected orientable manifold Y of
dimension 2n which admits Riemannian metrics whose (global) holonomy is
contained in SU(n). For any such metric, there is a complex structure on the
manifold with respect to which the metric is Kahler, and a nowhere vanish-
ing holomorphic n-form Q, (unique up to constant multiple). The complex
structure, the n-form Q, and the Kahler form UJ are all covariant constant
with respect to the Levi-Civita connection of the Riemannian metric. This

9The existence of a section is also expected on other grounds: the set of flat U{\)-
bundles on M has a distinguished element—the trivial bundle. This provides a section for
the "dual" fibration, and suggests (by a double application of quantum mirror symmetry
as above) that the original fibration could have been chosen to have a section, without loss
of generality.
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implies that the metric is Ricci flat, and that ft A ft is a constant multiple of

A special Lagrangian submanifold of Y is a compact real n-manifold M
together with an immersion f:M—>Y such that /*(^o) coincides with the
induced volume form d VOIM for an appropriate choice of holomorphic n-form
ft0. Equivalently [29], one can require that

(1) M is a Lagrangian submanifold with respect to the symplectic structure
defined by u>, i.e., f*(w) = 0, and

(2) f*(Imft0) = 0 for an appropriate ft0.

To state this second condition in a way which does not require that Q,Q be
specified, write an arbitrary holomorphic n-form ft in the form ft = cfto, and
note that

JMIM

Thus, the "appropriate" n-form is given by

_ (volM)Q

and we can replace condition (2) by

(The factor of vol M is a real constant which can be omitted from this last
condition.)

Very few explicit examples of special Lagrangian submanifolds are known.
(This is largely due to our lack of detailed understanding of the Calabi-Yau
metrics themselves.) One interesting class of examples due to Bryant [18]
comes from Calabi-Yau manifolds which are complex algebraic varieties de-
fined over the real numbers: the set of real points on the Calabi-Yau manifold
is a special Lagrangian submanifold. Another interesting class of examples
is the special Lagrangian submanifolds of a K3 surface, which we discuss in
Section 6.

In general, special Lagrangian submanifolds can be deformed, and there
will be a moduli space which describes the set of all special Lagrangian sub-
manifolds in a given homology class. Given a special Lagrangian f:M—>Y
and a deformation of the map / , since f*(w) = 0, the almost complex struc-
ture on Y induces a canonical identification between the normal bundle of M
in Y and the tangent bundle of M. Thus, the normal vector field defined by
the deformation can be identified with a 1-form on Y.

The key result concerning the moduli space is due to McLean.



290 The geometry underlying mirror symmetry

Theorem (McLean [37])

(1) First order deformations of f are canonically identified with the space
of harmonic 1-forms on Y.

(2) Every first order deformation of f: M —• Y can be extended to an
actual deformation. In particular, the moduli space MSL(M,Y) of spe-
cial Lagrangian maps from MtoYisa smooth manifold of dimension

We have in mind a global structure on A4SL(M, y ) , in which two maps de-
termine the same point in the moduli space if they differ by a diffeomorphism
of Y. McLean also observes that M = M8L(M,Y) admits a natural n-form
0 defined by

, . . . . , t ; n ) = /
JMM

where 6j is the harmonic 1-form associated to Vj £ TMJ-
As discussed implicitly in the last section, the moduli spaces of interest

in string theory contain additional pieces of data. To fully account for the
"nonperturbative D-brane effects" in the physical theory (when n = 3), the
moduli space we integrate over must include not only the choice of special
Lagrangian submanifold, but also a choice of flat U(l)-bundle on it. If we
pick a point 6 on a manifold M, then the space of flat U(l)-bundles on M is
given by

Hom(7ri(M,&),U(l)) = Hl(M,R)/Hl{M,Z).

Thus, if we construct a universal family for our special Lagrangian submani-
fold problem, i.e., a diagram

U M Y

Pi
MsL(M,Y)

with the fibers of p diffeomorphic to M and f\ _ „ . the map labeled by m,

and if p has a section s: M8L{M, Y) —» W, then we can define a moduli space
including the da ta of a flat U(l)-bundle by setting

MD(M,Y) := Rl

at each point m € .MSL(M, Y), this specializes to

p-\m),'l) * Hom(7r1(p-1(m),5(rn)),U(l)).
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(In the case n = 3, this is the "D-brane" moduli space, which motivates our
notation.) Note that this space fibers naturally over . M S L ( M , V), and that
there is a section of the fibration, given by the trivial U(l)-bundles.

Both the base and the fiber of the fibration MD{M, Y) —• MSL(M, Y)
have dimension 61 (M), and the fibers are real tori. In fact, we expect from
the physics that there will be a family of complex structures on MD{M, Y)
making it into a complex manifold of complex dimension b\(M). Roughly, the
real tori should correspond to subspaces obtained by varying the arguments of
the complex variables while keeping their norms fixed. It is expected from the
physics that the complex structure should depend on the choice of both a Ricci
flat metric on Y and also on an auxiliary harmonic 2-form B. (This would
make MD(M, Y) into a "complexification" of the moduli space MSL(M, Y) as
mentioned in the introduction.) It it not clear at present precisely how those
complex structures are to be constructed, although in the case b\(M) = n, a
method is sketched in [53] for producing an asymptotic formula for the Ricci
flat metric which would exhibit the desired dependence on gij and B, and
the first term in that formula is calculated.10 The complex structure could in
principle be inferred from the metric if it were known.

Motivated by the Strominger-Yau-Zaslow analysis, we now turn our at-
tention to the case in which M is an n-torus. The earliest speculations that
the special Lagrangian n-tori might play a distinguished role in studying
Calabi-Yau manifolds were made by McLean [37], who pointed out that if
M = Tn then the deformations of M should locally foliate Y. (There should
be no nearby selfintersections, because the harmonic 1-form corresponding to
a first order deformation is expected to have no zeros if the metric on the
torus is close to being flat.) By analogy with the K3 case, where such elliptic
fibrations are well understood, McLean speculated that if certain degenera-
tions were allowed, the deformations of M might fill out the whole of Y. We
formulate this as a conjecture (essentially due to McLean).

Conjecture 1 Suppose that f:Tn —» Y is a special Lagrangian n-torus.
Then there is a natural compactification Msi,(T

n,Y) of the moduli space
1, Y) and a proper map g:Y -> ~Msh(Tn, Y) such that

g-l(MsL(M,Y)) - Y

is a universal family of Lagrangian n-tori in the same homology class as f.

10In the language of [53], the "tree level" metric on the moduli space is computed, but
the instanton corrections to that tree level metric are left unspecified.
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Definition 1 When the properties in Conjecture 1 hold, we say that Y has
a special Lagrangian Tn-fibration.

It is not clear at present what sort of structure should be required of
Msh{Tn,Y): perhaps it should be a manifold with corners,11 or perhaps
some more exotic singularities should be allowed in the compactification.
We will certainly want to require that the complex structures extend to
the compactification, and that the section of the fibration extend to a map
MSL(Tn,Y)->Y.

The mirror symmetry analysis of [53] as reviewed in the previous section
suggests that the family of dual tori AiD{Tn,Y) can also be compactified,
resulting in a space which is itself a Calabi-Yau manifold. We formalize this
as a conjecture as well.

Conjecture 2 The family MD{Tn,Y) of dual tori over MSL_(Tn,Y) can
be compactified to a manifold X with a proper map 7: X —> M^iT71^),
such that X admits metrics with SU(n) holonomy for which the fibers of
71 _l(M (TnY)) are special Lagrangian n-tori. Moreover, the fibration 7 ad-
mits a section r : M.sh(Tn,Y) —» X such that

T(MsL(Tn,Y)) c MD(Tn,Y) c X

is the zero section.

It seems likely that for an appropriate holomorphic n-form fi0 on X, the
pullback T*(fi0) will coincide with McLean's n-form 6 when restricted to
MsL{Tn,Y).

The most accessible portion of these conjectures would be the following:

Sub-Conjecture The family MD{Tn, Y) of dual tori over MsL{Tn, Y) ad-
mits complex structures and Ricci flat Ka'hler metrics. In particular, it has a
nowhere vanishing holomorphic n-form.

Strominger, Yau and Zaslow have obtained some partial results concern-
ing this subconjecture, for which we refer the reader to [53]. It appears,
for example, that the construction of the complex structure on the D-brane
moduli space should be local around each torus in the torus fibration.

11 This possibility is suggested by the structure of toric varieties, the moment maps
for which express certain complex manifolds as Tn-fibrations over manifolds with corners
(compact convex polyhedra).
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3 Mathematical consequences of
mirror symmetry

There is by now quite a long history of extracting mathematical statements
from the physical notion of mirror symmetry. Many of these work in arbitrary
dimension, where there is evidence in physics for mirror symmetry among
conformal field theories [27, 25].12 In this section, we review two of those
mathematical statements, presented here as definitions. As the discussion is
a bit technical, some readers may prefer to skip to the next section, where
we formulate our new definition of geometric mirror pairs inspired by the
Strominger-Yau-Zaslow analysis. Throughout this section, we let X and Y
be Calabi-Yau manifolds of dimension n.

The first prediction one extracts from physics about a mirror pair is a
simple equality of Hodge numbers.

Definition 2 We say that the pair (X, Y) passes the topological mirror test
^ l^ and hl^ ^

Many examples of pairs passing this test are known; indeed, the observa-
tion of this "topological pairing" in a class of examples was one of the initial
pieces of evidence in favor of mirror symmetry [19]. Subsequent constructions
of Batyrev and Borisov [8, 16, 9] show that all Calabi-Yau complete inter-
sections in toric varieties belong to pairs which pass this topological mirror
test.

For simply connected Calabi-Yau threefolds, the Hodge numbers ft1'1 and
^n-i,i determine all the others, but in higher dimension there are more.
Naively one expects to find that hp'q(X) = hn~p'q(Y). However, as was dis-
covered by Batyrev and collaborators [11, 10], the proper interpretation of
the numerical invariants of the physical theories requires a modified notion
of "string theoretic Hodge numbers" h*?] once this modification has been
made, these authors show that h%?(X) = h^Pi9(Y) for the Batyrev-Borisov
pairs (X, Y) of complete intersections in toric varieties. The class of pairs
for which this modification is needed includes some of those given by the
Greene-Plesser construction [27] for which mirror symmetry of the confor-
mal field theories has been firmly established in physics, so it would appear
that this modification is truly necessary for a mathematical interpretation of
mirror symmetry. Hopefully, it too will follow from the geometric character-
ization being formulated in this paper.

12In low dimension where a string theory interpretation is possible, this would become
the "classical" mirror symmetry which one would also want to extend to a "quantum"
mirror symmetry if possible.



294 The geometry underlying mirror symmetry

Going beyond the simple topological properties, a more precise and de-
tailed prediction arises from identifying the quantum cohomology of one
Calabi-Yau manifold with the geometric variation of Hodge structure of the
mirror partner (in the case that the Calabi-Yau manifolds have no holomor-
phic 2-forms). We discuss this prediction in considerable detail, in order to
ensure that this paper has selfcontained statements of the conjectures being
proposed within it (particularly those in Sections 4 and 5 below relating the
"old" and "new" mathematical versions of mirror symmetry).

To formulate this precise prediction, let X be a Calabi-Yau manifold with
h2'°(X) = 0, and write MQFT(X) f°r t n e moduli space of triples (gij,B,J)
modulo diffeomorphism, where J is a complex structure for which the metric
gij is Kahler. The map MQFT(X) —• MQFT(X) is finite-to-one, so this
is another good approximation to^the conformal field theory moduli space.
Moreover, there is a natural map MQFT(X) —• MCX(X) to the moduli space
of complex structures on X, whose fiber over J is fZc(Xj)/ Aut(Xj), where

Kc(Xj) = {B + iuje H\X,C/Z) | u e Kj}

is the complexified Kahler cone13 of Xj (JCj is the usual Kahler cone), and
Ant(Xj) the group of holomorphic automorphisms of Xj.

The moduli space of complex structures A4CX(X) has a variation of Hodge
structure defined on it which is of geometric origin: roughly speaking, one
takes a universal family TT: X —> A4Cx(X) over the moduli space and con-
structs a variation of Hodge structure on the local system Rn7r*Zx by con-
sidering the varying Hodge decomposition of Hn(Xj,C). The local system
gives rise to a holomorphic vector bundle T := {RniT*rLx) ® OMCX(X) with a
flat connection V: T —» Q\icx(x) ® J~ (whose flat sections are the sections
of the local system), and the varying Hodge decompositions determine the
Hodge filtration

a filtration by holomorphic subbundles defined by

which is known to satisfy Griffiths transversality

Conversely, given the bundle with flat connection and filtration, the complex-
ified local system RP"KJCX can be recovered by taking (local) flat sections, and

13We are following the conventions of [40] rather than those of [38, 39].
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the Hodge structures can be reconstructed from the filtration. However, the
original local system of Z-modules is additional data, and cannot be recovered
from the bundle, connection and filtration alone.

The moduli space of complex structures MCX(X) can be compactified to
a complex space M, to which the bundles Tv and the connection V extend;
however, the extended connection V acquires regular singular points along
the boundary 23, which means that it is a map

The residues of V along boundary components describe the monodromy trans-
formations about those components, the same monodromy which defines the
local system. At normal crossings boundary points there is always an asso-
ciated monodromy weight filtration, which we take to be a filtration on the
homology group Hn(X).

The data of the flat connection and the Hodge filtration are encoded in
the conformal field theory on X (at least for a sub-Hodge structure containing
^ r n ~ 1 ) . 1 4 Since mirror symmetry reverses the roles of base and fiber in the
map

one of the predictions of mirror symmetry will be an isomorphism between
this structure and a similar structure on JCc{Xj)/ Aut(Xj).

In fact, the conformal field theory naturally encodes a variation of Hodge
structure on ICc(Xj)/ Aut(Xj). To describe this mathematically, we must
choose a framing, which is a choice of a cone

a = R+e1 + • • • + R+er C H2(X, R)

which is generated by a basis e1, . . . , er of H2(X,Z)/torsion and whose
interior is contained in the Kahler cone of X. The complexified Kahler part
of the semiclassical moduli space then contains as an open subset the space

MA{?) := (H2(X,R) +2<r)/#2(X,Z),

elements of which can be expanded in the form Yli^l l°S£j) eJ> leading to
the alternate description

= {(qu...,qr) | 0 < |<&| < l } .

14Note that T* appears directly in the conformal field theory, and T" 1/!Fn appears
as a class of marginal operators in the conformal field theory. Thus, the conformal field
theory contains at least as much of the Hodge theoretic data as is described by the smallest
sub-Hodge structure containing Tn~x, and quite possibly more.
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The desired variation of Hodge structure will be defined on a partial com-
pactification of this space, namely

which has a distinguished boundary point 0 = (0 , . . . , 0).
The ingredients we need to define the variation of Hodge structure are the

fundamental Gromov-Witten invariants15 of X, which are trilinear maps

$° : H* (X, Q) 0 H* (X, Q) 0 H* (X, Q) -+ Q.

Heuristically, when A, B and C are integral classes, $5}(A, B,C) should be
the number of generically injective16 holomorphic maps i/>: CP1 —> X in class
77, such that ^(0) E Z^, -0(1) € Z#, ^(oo) G Zc for appropriate cycles
Z,4, ZB, ZC Poincare dual to the classes A, B, C. (The invariants vanish
unless deg A + deg B + deg C — 2n.) Prom these invariants we can define the
Gromov-Witten maps P^: Hk(X) —> Hk+2(X) by requiring that

for B e H2n-k~2(X), C e H2(X). (This is independent of the choice of C.)
These invariants are usually assembled into the "quantum cohomology

ring" of X, but here we present this structure in the equivalent form of a
variation of Hodge structure over MA{?) degenerating along the boundary.
To do so, we define a holomorphic vector bundle £ := ( 0 He'e(X)) 0O^A(ff),
and a flat17 connection V: £ —> fl^(log B) 0 £ with regular singular points
along the boundary B — MA{V) — MA{G) by the formula18

v == h
where q* = n ^ ( i ? ) » a n d w h e r e a d ( e ' ) : Hk{X) -> Hk+2(X) is the adjoint
map of the cup product pairing, defined by ad(e*)(A) = eJ U A. We also
define a "Hodge filtration"

15These can be defined using techniques from symplectic geometry [49, 36, 50] or from
algebraic geometry [32, 31, 15, 14, 13, 34].

16We have built the "multiple cover formula" [3, 35, 54] into our definitions.
17The flatness of this connection is equivalent to the associativity of the product in

quantum cohomology.
18I am indebted to P. Deligne for advice [20] which led to this form of the formula.
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which satisfies V(£p) C Qj^(log8) <g> £p~l. This describes a structure we
call the framed A-variation of Hodge structure with framing a. To be a bit
more precise, we should refer to this as a "formally degenerating variation
of Hodge structure," since the series used to define V is only formal. (More
details about such structures can be found in [43]; cf. also [20].) There are also
some subtleties about passing from a local system of complex vector spaces
to a local system of Z-modules which we shall discuss in Section 5 below.

The residues of V along the boundary components qj = 0 are the adjoint
maps ad(eJ); the corresponding monodromy weight filtration at 0 is simply

Ho,o(X) C HOto(X) 0 Hltl(X) C • • • C (H0%0(X) 0 • • • 0 #„,„(*)).

Under mirror symmetry, this maps to the geometric monodromy weight filtra-
tion at an appropriate "large complex structure limit" point in Aicx (s e e [41]
and references therein). Note that the class of the 0-cycle is the monodromy-
invariant class in Heven(X); thus, its mirror n-cycle will be the monodromy-
invariant class in Hn(Y).

Although the choice of a "framing" may look unnatural, the relationship
between different choices of framing is completely understood [38] (modulo
a conjecture about the action of the automorphism group on the Kahler
cone). Varying the framing corresponds to varying which boundary point
in the moduli space one is looking at, possibly after blowing up the original
boundary of the moduli space in order to find an appropriate compactification
containing the desired boundary point.

We finally come to the definition which contains our precise Hodge theo-
retic mirror prediction from physics.

Definition 3 Let X and Y be Calabi-Yau manifolds with h2«°(X), h2$(Y) =
0. The pair (X,Y) passes the Hodge theoretic mirror test if there exists

(1) a partial compactification MC^{Y) of the complex structure moduli space
ofY,

(2) a neighborhood U C MCX{Y) of a boundary point P of MC*(Y)>

(3) a framing a for H2(X), and

(4) a "mirror map" //: U —• M.A{&) mapping P to 0,

such that fi* induces an isomorphism between £n~l and Tn~x extending to
an isomorphism between subvariations of Hodge structure of the A-variation
of Hodge structure with framing a, and the geometric formally degenerating
variation of Hodge structure at P.
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The restriction to a subvariation of Hodge structure (which occurs only
when the dimension of the Calabi-Yau manifold is greater than three) seems
to be necessary in order to get an integer structure on the local system com-
patible with the complex variation of Hodge structure. (We will return to
this issue in Section 5.) It seems likely that this is related to the need to pass
to "string theoretic Hodge numbers," which may actually be measuring the
Hodge numbers of the appropriate sub-Hodge structures.

The property described in the Hodge theoretic mirror test can be recast
in terms of using the limiting variation of Hodge structure on Y to make
predictions about enumerative geometry of holomorphic rational curves on X.
In this sense, there is a great deal of evidence in particular cases (see [41, 25]
and the references therein). There are also some specific connections which
have been found between the variations of Hodge structure associated to
mirror pairs of theories [44], as well as a recent theorem [23] which proves that
the expected enumerative properties hold for an important class of Calabi-
Yau manifolds.

Note that if (X,Y) passes the Hodge theoretic mirror test in both di-
rections, then it passes the topological mirror test (essentially by definition,
since the dimensions of the moduli spaces are given by the Hodge numbers
ft1'1 and ft""1*1).

4 Geometric mirror pairs
We now wish to translate the Strominger-Yau-Zaslow analysis into a def-
inition of geometric mirror pairs (X, V), which we formulate in arbitrary
dimension. (As mentioned earlier, the arguments of [53] cannot be applied
to conclude that all mirror pairs arise in this way, but it seems reasonable
to suppose that a T-duality argument—applied to conformal field theories
only—would continue to hold.) The most straightforward such definition
would say that X is the compactification of the complexified moduli space
of special Lagrangian n-tori on Y. However, as indicated by our conjectures
of Section 2, at present we do not have adequate technical control over the
compactification to see that it is a Calabi-Yau manifold. So we make instead
an indirect definition, motivated by the following observation: if we had such
a compactified moduli space X, then for generic x G X there would be a
corresponding special Lagrangian n-torus Tx C F , and we could define an
incidence correspondence

Z = closure of {(x,y) G X x Y | y G Tx}.

By definition, the projection Z —• X would have special Lagrangian n-tori
as generic fibers. As we saw earlier, the analysis of [53] suggests that generic
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fibers of the other projection Z —•> Y will also be special Lagrangian n-tori.
Furthermore, we should expect that as we vary the metrics on X and on V,
the fibrations by special Lagrangian n-tori can be deformed along with the
metrics. (In fact, it is these dependencies on parameters which should lead to
a "mirror map" between moduli spaces.) Thus, we formulate our definition
using a family of correspondences depending on t G U for some (unspecified)
parameter space U.

Definition 4 A pair of Calabi-Yau manifolds (X,Y) is a geometric mirror
pair if there is a parameter space U such that for each t G £/ there exist

(1) a correspondence Zt C (X x Y) which is the closure of a submanifold
of dimension 3n,

(2) maps rt: X —» Zt and rt: Y —* Zt which serve as sections for the
projection maps Zt —> X and Zt —>Y, respectively,

(3) a Ricci flat metric gij{t) on X with respect to which generic fibers of
the projection map Zt —>Y ate special Lagrangian n-tori, and

(4) a Ricci flat metric Tjij (t) on Y with respect to which generic fibers of the
projection map Zt —> X are special Lagrangian n-tori.

Moreover, for generic z G Zt, the fibers through z of the two projection maps
must be canonically dual as tori (with origins specified by rt and ft).

In a somewhat stronger form of the definition, we might require that U
be sufficiently large so that the images of the natural maps U —• MRIC(X)

and U —» MR[C{Y) to the moduli spaces of Ricci flat metrics on X and on Y
are open subsets of the respective moduli spaces. It is too much to hope that
these maps would be surjective. The best picture we could hope for, in fact,
would be a diagram of the form

AW*) DUx^U^UyQ Mmc(Y)

in which Ux Q Mmc{X) and Uy C A^RI C (^) are open subsets (near certain
boundary points in a compactification, and contained within the set of metrics
for which the semiclassical approximation is valid). The fibers of ixx will
have dimension fc1'1^), and if the induced map is the mirror map each
fiber of nx must essentially be the set of J5-fields on X, i.e., it must be
a deformation of the real torus i/2(X,M/Z). This is compatible with the
approximate formula19 in [53] for a family of metrics on V, produced by
varying the B-field on X.

We expect that geometric mirror symmetry will be related to the earlier
mathematical mirror symmetry properties in the following way.

19The "tree level" formula given in [53] is subject to unspecified instanton corrections.
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Conjecture 3 / / (X, Y) is a geometric mirror pair, then the parameter space
U and the data in the definition of the geometric mirror pair can be chosen
so that

(1) (X, Y) passes the topological mirror test;20

(2) TTX- U —• A^RicPO lifts to a generically finite map ifx' U —> Ux Q

(3) ny. U —• MRIC{Y) lifts to a generically finite map Try: U —• Uy C
M£¥T{Y); and

(4) ifh2V(X) = /i2'°(y) = 0, then there are boundary points P G MCX(Y),
P' G MCX{X) and framings a of H2(X) and a' of H2(Y) with partial

compactifications Ux C MA^^-MCX^) andUy C A^Cx(y)xA^^(cr/)
such that the composite map (7Tx)*(7ry)* extends to a map \i~x x / / which
consists of mirror maps in both directions (in the sense of Definition 3).
In particular, (X, Y) passes the Hodge theoretic mirror test.

Even in the case h2>°(X) ^ 0, there is an induced map (7Tx)*(7ry)* which
should coincide with the mirror map between the moduli spaces.

If X has several birational models X^\ then all of the semiclassical moduli
spaces MQFT(X^) give rise to a common conformal field theory moduli space
(see [1], or for a more mathematical account, [39]). If we follow a path between
the large radius limit points of two of these models, and reinterpret that
path in the mirror moduli space, we find a path which leads from one large
complex structure limit point of AdCx{y) to another. On the other hand, the
calculation of [2] shows that the homology class of the torus21 in a special
Lagrangian X^-fibration does not change when we move from one of these
regions of JWCX(}0 to another. Thus, the moduli space of special Lagrangian
tori Tn must themselves change as we move from region to region. It will be
interesting to investigate precisely how this change comes about.

5 Mirror cohomology and the
weight filtration

The "duality" transformation which links the two members X and Y of a geo-
metric mirror pair does not induce any obvious relationship between HXil(X)
and ffn""1>1(y), so it may be difficult to imagine how the topological mirror

20(l) is a consequence of (4) if h2>°(X) = h2>°(Y) = 0.
21Recall that this is the monodromy-invariant cycle.
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test can be passed by a geometric mirror pair. However, at least for a re-
stricted class of topological cycles, such a relationship can be found, as part
of a more general relationship between certain subspaces of Heven(X) and
Hn(Y).

Fix a special Lagrangian Tn-fibration on Y with a special Lagrangian
section, and consider n-cycles W CY with the property that W is the closure
of a submanifold Wo whose intersection with each nonsingular Tn in the
fibration is either empty, or a subtorus of dimension n — k (for some fixed
integer k < n). That is, we assume that W can be generically described as
a Tn~fc-bundle over a A;-manifold, with the tori Tn~k linearly embedded in
fibers of the given Tn-fibration. We call such n-cycles pure.

For any pure n-cycle W C Y, there is a T-dual cycle22 Ww C X (—
, Y)) defined as the closure of an n-manifold WQ satisfying

_ / the annihilator ofWPiTn in (Tn)* if WDTn ^ 0,
I (0 otherwise,

for all smooth fibers (Tn)* in the dual fibration. Since the annihilator of
an (n — A;)-torus is a fc-torus, we see tha t Wv is generically described as a
X^-bundle over a A;-manifold, and so it defines a class in H2k{X). This is our
relationship between the space of pure n-cycles on Y and the even homology
o n l .

Taking the T-duality statements from physics very literally, we are led
to the speculation tha t pure special Lagrangian n-cycles have as their T-
duals certain algebraic cycles on X\ moreover, the moduli spaces containing
corresponding cycles should be isomorphic.23 (Roughly speaking, the Th-
fibration on the corresponding algebraic fc-cycle should be given by holding
the norms of some system of complex coordinates on the A;-cycle fixed, while
varying their arguments.) We have already seen the simplest cases of this
statement in the Strominger-Yau-Zaslow discussion: the special Lagrangian
n-cycles which consist of a single fiber (i.e., k = 0) are T-dual to the 0-cycles of
length one on X , while a special Lagrangian n-cycle which is the zero section
of the fibration (i.e., k = n) is T-dual to the 2n-cycle in the fundamental class.
This new construction should extend tha t correspondence between cycles to a

22In physics, when a T-duality transformation is applied to a real torus, a D-brane
supported on a subtorus is mapped to a D-brane supported on the "dual" subtorus (of
complementary dimension); this can be mathematically identified as the annihilator. Here,
we apply this principle to a family of subtori within a family of tori.

23As the referee has pointed out, our "purity" condition is probably too strong to be
preserved under deformation, but one can hope that all nearby deformations of a (pure)
special Lagrangian n-cycle are reflected in deformations of the corresponding algebraic
cycle.
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broader class (albeit still a somewhat narrow one, since pure cycles are quite
special).

In fact, the correspondence should be even broader. If we begin with
an arbitrary irreducible special Lagrangian n-cycle W on Y whose image
in Ais\J(T

n,Y) has dimension A;, then W can be generically described as
a bundle of (n — A;)-manifolds over the image A;-manifold. The T-dual of
such a cycle should be a coherent sheaf £ on X having support a complex
submanifold Z of dimension k whose image in M.sh(Tn,Y) is that same k-
manifold. Thus, to the homology class of W in Hn(Y) we associate the total
homology class in Heven(X) of the corresponding coherent sheaf .24 Note that
since the support has complex dimension &, this total homology class lies in

The homology class of the generic fiber of W within Tn should determine
the subtori whose T-duals would sweep out Z\ when that homology class is r
times a primitive class, the corresponding coherent sheaf should have generic
rank r along Z. For example, a multisection of the special Lagrangian Tn

fibration which meets the fiber r times should correspond to a coherent sheaf
whose support is all of X and whose rank is r.

We have thus found a mapping from the subspace H^(Y) of n-cycles with
a special Lagrangian representative, to the subspace H*lln(Y) of homology
classes of algebraic cycles (and coherent sheaves). If we consider the Leray
filtration on special Lagrangian n-cycles on Y

Sfc := {W e H^(Y) | dimimagejy < * } ,

then this will map to

(and the pure n-cycles on Y will map to homology classes of algebraic cycles
on Y). But this latter filtration on Heven(X) is precisely the monodromy
weight filtration of the A-variation of Hodge structures on X, which should
be mirror to the geometric monodromy weight filtration on Y\25 We are thus
led to the following refinement of Conjecture 3.

Conjecture 4 / / (X, Y) is a geometric mirror pair then there exists a large
complex structure limit point P G Mcx{Y) corresponding to the mirror part-
ner X, and a subvariation of the geometric variation of Hodge structure de-
fined on H^J(Y)* whose monodromy weight filtration at P coincides with the

24It appears from both the K3 case discussed in the next section, and the analysis of [24]
that the correct total homology class to use is the Poincare dual of ch(S)y/tdY.

25This property of the mapping of D-branes has also been observed by Ooguri, Oz and
Yin [48].
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Leray filtration for the special Lagrangian Tn-fibration on Y. Moreover, un-
der the isomorphism of Conjecture 3, this maps to the subvariation of the
A-variation of Hodge structure defined on H*lln(X)*.

The difficulty in putting an integer structure on the A-variation of Hodge
structure stems from the fact that HPiP(X) will in general not be gener-
ated by its intersection with H2p(X,Z). However, the algebraic cohomology
H^ln(X)* does not suffer from this problem: its graded pieces are generated
by integer (p,p)-classes. If Conjecture 4 holds, it explains why there is a
corresponding subvariation of the geometric variation of Hodge structure on
y , also defined over the integers. We would thus get corresponding local sys-
tems over Z in addition to the isomorphisms of complex variations of Hodge
structure.

6 Geometric mirror symmetry for
K3 surfaces

The special Lagrangian submanifolds of a K3 surface can be studied directly,
thanks to the following fact due to Harvey and Lawson [29]: given a Ricci
flat metric on a K3 surface Y and a special Lagrangian submanifold M,
there exists a complex structure on Y with respect to which the metric is
Kahler, such that M is a complex submanifold of Y. This allows us to
translate immediately the theory of special Lagrangian T2-fibrations on Y
to the standard theory of elliptic fibrations. In this section, we will discuss
geometric mirror symmetry for K3 surfaces in some detail. (Some aspects of
this case have also been worked out by Gross and Wilson [28], who went on
to study geometric mirror symmetry for the Voisin-Borcea threefolds of the
form (K3 x T2)/Z2.)

If we fix a cohomology class fi G i/2(Y,Z) which is primitive (i.e., \^ $.
H2(Y, Z) for 1 < n G Z) and satisfies \x • /i = 0, then for any Ricci flat metric
we can find a compatible complex structure for which /x has type (1,1) and
K • \i > 0 (K being the Kahler form). The class /J, is then represented by a
complex curve, which moves in a one parameter family, defining the structure
of an elliptic fibration. Thus, elliptic fibrations of this sort exist for every Ricci
flat metric on a K3 surface.26

Our Conjecture 1 is easy to verify in this case: as is well known, the base
of the elliptic fibration on a K3 surface can be completed to a 2-sphere, and

26They even exist—although possibly in degenerate form—for the "orbifold" metrics
which occur at certain limit points of the moduli space: at those points, K is only required
to be semipositive, but by the index theorem K1- cannot contain an isotropic vector such
as /i, so it is still possible to choose a complex structure such that K • /i > 0.
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the resulting map from K3 to S2 is proper. In fact, the possible singular fibers
are known very explicitly in this case [30].

To study Conjecture 2, we need to understand the structure of the "com-
plexified" moduli space MD{T2,Y). Since a flat [/(l)-bundle on an elliptic
curve is equivalent to a holomorphic line bundle of degree zero, each point in
A4D{T2, Y) has a natural interpretation as such a bundle on some particular
fiber of the elliptic fibration. Extending that bundle by zero, we can regard
it as a sheaf C on Y, with supp(£) = image(/). We thus identify MD(T2, Y)
as a moduli spaces of such sheaves.

Let us briefly recall the facts about the moduli spaces of simple sheaves on
K3 surfaces, as worked out by Mukai [46, 47]. First, Mukai showed that for
any simple sheaf £ on Y, i.e., one without any nonconstant endomorphisms,
the moduli space MSimpie is smooth at [£] of dimension dim Ext*(£,£) =
2 — x(£>£)- (The 2 in the formula arises from the spaces Hom(£,£) and
Ext2(£,£), each of which has dimension one, due to the constant endo-
morphisms in the first case, and their Kodaira-Serre duals in the second.)

Second, Mukai introduced an intersection pairing on Hey(Y) = H°(Y) ©
H2{Y)®H\Y) defined by

(a, /?, 7) • (a', /?', i) = (/? • 0 ~ oc • V - 7 •

and a slight modification of the usual Chern character ch(£), defined by

v(£) = ch(£)VtdiT) = (rank£,d(£),rank£ + ^(c^f

so that the Riemann-Roch theorem reads

) := £( - ! ) 'd im Ext<(£,.F) = v{£) • v
i=0

In particular, the moduli space A^Simpie(f) of simple sheaves with v(£) = v
has dimension

^) = 2 - x(£, £) = 2-v-v.

In the case of 2-dimensional moduli spaces A^simpie^), Mukai goes on to show
that whenever the space is compact, it must be a K3 surface.

The sheaves C with support on a curve from our elliptic fibration will
have Mukai class v(C) = (0, //, 0) for which v(C) • v(C) = fx • fi = 0, so the
moduli space has dimension two. That is, our moduli space MD{T2,Y) is
contained in A^Simpie(0,/i50) as an open subset. Our second conjecture will
follow if we can show that this latter space is compact, or at least admits
a natural compactification. Whether this is true or not could in principle
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depend on the choice of Ricci flat metric on 7 . If we restrict to metrics
with the property that Y is algebraic when given the compatible complex
structure for which fi defines an elliptic fibration (this is a dense set within
the full moduli space), then techniques of algebraic geometry can be applied
to this problem. General results of Simpson [51] imply that on an algebraic
K3 surface, the set of semistable sheaves with a fixed Mukai vector v forms
a projective variety. This applies to our situation with v = (0, \x, 0), and
provides the desired compactification. It is to be hoped that compactifications
such as this exist even for nonalgebraic K3 surfaces.

The Mukai class v = (0, //, 0) should now be mapped under mirror sym-
metry to the class of a 0-cycle, or the corresponding sheaf Op; that Mukai
class is (0,0,1). In fact, the mirror map known in physics [4] does precisely
that: given any primitive isotropic vector v in Hey(Y), there is a mirror map
which takes it to the vector (0,0,1). Moreover, it is easy to calculate how
this mirror map affects complex structures, by specifying how it affects Hodge
structures: if we put a Hodge structure on Hev(Y) in which H° and HA have
been specified as type (1,1), then the corresponding Hodge structure at the
mirror image point has v^/v as its H2.

This is precisely the relationship between Hodge structures on Y and on
•Msimpie(̂ ) which was found by Mukai [47]! We can thus identify geometric
mirror symmetry for K3 surfaces (which associates the moduli spaces of 0-
cycles and special Lagrangian T2's) with the mirror symmetry previously
found in physics. It is amusing to note that in establishing this relationship,
Mukai used elliptic fibrations and bundles on them in a crucial way.

As suggested in the previous section, such a mirror transformation should
act on the totality of special Lagrangian 2-cycles. In fact, it is known that
for at least some K3 surfaces, there is a Fourier-Mukai transform which
associates sheaves on .Msimpie(^) to sheaves on Y [7]. The map between their
homology classes is precisely the mirror map.27 Thus, proving that there
exists such a Fourier-Mukai transform for arbitrary K3 surfaces (including
nonalgebraic ones) would establish a version of Conjecture 4 in this case.
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Duality of polarized K3 surfaces

Shigeru Mukai *

To the memory of Professor Hideyuki Matsumura

The dual A of an abelian variety A is defined as the neutral component
Pic0 A of the moduli space of line bundles on A. Let V be a Poincare bundle on
the product Ax A whose restriction to 0 x A is trivial. Then the classification
morphism in the opposite direction

Pic0 A defined by
xxA

is also an isomorphism and gives the double duality A = A. Moreover, the
construction of [5] gives an equivalence JAV: D(CohA) —» D(CohA) of the
derived categories of coherent sheaves on A and A; this equivalence of de-
rived categories depends on V, and we call it the integral functor with kernel
V (it is sometimes called the Fourier-Mukai transform). See [13] for a sys-
tematic study of (auto-)equivalences of D(Coh A) using universal families of
semihomogeneous vector bundles. In this article we generalize these results
to polarized K3 surfaces using the moduli space of semi-rigid sheaves studied
in [7].

Let r and s be coprime positive integers and (5, h) a polarized K3 surface
of degree 2rs. We denote by S the moduli space Ms(r, ft, 5) of rank r stable
sheaves E on 5 with C\(E) = ft and x(^) = r + s (cf. [2]). Then by the results
of [6] and [7], S is again a K3 surface and there exists a universal family £
on the product S x S. Let

h + (peH2(S)®H2(S) and cfd(£)eH2(S)®H2{S) (1)

be the first Chern class of £ and the middle Kiinneth component of the second
Chern class, respectively. We define a class ip 6 H2(S) by

h U cf d(£) = p (8) 1) e H4(S) (8) H2(S), (2)

where p is the fundamental cohomology class of 5. Both ip and ip are algebraic
by the Lefschetz type (1,1) theorem.

* Partially supported by Grant-in-aid for Scientific Research (B) 0854004 of the Japanese
Ministry of Education.
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Proposition 1.1 (i) ip — 2(r — l)s(p does not depend on the choice of the
universal family £ on S x S. We denote it by h.

(ii) (h)2 = h2 and h = s<p mod r in Pic S.

Let v be an integer with sv = 1 mod r. By the proposition, there exists
a divisor class A on 5 such that vh = (p + rX. For this A, £ 0 TT|(9^(A) is also

a universal family and its first Chern class is TT^h + VK*JI. Such a universal
family is said to be normalized. We denote by J-rs+\ the moduli space of
(quasi-)polarized K3 surfaces (5, h) of degree 2rs. This is a quasiprojective
algebraic variety of dimension 19.

Theorem 1.2 Let (5, h) be a general member of J-rs+i o,nd £ a normalized
universal sheaf on S x S, where S is the moduli space Ms(r,h,s). If r > 2,
then

(i) h is primitive and ample;

(ii) £ is locally free;

(Hi) for every x G S, the restriction £\xXg is stable with respect to h and

belongs to Ms(r,vh,v2s);

(iv) the classification morphism in the opposite direction S —• M§(r, v/i, v2s)
given by X H £\ . is also an isomorphism; and

(v) the integral functor with kernel £

Js£: D(Coh 5) -> D(Coh 5) given by (?) H-> RTTT* (£ 0 TT£(?))

is an equivalence of categories between the derived categories D(Coh5)
and D(CohS) of coherent sheaves on S and S; here (?) stands for an
object or morphism o/D(Coh5) and RTTT+ for the derived functor.

Example 1.3 (r = 2, 5 = 3) Let (5, h) be a general member of T-j. Then S
is a complete linear section

Ej° n #i n • • • n H8

of a 10-dimensional orthogonal Grassmannian E ^ C ^155 anc^ ^ i t s hyperplane
section. Here £}£ C P15 is the Hermitian symmetric space SO(10,R)/U(5)
embedded into the projectivization of the 16-dimensional half spinor repre-
sentation (cf. [8]). The discriminant variety E C P15 in the dual projec-
tive space is also a 10-dimensional orthogonal Grassmannian (cf. [9]). Let
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h\,...,hs € P15 be the points corresponding to the hyperplanes Hi,..., H8.
Then the intersection

is also a K3 surface, and is isomorphic to the moduli space S = Ms(2, ft, 3).
In this case, the double duality (3) below also follows from the double duality
E = E of discriminant varieties.

The theorem also holds (as a tautology) in the case r = 1, provided that we
modify (ii). In fact, every member of Ms(l, ft, 5) is isomorphic to Os(h)<g>mx

for a point x G S , and Ms {I, ft, s) is canonically isomorphic to S. The ideal
sheaf of the diagonal A C S xS tensored with Os(h) ISI Os(h) is a normalized
universal family. The integral functor Js£ is essentially the reflection studied
in [7], §2.

When s = ±1 moclulo r, we can choose a universal bundle £ such that
det£ = Os(fc) El O§(±7i). This 5 gives the duality isomorphism

(S,ft)^(f,ft). (3)

Even when s is general, we can show that (5, ft) *-» (5, ft) is an involution of
the moduli space J>a+i using the computation of periods in [7]. But this will
be discussed elsewhere.

The most essential part of the theorem is the stability assertion in (iii),
which we prove in §4 after examining S = Ms(r, ft, s) for K3 surfaces S with
Picard number 2 in §3. We first show in §2 that (iv) and (v) follow from (iii).

In the talk at the Warwick conference, we explained a non-abelian ana-
logue of Albanese maps for general polarized K3 curves of odd genus > 11,
which is an application of Theorem 1.2 (for r = 2) and non-abelian Brill—
Noether theory. Consult [11] and [12] for this.

Notations and convention For simplicity, we consider algebraic varieties
over the complex number field C. For a coherent sheaf E, we denote its
dual by i£v, its rank (at the generic point) by r(E), and its Euler-Poincare
characteristic by x(E) = Hii-Y^iE).

2 Moduli duality and integral functors

Let C be a line bundle on the product Ax B oi two abelian varieties A and B.

Proposition 2.1 ([14], §13) The following three conditions are equivalent:
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(a) the classification homomorphism A —> Pic0 B given by a i—• C\ B is an

isomorphism;

(b) the classification homomorphism B —> Pic0 A given by b \-+ C\Axb is an

isomorphism; and

(c) x ( 7 r A ^ 1 0 ^ 0 KgL];1) = ± 1 , where LA = ^ U x 0
 an^ ^B = AOX.B*

When these equivalent conditions hold, the integral functor with kernel C

D(Coh ,4 ) ->D(Coh£) given by (?) .-> RirB*(C ® ?£(?)),

essentially the Fourier functor, is an equivalence of categories ([5]), where (?)
is an object or a morphism in D(CohA). We will generalize these results to
K3 surfaces.

Let £ be a vector bundle on the product S x T of a complete algebraic
surface S and a scheme T. We consider the two integral functors

JSS: D(CohS) -> D(CohT) given by (?) H-> R7rT*(£ 0 TT£(?))

with kernel 5 from 5 to T, and vice versa

/ T £ v : D(CohT) -> D(CohS) given by (?) *-+ R7r5*(fv ® TTJ(?))

with kernel 5V. By the Grothendieck Riemann-Roch theorem, the following
diagram is commutative:

D(CohT) ^-> D(Coh5) - ^ D(CohT)

chj ch | ch | (4)

^•(T,Q) —> ff*(5,Q) —> iJ*(T,Q),

where ch is the Chern character map, and [£]$, [f v]r the correspondences

a H-> 7rT.(ch5U7rj(o;Utd5)),

with kernels ch £ U TTS tds and ch £ v U 7rf
To generalize Proposition 2.1 to vector bundles, we need the following

assumption:

there exists an ample line bundle A on S such that
£\Sxt is stable with respect to A for every t € T. ^ 5)T^

Under this condition, we obtain a classification morphism t H-> £\Sxt corre-
sponding to £ from T to the moduli Ms of stable vector bundles on S ([2]).
We denote it by $ : T -» M5.
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Theorem 2.2 Let S be a K3 surface, T a scheme, and £ a vector bundle
on S x T such that (S^r) holds. Then the following three conditions are
equivalent:

(i) the classification morphism 4>: T —• Ms is an isomorphism onto a con-
nected component;

(ii) under the projection TT23 : S x T x T —> T x T, the direct images of the
vector bundle TT*2£

V <8> TT13£ satisfy the following:

0 otherwise,

where A zs i/ie diagonal ofTx T; and

(Hi) the composite [£]s o [£y)r in (4) is the identity map of H*(T,Q).

Proof (i) => (ii) As proved in [7], Proposition 4.10, the second direct image
is a line bundle, say L, on the diagonal A c T x T and the other direct
images are zero. Since the restriction £\Sxt is a simple sheaf for every t £ T,
the natural homomorphism

is an isomorphism. By Serre duality, R27rT*(£V ® £) is also isomorphic to Or-
Since 7rJt

25
v 0 n^S restricted to 5 x A is £v <g> £, the line bundle L is trivial

by the base change theorem.
(ii) => (iii) On the one hand, the composite [£]s o [£V]T: ff*(T,Q) ->

fl"*(T, Q) is the correspondence given by the following cocycle in H*(TxT, Q):

Z = 7T23. (TTJ2 ch £ v U 7rJ3 ch £ U ?rj td 5 UTT2 tdT)
U ^23 ch f U 7rJ td5) U 7rJ tdT .

On the other hand, by (ii) and the Grothendieck Riemann-Roch theorem, we
have

7T23. (TTJ2
 c h ^ V U ^23 ch 5 U 7rJ td5) = ch OA.

Hence Z = ch OA U TTJ tdr = A and the composite is the identity map.
(iii) =» (i) The condition (iii) implies

7T23. (TT;2 ch £y U TT53 ch £ U TTJ td 5 UTTJ tdT) = A.

Comparing the H° component of both sides, we have

x4(ch Ey U ch E U td r ) = 0,
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where E is the restriction of £ to a fibre S x t and x4 is the projection
of H*(S,Q) to the direct summand # 4(S,Q) = Q. By the Riemann-Roch
theorem, we have x ( ^ v ® E) = 0. Since 5 is a K3 surface and E is simple,
we have hl{Ew ® E) = 2. Therefore, the connected component S of Ms
containing the image <£(T) is a surface.

Let K be the fibre of $>: T —* Ms over $(2/). As a set, K consists of the
points t GT such that £\Sxt — E. By assumption (£s,r)> there exists a line
bundle L on K such that ^ u ^ = B H L . Now apply the functor fT£v to
the structure sheaf OK- Then we have

and

Similarly, writing k(i) for the sky scraper sheaf at t G T, we have

( ) £ v and [£v]T(p) = ch £ \

where p G H4(S, Q) is the fundamental cohomology class of 5. Since [£V]T
is injective by (iii), we have C1I(9M = x(L- 1)p. Therefore, i^ is finite and
T - > S c Ms is finite. By the same argument as in [7], Proposition 4.10, the
direct image JR

97T23*(7r*2f
v 0 fl"*3£) is zero for <? ^ 2, and a line bundle on the

pullback A' of the diagonal of 5 x 5 by the morphism $ x $ for q — 2. By
(iii) and the Grothendieck Riemann-Roch formula, we have

Therefore, A; coincides with A and T —> 5 is an isomorphism. D

When T is also a K3 surface, [£]s o [£V]T is the identity map if and only
if [£]T O [£W]S is. Therefore, we have

Corollary 2.3 Assume that both S and T are K3 surfaces and that a vector
bundle £ on S x T satisfies both (Us,r) and (£r,s)- Then the classification
morphism T —> Ms is an isomorphism onto a connected component if and
only if S —• MT is.

Remark 2.4 (i) The Chern character ch£ is a cocycle with integral coef-
ficients ([7], Lemma 4.1). Hence in the situation of the theorem, [£]s is
an isomorphism from ff*(5,Z) to #*(T,Z).
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(ii) We assume £ locally free only to simplify the notation. The same holds
for a coherent sheaf £ on S x T that is both S-flat and T-flat.

The composite Js£ o JT£v of two integral functors is also an integral
functor. Moreover, its kernel is the composite R T ^ ^ T T ^ ^ ® ^u£) of the
two kernels, which is isomorphic to OA [2] under the equivalent conditions of
Theorem 2.2 (where [2] denotes a shift in the derived category). Hence, we
have

Theorem 2.5 Under the same conditions as in Corollary 2.3, the integral
functor with kernel £

Js£: D(CohS)^D(CohT)

25 an equivalence of categories. Moreover, its inverse is JT£v[—2], that is,
the integral functor with kernel £v in the opposite direction shifted by 2 to the
right.

3 Construction of examples

Let r and s be integers with r > 2 and s > 1. In this section, we investigate
the moduli space 5 = Ms(r, h, s) for a polarized K3 surface (5, h) satisfying
the following conditions:

h = e + rf, where Pic 5 = Ze 0 Z / , and the divisor classes e and / . ,
have intersection numbers e2 = —2r, e • / = s + 1 and f2 = 0. ^

By the surjectivity of the period map ([1], Chap. VIII), such polarized K3
surfaces (5, h) exist. Note that there is no —2-vector perpendicular to h. For
integers m and n, we have

(me + nff = 2m{-rm + (s + l)n}
and h • (me + n/) = rsm + {—rra + (5 + 1W-

Lemma 3.1 (i) If s + 1 does not divide r — 1, then D2 > 0 for every
effective divisor D on S.

(ii) Assume that r — 1 = k(s + 1), and put e' = e + A;/. T/ien t/ie divisor
class e' contains an irreducible curve E' isomorphic to P1. Moreover,
E' is the unique irreducible curve on S with negative self-intersection.
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Proof Since the canonical class Ks of S is trivial, any irreducible curve C
on 5 satisfies

C2 = C • (C + Ks) = 2pa(C) - 2 > - 2 . (6)

If s + 1 does not divides r - 1, then C2 = (me + n / ) 2 ^ - 2 by (5). Therefore,
we have (i).

Assume that 5 + 1 divides r — 1 and let C be an irreducible curve with
negative self-intersection. By (5) and (6), C is linearly equivalent to ±e'.
Since h • C and h • ef = rs — 1 are positive, C is linearly equivalent to e'. By
the Riemann-Roch theorem, x(Ps{e')) = (e'2)/2 + 2 = 1 and e' contains an
effective divisor E'. Since (Ef2) < 0, E' contains a curve Cx with (C/2) < 0 as
an irreducible component. By what we have shown, C is linearly equivalent
to E'. Since h°(Os(C')) = 1, we have E' = C", which proves (ii). D

By the lemma, we have

H°(Os(e)) = H°(Os(-e)) = 0 (7)

since (e2) = —2r < —4. By Serre duality and the Riemann-Roch theorem,
we have

h\Os{±e)) = -x(Os(±e)) = r - 2.

Let mx be the maximal ideal of Os at x G 5. By duality, we have

dimExt^mzOsie + /), Os{f)) = h\mx(-e)) = r - 1.

Hence we obtain the unique exact sequence

0 - O s ( / ) e ( r - 1 ) - > £ x - > m x ( e + / ) - > 0 (8)

with the property Hom(£'rE, Os{f)) = 0. Since

dim Ext1 (Os(e + / ) , Os(/)) < dim Ext1 ( m ^ e + / ) , Os(f)),

Ex is locally free of rank r. It is easy to verify that det Ex = Os(h) and

X(EX) = (r - l)X(Os(f)) + x(Os(e + /)) - 1 = r + s. (9)

We prove (i) and (iii) of Theorem 1.2 for this pair (5, h):

Theorem 3.2 //(5,h) satisfies (*), tfien

(%) /or eve7i/ x £ S, Ex is stable with respect to h and belongs to Ms{r, h, s);

(ii) if x ^ y £ S, then Ex and Ey are not isomorphic;



Shigeru Mukai 319

(in) every member of Ms{r, h, s) is locally free and isomorphic to Ex for
some x € S;

(iv) S = Ms(r, h, s) is isomorphic to S; and

(v) there exists a vector bundle £ on the product S x S, a vector bundle G
on S and an exact sequence

0 -> Ostf) 8 Gv -> £ -> IA ® ix\Os{e + / ) -> 0 (10)

on S x S whose restriction to S x x is isomorphic to the exact sequence
(8), where T& is the ideal sheaf of the diagonal A C S x S and TTI, TT2 :
S x S —> S are the projections to the two factors. Moreover, this vector
bundle £ is a universal family for Ms{r, /i, 5).

In order to show the stability of Ex, we need an estimate of the degree
h • D for an effective divisor D on S.

Lemma 3.3 Let m and n be integers. If a divisor class D = me + nf is
effective, then n > 0 and h • D > (rs — l)ra.

Proof We first consider the case D2 > 0. By (5), we have

m{—rm + (s + l)n} > 0 and h - D = rsm + {—rra + (s + l)n} > 0.

Hence we have m > 0 and — r ra+ (s + l)n > 0. Therefore, we have (s + l)n >
rra > 0 and h - D > rsm > (rs — l)ra. This proves the lemma in the case
where 5 + 1 does not divide r — 1. Assume that 5 + 1 divides r — 1. By (ii)
of Lemma 3.1, D is linearly equivalent to the sum of an effective divisor D+
with nonnegative self-intersection number and a multiple of E'. The lemma
holds for both D+ and E' since E' = e + kf and h • E' = rs — 1. Therefore,
it also holds for D. •

Proposition 3.4 Ex is ji-stable with respect to h.

Proof Let F be a torsion free quotient sheaf of Ex(—f), which is neither
zero nor Ex(—f) itself. It suffices to show that

> n{Ex(-f)) = (h • e)/r = s - 1.

Tensoring (8) with Os(-f) gives the exact sequence

0 _> of(r-1) -> Ex(-f) -> m^e) - 0.
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with Hom(Ex(—f), Os) = 0. Let Fo be the image of the composite

Ofr~l) <-+ Ex(-f) -> F

Then detF0 is effective. Since Hom(F0,£>s) C Eom(Ex{-f),Os) = 0, Fo

and hence det Fo is nontrivial.
If rank Fo < rank F , then the quotient F/Fo is isomorphic to mx(e). Hence

det F = det Fo 0 Os(e) and we have

Assume that rankFo = rankF and put det Fo = Os(me + nf). Then, by
the preceding lemma, we have

h - (me + nf) m(rs - 1)
> > ™

Hence, we have i^(F) > s — 1 if m > 1. So assume further that m = 0. Since a
general member of | / | is an (irreducible) elliptic curve, we have h°(det Fo) =
h°{Os(nf)) = n + 1. (Even when 5 + 1 divides r — 1, | / | is base point free
since \f — £e'\ = 0 for every integer £ > 1.) There exists a trivial subbundle
T of rank r(F) + 1 such that

is surjective outside a finite set of points. Since its kernel is isomorphic to
(detFo)"1, we have

n + l = /i°(detF) > r(F) + 1,

that is, n > r(F). Hence, in this case, we also have

{ ^ ^ (-f)). D

(i) of Theorem 3.2 follows from this and the computation (9). It is easy
to prove (ii):

Lemma 3.5 If Ex = Ey, then x = y.
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Proof Let f:Ex—>Eybe an isomorphism. Since Hom(C>s, Os(e)) = 0 by
(7), / maps the subsheaf Ofr"1 C Ex to the subsheaf Of7"1 C Ey. Therefore,
/ induces an isomorphism from mx(e) onto tny(e). Hence we have x = y. D

The sheaf lA®7rlOs(e) is flat over 5 and its restriction to the fibre 5 x x is
isomorphic to mx<g>Os(e) for every x E S. Let G be the sheaf on S associated
to the presheaf

U .-> £xt1
SxU{lA ® 7r!O5

for [/ an open subset of S. Since Hom(mx(e), O5) = Ext2(mx(e), Os) = 0 for
every x G 5, G is locally free and we have

Precisely stated, the exact sequence (8) is

0 - Os(f) ®c Ext^m^e) , O 5 ) v - Ex - mx(e + / ) - 0. (11)

Hence there exists an exact sequence

0 -* 7r*e>s(/) (8) TT*GV - • 5 ^ / A 0 7r;O5(e + / ) -> 0

over S x S whose restriction to S x x is (11) for every x G 5. This is the
exact sequence (10) of Theorem 3.2. We have Gv = R^VA ® ^*O(e)) by
(relative) Serre duality and obtain the exact sequence

0 -> Os(e) -> Gv -> O 5 ®c H\Os{e)) -> 0 (12)

from 0 -> JA -> £)5X5 -> ^ A -> 0.
Let 5 —>• M^(r, ft, 3) be the classification morphism of £. Since Ms{r, ft, 5)

is smooth of dimension 2, it is an open embedding by Lemma 3.5; since
Ms{r, ft, 5) is connected, it is an isomorphism. So we have completed the
proof of Theorem 3.2. ^ ^

Now we compute the divisor class ft on the moduli space S = Ms(r, ft, 5)
defined in Proposition 1.1. We have

by the exact sequence (12), and

c2(£) = C!(Os(f) B Gv) U 7rl(e + / ) + c2(Os(f) B Gv) + A
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by the exact sequence (10). Hence the middle Kiinneth component of 02(8)
is

cfd{£) = 7rJ(c + (r - 1)/) U 7r*2e + A e tf 2(S) 0 # 2 (S) .

Therefore, by (1), (2) of the introduction and Proposition 1.1, we have

(p = e, ^ = (ft * e + (r - l ) / )e + ft = ft + (2rs - s - l)e and

ft = ^ - 2(r - l)s<p = ft + (5 - l)e = se + r / = 5ft + r ( l - s) / .

By our assumption (*), {e, / } is a free Z-basis of Pic 5. Hence we have

Lemma 3.6 ft is primitive if and only if r and s are coprime.

Since (ft)2 = 2rs > 0 and (ft • e') > 0, ft is ample by Lemma 3.1. Since
2(ft • e)/(e2) = s — 1, we have

Lemma 3.7 (i) ft is ample.

(ii) ft is the reflection of ft with respect to e, and hence (ft)2 = ft2.

Let Kx be the restriction of the universal bundle £ to a fibre x x S of the
other direction. Restricting (10) to x x 5, we have an exact sequence

0 -> Gv -+ #* -> m, -+ 0. (14)

Since ifx is locally free, this does not split.
Assume that r and s are coprime and fix a pair of integers (£, u) such that

ts + ur = 1. The first Chern class of £ OTTJOS (—ue + tf) is Trlh + tir^h. Hence
this universal bundle is normalized and its restriction to x x S is Kx(—ue+tf).

Lemma 3.8 Assume that (r, 5) = 1 and let F be a torsion free quotient sheaf
of Kx{—ue + tf), which is neither zero nor Kx(—ue + tf) itself. If c\(F) = £h
for an integer £, then £/r(F) > t/r.

Proof F(ue — tf) is a quotient of Kx. By the exact sequences (12) and
(14), either c\(F{ue - tf)) or ci(F(ue - tf)) - e is effective. If we put
Ci(F(ue — tf)) = me + n / , then we have n > 0 by Lemma 3.3. Since
me + nf — (ue — tf)q = £(se + rf) by our assumption, we have n + tq = £r,
where we put q = r(F). Since r and t are coprime and since q < r, n = 0 is
impossible. Hence we have £r — tq = n> 0. •
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4 Proof of Proposition 1.1 and Theorem 1.2
First we prove (i) of Proposition 1.1, for which we do not need the results
of the preceding section. Let £ be a universal sheaf on S x S with S =
Ms(r, h, s). Any universal sheaf £' is isomorphic to 50TTJ^A for a line bundle
A on S. Hence we have

O = c2(S) + (r- l)Cl(£) U TT^A + ' v
 2

 V TT^A 2 , and

c™d(£') = c™d(£) + (r - 1)TTJ/I U TT^A,

where we put A = ci(A). Therefore, we have

<p' = ip + rA, 1// = ip + (r - l)/i2A

and

/ ; (r - l)/i2 , (r -

Since /i2 = 2rs, we have (i).
Now take a family (n: S —> T, £) of polarized K3 surfaces of degree 2rs

with the following properties:

(a) The classification morphism

T -> ^ r s + i given by t H-> (5t, Lt)

is dominant, where 5t is the fibre TT"1^) and Lt the restriction of £ to
St.

(b) There exists a point o £ T such that (5O, Lo) satisfies the conditions (*)
at the beginning of §3.

For example, these are satisfied by an open subset of the Hilbert scheme
of a suitable projective space FN. By virtue of [3], there exists a scheme 9JI
over T whose fibre over t G T is St = MSt(r,Lt,s). By [6], 9JI is smooth
of dimension 2 over T. Since r and 5 are coprime, there exists a (coherent)
sheaf £ on the fibre product S xT9Jl whose restriction to St x 5 t is a universal
family £t for every t ET.

Define tpt,ipt and ht G ffM(5t,Z) by

+ 7 r ^ t , ci(Lt) Ucfd{£t) =

and ht = ipt- 2(r -
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We have (hi) = 2rs by Lemma 3.7 and ho = s(po mod r by (13). Hence we
have (h2) = 2rs and /it = s(pt mod r for every t, which completes the proof
of Proposition 1.1.

Now we prove Theorem 1.2. Let (S/T,C) and M/T be as above. As
we saw in the preceding section, ho is primitive and ample, and £o is locally
free. (See Lemmas 3.6, 3.7 and Theorem 3.2.) Hence, replacing T by an open
subset containing o, we may assume that the following is satisfied for every
teT:

1. the divisor class ht on St is primitive and ample, and

2. £t is locally free.

In particular, we have (i) and (ii) of Theorem 1.2.
Note that the isomorphism [£]s: H*(S, Q) -» ff*(T, Q) in the diagram (4)

maps Hodge cocycles to Hodge cocycles since ch£ is algebraic. Therefore, St

and the moduli space St have the same Picard number (see [7], Theorem 1.4
for a more general result). Therefore, by our choice of <S, the set of points t
for which S* is Picard general is dense in T. Hence we have

3. (pt is a multiple of ht for every teT.

C l a i m 4 . 1 There exists a point teT such that £t\ $ is stable with respect

to ht for every x G St.

Proof Assume the contrary and let Z be the set of points x G S such that
the restriction of £n(x) to x x S^x) is unstable. This is a closed subvariety of
S and we have TT(Z) = T by our assumption. Take a morphism / : C —> Z
from a curve C and two points p and q G C such that 7r(/(p)) = o and S7T(f(q))
is Picard general. Let £c be the pullback of £ to C x^ 5DT. Then £c\xxS- is
unstable for every x G C. Let .F be a destabilizing subsheaf of £c, that is, an
extension to C XT 5PT of the destabilizing subsheaf over the generic point of
C (cf. [4]). Since ci(^ri x^) is an integral multiple of /i, so is ci(!F\ x^) . But
this contradicts Lemma 3.8.

By the claim and Corollary 2.3, if S = St is general, then the classification
morphism S —> M§ is an isomorphism onto a connected component, which
we denote by Mg(r,vh,w) for integers v and u>. Since Mg{r,vh,w) is of
dimension 2, we have 2rw = v2(h)2 and w = v2s by the formula

h\£ndE) - 2 dim End £ = -X(£ndE) = Cl(E)2 - 2r(E)(X{E) - r(E))

(cf. [6]). So we have proved (iii) and (iv) of Theorem 1.2. (v) is a consequence
of (iv) and Theorem 2.5.
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On symplectic invariants of algebraic varieties
coming from crepant contractions

Roberto Paoletti

1 Introduction

Let X be a smooth projective variety over the complex numbers; in standard
notation, N\{X) denotes the finite dimensional vector space of 1-cycles on X
modulo numerical equivalence. N\{X) contains the cone NE(X) of effective
1-cycles, generated by the classes of curves in X. In some geometric situations,
the effective cone of X provides important deformation theoretic invariants
of the manifold. For example, Wisniewski [Ws 2] observed that the halfcone
NE(X) n (Kxz < 0) is invariant in smooth families of projective varieties.
Recently, however, Ruan has used the theory of Gromov-Witten invariants to
show that, at least in dimension two and three, Mori extremal rays provide
invariants of algebraic manifolds in a stronger sense [Ru]. To describe his
results, let Y denote a complete C°° manifold of real dimension 2n, and let
Jo and J\ be integrable complex structures on Y such that Yo = (Y, Jo)
and Y\ = (Y, J{) are projective varieties. Then we say that Yo and Y\ are
symplectically deformation equivalent if there exists a family ut of symplectic
forms on Y such that UJ0 is a Hodge form on Yo (that is, i/2n times the
curvature form of an ample line bundle) and u\ a Hodge form on Y\. There
is a family of almost complex structures Jt joining Jo and Ji, such that Jt

is compatible with tjt for every t. If n < 3, Ruan proved that every Mori
extremal ray has a nonzero Gromov-Witten invariant, and so is common to
Yo and Y\. Thus Mori extremal rays are symplectic deformation invariants of
low dimensional projective manifolds.

In a related direction, Wilson [Wl 1] proved that the nef cone of a Calabi-
Yau 3-fold is locally constant in its Kuranishi family if and only if X contains
no quasi-ruled surface over an elliptic curve (see [W12] for definitions). In
[P 1], we proved a similar result for quasi-Fano 3-folds, that is, 3-dimensional
projective manifolds for which — Kx is nef and big: if X is a quasi-Fano
3-fold, then the nef cone of X is locally constant in the Kuranishi family if
and only if X contains no quasi-ruled surface over a smooth rational curve,
such that the canonical divisor Kx is trivial along the fibres, and descends to
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328 Symplectic invariants from crepant contractions

the canonical divisor of the base curve. The results of Ruan described above
then lead to the question of the symplectic deformation invariance of the
effective cone of these varieties. This problem was dealt with for Calabi-Yau
3-folds by Wilson in [Wl 2], where it was shown that two Calabi-Yau 3-folds
that are symplectically deformation equivalent have the same nef cone unless
one of them contains a quasi-ruled surface over an elliptic curve. Similarly,
for quasi-Fano 3-folds, the effective cone is a symplectic invariant unless X
contains a surface as above. More precisely, in this case, the effective cone of
X is finite rational polyhedral, and each edge (extremal ray) has an associated
nonzero Gromov-Witten invariant, except when the associated contraction tp
is crepant, that is, the canonical divisor is (/^-trivial, and the exceptional locus
is a quasi-ruled surface over a smooth rational curve C, such that Kx descends
to the canonical divisor on C. This statement follows from the arguments of
[P2].

In [P2], we applied these methods to associate symplectic invariants to
crepant extremal rays of 3-folds with Kx nef and big. For such 3-folds, the
face NE(X) n (Kxz = 0) of the effective cone is finite rational polyhedral,
and again, each edge of this part of the cone (crepant extremal ray) has
an associated nonzero Gromov-Witten invariant, unless something special
happens. Namely, the associated crepant contraction (see [Rd] for termino-
logy) should have as its exceptional locus a quasi-ruled surface over a smooth
curve C, with the property that the canonical divisor Kx descends to a
divisor of degree 2g — 2 on C, where g is the genus of C. In this case, the
integer d — deg(u;c <S> ^x1) is the number of rational curves in the fibres of
<p that deform with the almost complex structure. If the surface itself does
not generically deform in the Kuranishi family, then (morally) this is the
number of smooth rational curves in the exceptional locus of <p in a generic
holomorphic deformation of X. This is illustrated by the examples of [P 1]
and by the following.

Example 1.1 An element t G flrl(fipi) = C corresponds to a short exact
sequence 0 -* Opi -» Tt -* Opi(2) -> 0, and

j r o ^ O p l 0 O p i ( 2 ) , but ^ C V ( l ) ® 2 forJ^O.

Set £t = OpT1 © Tt and write Xt = P(£t*) for the corresponding P^bundle.
Then C*xt(l) is nef and big for all t\ indeed, it is globally generated because
£t is, and has top selfintersection number Ox t ( l ) r + 1 = 2 by the Leray-Hirsch
relation. Moreover, Kxt = Oxt(—(r + 1)), so that Xt is quasi-Fano for all t.
Let tyt' Xt —> Xt be the crepant birational contraction associated to \—mKxt\
for m ^> 0. Then ^ 0 is a divisorial contraction, contracting P1 x P r - 1 to
a subspace P r - 1 C Xo of canonical singularities, while tyt is small, with
exceptional locus P1 x Pr~2 contracted to a subspace P r"2 C Xt. For m > 0
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and i = 1 , . . . , r — 2, let V^t G |—raifxj De general, and set Vt = (XZi Vi,u
the Vt form a smooth family of projective 3-folds with Kx nef and big, and
{pt = ^t\v is the pluricanonical contraction of Vt. For each t write Ft C Xt for

the exceptional locus of Vu and Et = Ftf]Vt for that of <pt. Then Eo = P1 x C,
where C is a smooth complete intersection curve of type (ra , . . . , ra) in P r - 1 ,
and ipo contracts Eo to C. However, Kc = Oc(m(r — 2) — r) and Kyo\c =

Kc <8> Oc(—1)- For t 7̂  0, the contraction y?t is small, with exceptional locus
d = deg C copies of P1.

There may in principle be an exception to this, namely crepant contrac-
tions with exceptional locus a conic bundle surface whose generic fibre is a
line pair, that degenerates somewhere to a double line. This is because in
the case where Kx is nef and big one does not have such a good hold of the
embedded deformation of subvarieties as when X is, say, a Calabi-Yau. I do
not know of any example of this type associated with a discontinuity of the
effective cone.

The aim of this paper is to make a few scattered remarks about this
problem in the higher dimensional case. As above, we deal with varieties
for which either Kx or — Kx is nef and big, or Kx is trivial. Except in the
case Kx = 0, there is a built-in crepant birational contraction ^ : X —> X,
such that ±Kx descends to an ample Q-divisor on X, and thus the crepant
effective cone is the cone N\{X/X) C NE(X) generated by classes of curves
contracted by (p. In general, we define the crepant effective cone of X to
be the subcone NEcr(X) C NE(X) generated by those curves contracting
under some projective crepant contraction. This is a locally finite rational
polyhedral cone, whose edges correspond to primitive contractions, and when
±KX is nef and big we have NEcr(X) = NE(XfX). In this case, NEcr(X)
is the intersection of NE(X) with the hyperplane defined by Kx in Ni(X).
At any rate, NEcr(X) is locally finite rational polyhedral, and we name the
edges l{ of this polyhedron the crepant extremal rays of X.

We remark that in Theorems 1.2, 1.3 and 1.4 below, the assumption on
Kx is only needed to ensure that any given crepant extremal ray can be con-
tracted. We could easily avoid this assumption by starting from an extremal
contraction and its corresponding extremal ray.

We first look at the case that (p contracts a Pfc to a point.

Theorem 1.2 Let X be a smooth projective variety of dimension n > 3 for
which ±Kx is nef and big or trivial. Suppose that £ C N\(X) is an extremal
ray, either crepant or of Mori type, with associated birational contraction
(p: X —• X. Suppose also that the exceptional locus E C X of <p is isomor-
phic to Fk, and that its normal bundle splits as a direct sum of line bundles:
N (&"=! @Fk(—ai)- Then the ray £ is J-effective on all tamed almost
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complex deformations of X.

For example, if X is 3-dimensional and a crepant birational contraction
<p: X —> X has exceptional locus E isomorphic to P1, then any complex man-
ifold which can be deformed to X through a family of tame almost complex
structures has an effective curve homologous to E [W12]. Example 1.6 below
shows that in general the assumption that the normal bundle splits as a direct
sum of line bundles may not be omitted.

Theorem 1.3 Let X be a smooth projective variety and ip: X —> X a divi-
sorial contraction of an extremal ray £ of Mori type (that is, —Kx is ip-ample
[KMM]). Suppose that tp contracts a smooth P1 -bundle E —• B whose fibres
generate the ray £. If A is the homology class of a fibre of (p, then A is
J'-effective for any tamed almost complex deformation of the holomorphic
structure of X.

By [A], Theorem 2.3, the above contraction is simply a blowdown. The
situation is more subtle for crepant contractions:

Theorem 1.4 Let X be a smooth projective n-fold for which ±Kx is nef and
big or trivial, £ C N\(X) an extremal ray andip: X —» X its crepant divisorial
contraction. Assume that the exceptional locus E C X is quasi-ruled via cp
over Z = <p(E) C X, and that Z is smooth.

1. Ifci(uJx\E) ¥" (v^Yci^z), then the ray £ remains effective on all tame
almost complex deformations of the holomorphic structure of X.

2. Suppose that E does not deform generically in the Kuranishi family of
X. If u>x\E — iSP^Y^z, then the ray £ is not effective on a general
small holomorphic deformation of X.

We then look at the specific case n = 4:

Theorem 1.5 Let X be a smooth projective 4-fold for which ±Kx is nef and
big or trivial and h2(X, Ox) = 0, and suppose that the crepant effective cone
of X is not locally constant in the Kuranishi family of X. Then X admits a
primitive crepant birational contraction ip: X —• X. If (p is divisorial, then
(p contracts the exceptional locus E C X (necessarily irreducible) to a surface
S C X which is smooth in codimension one. In this case the following two
possibilities hold:

(a) away from finitely many fibres, E is quasi-ruled over S, meaning that
the fibres are either all smooth conies or all reduced line pairs; if S* C S
is the smooth locus, then us* — UJx\sJ

 or
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(b) the general fibre of E —• S is a reduced line pair, but there is a nonempty
divisor D C S over which the fibres of ip are double lines.

If on the other hand cp is a small contraction, then its exceptional locus is
2-dimensional and is contracted to a finite set in X; furthermore the normal-
ization of each irreducible component of the exceptional locus is isomorphic
toW2.

This is proved by combining (a slight variation of) an argument of Wis-
niewski [Ws2] with the results of [Wll], [PI] and [P2].

We illustrate the theorem by some examples:

Example 1.6 We give an example of a 4-fold admitting a crepant birational
contraction whose exceptional locus is isomorphic to P2 and for which the
crepant effective cone is not locally constant in the Kuranishi family. Let Qt

denote the rank 3 vector bundle on P2 obtained as the extension

For t ^ 0, this is the Euler sequence, so that Qt ^ Op2(l)®3 for t ^ 0, while
g0 9* Op2 0 TP2. Set Xt = P(£*), the relative projective space of lines in the
dual vector bundle Q%. This defines a smooth projective family X —• C, with
Xt ^ P2 x P2 if t ^ 0, and Xo ^ P(OP2 0 fi^). Set & = OXt(X)\ then & is
ample for t ^ 0 and globally generated for all t € C, since Qt is. Moreover, the
Leray-Hirsch relation ^ — ci(Tp2)f^ + C2(T)ft = 0 gives f£ = 6. The canonical
line bundle of Xt is uxt = 0xt(—3), and therefore Xt is a quasi-Fano 4-fold
for all t G C , actually Fano for t ^ 0. It is,"however, not Fano when t = 0: the
direct summand Of 2 c Go corresponds to a section XQ D F = P2, such that
Op{€) is trivial. Large positive multiples of £0 induce a crepant birational
contraction of Xo, whose exceptional locus F = P2 is contracted to a point,
and has normal bundle NE/X0 — fip2- Note that by taking branched covers
ramified along appropiate general multiples of £t one can turn this into either
a family of Calabi-Yau 4-folds or of 4-folds with nef and big canonical divisor.

Example 1.7 Let Pi(t) for i = 1,2,3 be distinct points in the plane, in
general position for t ^ 0 but collinear for t — 0, and denote by St the
blowup of P2 in the Pi(t)] then set Xt = St x 5, where S is any fixed quasi-
Fano surface. Then St is a del Pezzo surface for t ^ 0, while it is only
quasi-Fano for t = 0, and if £ C P2 is the line containing the Pi(0) then its
proper transform £ C So is a — 2-curve. Let 5o —> So denote the contraction
of £ to a rational double point Q e So. Then Xt is Fano for t ^ 0, while
Xo is quasi-Fano but not Fano. Hence there is a discontinuity in the crepant
effective cone, that is, some crepant extremal ray is effective for t = 0 but not
for general t. In fact, the divisor £ x 5 is the exceptional locus of a crepant
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contraction, where the factors £ x {P}, with P G 5, are the fibres, and the
image is {Q} x S C So x 5, a surface of cAi singularities. Note that similar
examples may be constructed using K3 surfaces or minimal surfaces of general
type, and then the families of 3-folds thus constructed are either Calabi-Yau
or have nef and big canonical divisor.

Example 1.8 Let P3 D A = P2 be a plane and D c A a smooth conic. Let
P(t) G P 3 \ D b e a point, such that P(t) £ A for t ^ 0, while P(0) G A.
Denote by Yt the blowup of P3 along C and P(t). Then Yt is a Fano 3-fold
for t 7̂  0, and —KyQ is nef and big but not ample. Thus the crepant effective
cone is not locally constant at the origin in the family. In fact, if A C YQ is
the proper transform of A and F C A is the exceptional divisor of the blowup
of A at .P(O), then A may be viewed as a rational ruled surface (= Fi, with
exceptional fibre F) of type (0,2) in the notation of [P 1]; it is the exceptional
locus of a crepant divisorial contraction X —» X, under which A is contracted
t o F c I . We now set Xt = Yt x P1; then Xt is a Fano 4-fold when t ^ 0, but
it is only quasi-Fano for t = 0. The divisor A x P1 is the exceptional locus of a
crepant morphism contraction, under which it contracts to F x P1 C l x F 1 .
Again, it is easy to modify this example so as to obtain families of 4-folds
with ±Kx nef and big or trivial, for example, using a family of Calabi-Yau
manifolds whose central fibre contains an elliptic ruled surface not deforming
sideways in the family [Wl 1].

Notation We recall some notation from the theory of J-holomorphic curves;
a more adequate reference is [MS]. Let (M,u) be any compact symplectic
manifold. We say that an almost complex structure J on M is compatible with
u if it preserves u> and if gx(v, w) = ux(v, Jw) (for x G M and v, w G TXM)
is a Riemannian metric on M. The almost complex structure J is uo-tame
if LJ(V, J(v)) > 0 for all tangent vectors ^ 0, and it is tame if it is u;-tame
with respect to some symplectic structure u. The space of all almost com-
plex structures on M compatible with u is contractible and nonempty; it is
denoted by J(My u). Having fixed J, and for A G H2{M, Z) a spherical class,
we denote by Ai(A, J) the space of all unparametrized J-holomorphic ratio-
nal curves representing A. The almost complex structure is called A-good if
for all J-holomorphic curves / : P1 —> M representing the class A we have
ffW(f*TM) = 0 and the space of cusp A-spheres has codimension at least
two [MS], [Ru]; if J is A-good, it may be used to actually compute the
Gromov-Witten invariants $A> A ray £ in f^-X^R) is called J-effective if it
is generated by an integral class for which the space of J-holomorphic curves
is nonempty. Occasionally we say that a J-effective ray is a jumping ray if
it does not remain effective under arbitrary small deformations of the almost
complex structure on X. Accordingly, a discontinuity of the crepant effective
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cone will mean a jumping ray belonging to the crepant effective cone, and
similarly for the Mori cone.

Finally, following Wilson [W12], we say that a projective surface E is
quasi-ruled if it admits a conic bundle structure E —> C over a smooth curve
C, all of whose fibres are either smooth conies or all line pairs.

Acknowledgments I am grateful to the referee for various improvements in
presentation, and for suggestions that led to the sharper version of Lemma 5.5
given here.

2 Proof of Theorem 1.2
We deal with the case n > 3, the case n = 3 having being treated in [Wl 2] (see
[P 2] for some remarks in the non Calabi-Yau case). The strategy of the proof
is first to show that under small deformations of the almost complex struc-
ture the excess dimensional moduli space of unparametrized J-holomorphic
curves in the given homology class is replaced by a tractable geometric ob-
ject: essentially the zero locus of a general section of the obstruction bundle
on the moduli space itself. We then use this identification to prove that some
associated Gromov-Witten invariant is nonzero, and therefore that the given
homology class remains effective under arbitrary tamed almost complex defor-
mations; this strategy is inspired by the work of Ruan [Ru] and Wilson [W12].
In the present context all the relevant moduli spaces are a priori compact and
smooth projective varieties, although our varieties are not necessarily weakly
monotone.

Notice first that, either by an elementary direct computation using ad-
junction or by [Wsl], Theorem 1.2, we have 2k > n — a with a = 0 in the
Mori case and a = 1 in the crepant case. (Theorem 1.2 is stated for Mori
extremal rays, but the proof works essentially just as well for crepant ones;
see the more detailed discussion below.) Given that n > 3, then k > 2 and
certainly a{ > 0 for all i\ this is because under the hypothesis, HX(E, N) = 0,
so that the Hilbert scheme of X is smooth at E, and thus if h°(E,N) > 0
then E must move in X, which is absurd. Let L C E = Pfc be any line, and
let A € H2(X, Z) denote the homology class of L. We then have a short exact
sequence of normal bundles

0 -> NL/E -> NL/X -> NE/x\L -> 0.

Given that NL/E ^ OL(l)k-1 and NE/x = @Ui°E(-ai)1 this extension
splits, that is, NL/X = OL{l)k~l 0 0 ? = 1 OE(-Oi) (here c = n-k). There-
fore, if J denotes the complex structure of X, then J is not good for the
class A in the sense of Gromov-Witten theory unless a* = 1 for all i. The
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moduli space M(A, J) of all unparametrized J-holomorphic curves coincides
with the Hilbert scheme of lines in Pfc, that is, with the Grassmannian
G = Grass(2,/c-f 1). Consider the incidence correspondence F C G x Pfc,
and let p: F —> G and q: F —> Pfc denote the projections. Then via p we may
identify F with the relative projective space PG(<S) of lines in the tautological
rank 2 bundle on G, and via q with Pp*= (Tp*).

For any given J-holomorphic curve L in the family (a line in E = Pfc),
let u: P1 -> X be a parametrization, and £>w: ^(^*TM) - • . / ^ ( U T M ) the
usual Fredholm operator of Gromov-Witten theory [MS], where A stands for
C°° sections, and AOil(u*Tx) = A(Q$i <g> u*(Tx)). Since the almost complex
structure of X is integrable, in a natural way kei(Du) = i f ^P^ i^Tx) and
coker(2?tt) ^ i / 1 ^ 1 ^ * ^ ) = Hl(F\NL/x) [MS]. Thus,

n—fc n—k

dimcoker(£g = ^ / i x ( L , OL(-Oi)) = ^ ( o * - 1).
t=i t=i

Besides, we have on the one hand deg(A^/x) = — Kx • L — 2, and on the other
deg(NL/x) = - J2Tk Oi+k-1, and therefore ^ i ' ^ °>i = Kx-L+k+l. Hence,
dim coker(Du) = Kx - L + 2k + 1 - n. Thus n - Kx • L - 3 -h dim coker(£>n) =
2A; — 2 = dim Grass(2, k -f 1). Therefore [Ru], Proposition 5.7 may be applied;
in fact, although the variety in question is not necessarily weakly monotone,
the moduli space at hand (the Grassmannian) is a priori smooth and compact.
For the purpose of computing Gromov-Witten invariants, the moduli space
of unparametrized J'-holomorphic curves, for J' a generic small deformation
of J, may be identified with the zero locus of a transverse section of the
obstruction bundle £ob on G = M(A, J). The latter, however, may in this
case be described purely algebraically: on F there is a short exact sequence

and fob = tfptiN). We have the exact commutative diagram

0 0

1 I
0 ->• TF/G —>• q*(Tfk) —> n -> 0

II I i
0 -» 7> / G —» g*(Tx) —^ ^ -» 0

0 0



Roberto Paoletti 335

and since Rlp*(7l) = 0 for all i > 0, we have

n—k n—k

i=l

On the other hand, with the identification F = P G ( 5 ) , we have q*OFk(-l) =
OF(-1). Therefore,

n—k n—k

-2(<S)®det(<S).

Now let s G *4(£ob) be a transverse section. If 5 is nowhere zero, then £ob has
vanishing top Chern class: cr(£ob) = 0, where r = X^(a* ~ !)• This however
implies that cr(£*b) = 0, that is, cr(®^T1

fcSymai"2(5*) <g> det(5*)) = 0. Set
H = det(5*); this is an ample line bundle on G. Then

( H)) =

however, since ®%Ii Symai~2(<S*) is globally generated, each of its Chern
classes may be represented by an effective cycle ([F], Chap. 14). Thus it is
clear that the above Chern class is not zero. More succinctly, since £*h is
ample and globally generated, and has rank strictly less than the dimension
of G, if 5 e if°(Grass(2, A: -I- l),£ob) *s a g e n e r a l section then its zero locus
Z = Z(s) is a nonempty, connected, smooth algebraic variety [F], [L]. This
shows that the ray £ remains effective under small deformations of the al-
most complex structure of X. We claim, however, the stronger statement
that the ray £ remains effective under arbitrary tamed almost complex de-
formations. To complete the proof, we now show that the Gromov-Witten
invariant associated to A is nonzero.

Consider the case of smallest possible dimension of the exceptional locus:
2fc = n — 1. In this case Kx • A = 0, that is, ip is a crepant contraction, and
the normal bundle of E in X is TV ^ ( ^ ( - l ) 8 ^ 1 ) . Therefore, any line L in
E has normal bundle

NL/x = OL(l)®(k-V 0 OL(-l)^k+1\

In particular, the complex structure of X is A-good, and may be used to
compute the invariant directly. To get a nonzero result we need to use a
2-point invariant, that is, we set p = 2 in [MS], Formula 7.1 on p. 93, and
get d = 4fc + 4 = 2(2A: + 2). Now let Hu H[ C X for i = 1 , . . . , k be general
hyperplane sections of X, to fix ideas, in the same very ample linear series
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on X, and set V = ft n • • • n Hk and V = H[ n • • • H i?£. Then [V] =
[V] e H2k+2(X,Z), and V (1 E, V1 n £ are two reduced finite subschemes,
consisting of points {p^} and {p^}, say. The invariant <1>A([V], [V]) then counts
the number of lines in E joining some pi with some p'j, and this is a positive
number.

In all other cases we may write n = 2k — h, with 0 < h < k. According
to [MS], Formula 7.1, for p = 2 we have

d = 2(n - 1) + 4 - 2ci(A) = 2 (k - h +
k-h

Let F C -E be a linear subspace of dimension c = n — k = k — h. I f E c X i s
a general representative for the homology class D G H2(k-h){X, Z) of F, then
E meets E in a finite number of points {pi}, which counted with multiplicity

is ( - l ) f c - f c n ? = N - Se t d i = 2 ( f c " h ) a n d d2 = d - h = 2J2ki~iai' W e

need to produce a class of dimension d2, that is, of codimension 2n — d2 =
2(fc " Etf toi "I))- Let 5 = k - Ztii^i - 1), and V = ffi n • • • n ft,
where the i^ are general very ample divisors in X. Then V D E1 is a smooth
complete intersection subvariety of E = Fk of dimension YMZI^ ~ ^)- ^
some di > 1, the structure is not good, and as above, we need to consider the
zero locus of a transverse section 5 of the obstruction bundle. If Z = Z(s)
is such a zero locus, and Z the family of all parametrizations of lines in Z,
there is a pseudo-cycle ([MS], Chap. 7) given by the 2-point evaluation map:

ev2: Z x c f P 1 x P1) -> X x X,

where G = PGL(2, C). The Gromov-Witten invariant $ A ( [ V ] , [D]) may then
be computed by taking suitable intersection numbers with this pseudo-cycle
([Ru], Proposition 5.7); in particular, Z may be replaced by any subvariety
representing the same homology class. On the other hand, by changing the
orientation of Z we change at most the sign of these intersection numbers, and
therefore by identifying £.oh (as a real bundle) with its dual by some choice of a
Hermitian form, we may replace Z by the zero locus of a transversal section of
£*h. Then Z represents the top Chern class of £*b, which decomposes as above
as a sum of terms ci(H)r-kck(®"Ii Symai~2(5*)). The relevant intersection
numbers do not change if we replace Z by a sum of pseudo-cycles Zfc, with each
Zk representing one such term. Each Zk may be represented as an intersection
of Schubert cycles, and upon choosing the underlying flag sufficiently general
we may assume that all relevant intersections are transversal, and then that
the contribution of each Zk to the total intersection number is a nonnegative
multiple of (—l)h~h f l i- i ai- Hence to prove that the total invariant is nonzero
it is sufficient to show that the contribution due to ZQ does not vanish. Now
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Zo represents Ci(A)r, where r = Y!lZi(^j ~ 1). Define W = Ck+1 so that
E = F(W), and let

c w2
(i) c • • • c W&

be general complete flags for i = 1,.. . , 5Z?=i*(at ~ !)• We may then set

where for each i we have

G^W®) = {LG Grass(2, W) | L n P ( ^ ) ± 0}.

For every given point p G E1, the lines through p lying in the family ZQ sweep
out a linear subspace II C E of dimension A: — 5Zi:Zi (aj ~ -0- Therefore II
meets V D E in a positive number of points {q3; }. The contribution of Zo
toward the invariant ^([V], [D]) is then (—l)k~h Yl^Ii en times the number
of lines joining pi with some q^ , and is therefore nonzero. Q.E.D.

3 Proof of Theorem 1.3
Let F = P1 C X be any fibre of E over its image Z = (p(E) C X. Then we
have the short exact sequence of normal bundles

0 _> oj-2 _^ Np/X ^ OF{E) -> 0;

on the other hand, letting k = —Kx-F > 0, we have deg(Np/x) — ^—2 > —1.
Hence, because — E is ^-ample ([KMM], Cor. 0-3-5), we have E • F = — 1
and therefore the above sequence is split: Np/x - ®F~2 = OF(-I)- In
particular, C\(F) = 1 and the holomorphic structure of X is A-good, where A
is the homology class of F, and furthermore the moduli space of holomorphic
curves in the class A is scheme theoretically isomorphic to the base manifold
<p(E). [MS], Formula 7.1 with p = 2 now gives d = 2(n - 1) + 2. Let
i/ C X be an ample divisor on X\ then $^([F], [H]) computes the number
of triples ( ,̂̂ 1,̂ 2)5 where u: P1 —> X is J-holomorphic and 2:1,2:2 € P1,
it(^i) G .E1 and ^(^2) G H, taken with multiplicity and modulo the action of
PGL(2,C). These add up to the product of the intersection numbers, that
is, {F - E)(F - H) ^ 0. Q.E.D.

4 Proof of Theorem 1.4
Suppose that the crepant extremal ray £ C Ni(X) and its primitive contrac-
tion {p: X —> X are as in the statement of the theorem. Suppose first that
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the exceptional locus E is a P1-bundle over its image Z = <p(E) C X, and let
A e H2{X, Z) denote the homology class of a fibre. If Jo is the complex struc-
ture of X, then the moduli space M.(A, Jo) of unparametrized holomorphic
curves representing the class [A] (that is, the component of the Hilbert scheme
of X containing the point associated to a fibre of E —• Z) is isomorphic to
Z. If, on the other hand, E is a conic bundle over Z all of whose fibres are
reduced line pairs, then the normalization E —> E is a P1-bundle over an etale
double cover Z —> Z. In this case, let A G ^ ( X , Z) be the homology class
of the irreducible component of any fibre; then the moduli space M(A, Jo) is
isomorphic to Z. This is clear set theoretically, and from a scheme theoretic
point of view it follows from the following:

Lemma 4.1 Let F = P1 C E be an irreducible component of any fibre of
(p\E. Then the normal bundle of F in X is NF/X = £>®(n~2) 0 OF{-2).

Proof Suppose first that E is a Px-bundle over Z = <p(E), with Z smooth.
Then we have the short exact sequence 0 —• NF/E —> NF/x ~* NE/x\F -» 0.

Furthermore, NF/E ^ O${n~2) and NE/x\F = OF{E) = uF; hence the above

exact sequence is 0 -» QF
{n~2) -* NF/X -» OF(-2) -> 0, which is split.

The argument in the case where all the fibres of E are reduced line pairs is
similar. Q.E.D.

This shows that h°(NF/x) = n — 2 for all irreducible components F of a
fibre of ipiE, and therefore that M(A, Jo) is indeed isomorphic to the smooth

variety Z (or Z) with its reduced structure. Thus Ai(A, Jo) does not have
the expected dimension, and in fact the holomorphic structure of X is not
A-good in the sense of [MS]. However, as in the proof of Theorem 1.2, we
can rely on [Ru], Proposition 5.7 to relate the moduli space M(A,J) for
generic J to the obstruction bundle on M(A,JQ). This is because on the
one hand each fibre F maps immersively into X, and on the other, since
coker(£>u) ^ Hl(F,NF/x), we have

2c1(A) + 2n - 6 + dimcoker(£>u) = 2n - 6 + 2 = 2(n - 2) = dimR M(A, Jo),

so that the assumptions of [Ru], Proposition 5.7 are satisfied. Therefore, for
a generic nearby almost complex structure J on X, it follows that M(A, J)
is oriented cobordant to the zero set of a transverse section of the obstruction
bundle £. So as above our next step is to identify the obstruction bundle on
Z (or Z); this is a rank 2 real vector bundle over Z.

Lemma 4.2 Let Z = Z when E is a P1 -bundle over Z, and let Z be the
etale double cover of Z which is the base variety of E when the fibres of E
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are all line pairs; let f: E —> X be the induced immersive morphism. Note
that f*(Jx naturally descends to a holomorphic line bundle on Z, that we still
denote by LJX- The obstruction bundle on Z is then given by £ob = o;̂  1

Proof Let T^jZ C Tg denote the subbundle of vertical tangent vectors, that

is, Tftiz = ker{d7r: Tg —> ir*Tz}, where TT: E —> Z denotes the projection.

For every fibre F C E, clearly T^/Z\F - TF- Let also N be the rank n - 1

bundle on Z defined by the exact sequence 0 —•> T^^ ~^ f*Tx —> iV —» 0,

so that for each F there is an isomorphism N\p = Np/x- The obstruction

bundle on Z is then FPn+N. On the other hand, it is easily seen that there
is an exact sequence 0 —> TT*TZ —> N ^> U>E <8> w'x' """* 0> from which it follows
that R}n*N = u>z® o^1. Q-E.D.

Thus if the first Chern class of the obstruction bundle is not zero, Ruan's
result shows that the class A is represented by some J-holomorphic curve
for a generic almost complex structure J on X which is sufficiently close to
Jo- To complete the proof of (1), we show that a Gromov-Witten invariant
associated to the ray £ is not zero. Since by assumption ci(uz) ^ CI(CJXU),

there exists some irreducible curve C C Z such that c\(uz) • C ^ ci(ux\z) • C.
Now let L be some sufficiently positive line bundle on Z such that both UJZ<&L

and wx\z ® L are very ample, and pick smooth divisors

V\ e \OJZ 0 L\ and V2 e \LJX\Z <8> L\\

moreover, let V\ and V2 C M(A, Jo) be the family of all parametrizations of
Jo-holomorphic curves contained in V\ and V2, respectively, and consider the
surface C = <p~l(C) C E, whose homology class we denote by D e H^(X, Z).
Since — E is ip-ample ([KMM], Cor. 0-3-5), a general representative F C X
of the homology class of the irreducible component of a fibre of E over Z
meets E in a finite number of points, with multiplicities yielding a negative
intersection number. If on the other hand we take a general representative
of the homology class of C, say E C X, then E meets E along a smooth
subvariety C" of real dimension two, whose image in Z is homologous to a
multiple of C, say <£*([C/]) = a[C] for some a ^ 0. Consider the 2-point
evaluation maps

ev£}: Vi xPGL(2) (P1)2 -+XxX for i = 1,2,

each of which determines a pseudo-cycle in X x X ([MS], Chap. 7). Given
that [MS], Formula 7.1 for p = 2 yields d = 2(n — 1) -I- 4, we may consider
the Gromov-Witten invariant <&A(D, [#]), where A is the homology class of
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a fibre of E over Z, and [H] denotes the class of some hyperplane section
of X; our discussion shows that this invariant is determined by taking the
difference of the intersection numbers related to the above pseudo-cycles. If
Vi = ip~l{Vi), then the image of ev^ is the fibre product Vi Xz V\. The
points of intersection between the pseudo-cycle ev2 and E x H are the pairs
(zi,z2) such that (p(zi) = ipfa) G Vi and (zi,z2) G C" x H. In particular,
for a given z\ G V; fl C", the second component z2 may range over the points
of intersection of H with the fibre through z2\ furthermore, the intersection
multiplicity at the pair (zi,z2) is given by the intersection multiplicity of E
and Vi, and this is the same as the intersection multiplicity (in E) of the
Cartier divisor Vi and C. Summing up, the value of the invariant is

*A{D, [H]) = a(F • H)((Cl(wz) -

which is nonvanishing by construction.
To prove (2), one may argue as in [Wll], proof of Proposition 4.4 and

erratum. For simplicity, let us consider the case where E is a P1-bundle
and the first obstruction to the deformation of E in a given 1-parameter
family of deformations of X, say X —> A, occurs at first order. Then the
Kodaira-Spencer class 6 G Hl(X,Tx) of the given family has a nonzero
image in Hl(E,NE/x) = H1(X,UJE 0 ^ ) - Let P1 ^ F C E denote
an arbitrary fibre of <p\E\ the claim will be proved if we can show that 0

does not map to zero in Hl{F,Np/x)- We have however already seen that
NF/X = NF/E © OF(E), so that H\F,NF/X) * H\F,NE/X\F). Hence,

the map Hl(X,Tx) -> Hl(NF/x) is in fact the composite Hl(X,Tx) -»

Hl(E,NE/X) —¥ H1{F,NE/X\F)- Given the hypothesis, then, it is suffi-

cient to show that Hl{E,NE/X) —> Hl(F,NE/X\F) is an isomorphism. But

Hl(F, NE/X\p) = £o\>(x), where x = ip(F) G Z and £oh = UJZ®^X
1 is the ob-

struction bundle, while on the other hand, by relative duality Hl(E, NE/X) =

Hl(E,UJE ® a;^1) = H°(Z, Luz ® CJ^1), and the map

H\E,NE/X) * H\Z,£oh) - H\F,NE/x\F) = fob(x)

is section evaluation. If </? is critical, that is, LJZ ® wx
x is trivial, this is an

isomorphism. Q.E.D.

5 Proof of Theorem 1.5
Any 1-parameter family of deformations X —> A of X = Xo may be assumed
to be projective, perhaps after restricting to a smaller open disc. In fact,
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by [KS], Theorem 15, after restricting A to a smaller open disc we may as-
sume that every fibre Xt is Kahler. The condition that H°'2(X) = 0 implies
H2(Xt,R) = H^1(Xt) for all t; therefore an integral class of type (1,1) re-
mains of the same type on Xu for t G A. If if is a very ample line bundle
on X with Hl(X, H) = 0 for i > 0, by taking a local section in a suitable
Jacobian bundle we may extend if to a family of line bundles H over X. By
openness of the ample condition, Ht is very ample on Xt for sufficiently small
£, with a linear system of the same dimension.

Let £ be a crepant extremal ray of X and ip: X —> X its contraction. If
E C X is the exceptional locus of ip, by [K], Theorem 1, E is covered by
rational curves. We then write £ = R>o[C], where C C X is an unbreakable
rational curve (see e.g., [BS] for terminology). If furthermore A is an ample
line bundle on X, then A = <p*(A) is a nef and big line bundle on X supporting
(p; since X has only canonical, hence rational, singularities, we may assume
that Hl(X, A) = 0 for all i > 0. Then by the above argument A deforms to
a family of line bundles A on X. Restricting the base of the deformation if
necessary we then see that the linear series \At\ may be assumed to have the
same dimension as \A\ for alH G A. Hence there is a family of morphisms
<1>: X —> X over A, which for t = 0 yields ip: X —» X. By openness of the
ample condition, the ray £ is not effective on Xt for t ^ 0 if and only if (pt is
an isomorphism for t ^ 0.

Since a 1-parameter family of deformations X —> A of X = XQ is necessa-
rily differentiably locally trivial, perhaps after restriction, we may assume that
W(X, Z) ^ H'{X, Z) and Hj(X, Z) ^ Hj(X, Z). Given that H2(X, Ox) = 0,
furthermore, we have i V 1 ^ ) ^ H2{X,R) and so, dually, NX(X) ^ H2{X,R).
Hence, there are isomorphisms Ni(X) ^ NX(X) and Nl{X) ^ TV1^); the
former induces an inclusion NE(X) C NE(Af/A). In this situation, the rela-
tive crepant effective cone NEcr(A'/A) C NE(Af/A) is the subcone generated
by those relative crepant rays £ for which there exists a crepant relative con-
traction tp: X -» ~X over A, such that NE(X/X) = R>o[£]. Clearly, the above
shows that NEcr(A7A) D NEcr(X).

Lemma 5.1 Let X be a smooth protective manifold and n: X —> A a one
parameter family of deformations of X. If ±Kx is nef and big then, per-
haps after restricting the base to a smaller open disc containing the origin,
NEcr(Af/A) C NEcr(X). If Kx is trivial, the same conclusion holds over the
complement of at most countably many points in A \ {0}.

Thus the crepant effective cone of X is generically constant in the Kura-
nishi family if and only if each of the crepant extremal rays of X remains
effective on the generic small deformation of X\ in fact "generic" may be
omitted when ±Kx is nef and big, while it stands for "on the complement of
a countable union of subvarieties of B \ {0}" if Kx is trivial.
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Proof Suppose that ±Kx is nef and big. After replacing B by a smaller
open neighbourhood of the origin, we may assume that ±Kxb is semiample
and big, and N^Xt) = H2(X, R) for all b€ B. Fix an ample divisor H C X.
Since ±KX is nef and big, if n ^> 0 there exists an effective divisor A C X
such that ±nKx = H + A. Thus £ • A < 0 for any crepant extremal ray.
After replacing A by a suitably small positive rational multiple, (X, A) has log
terminal singularities ([KMM], §0). By [KMM], §4, the effective cone NE(X)
is locally finite rational polyhedral in E = {£ : £- (Kx + A) < 0}, and therefore
finite rational polyhedral in a suitable neighbourhood of the hyperplane A
of #2(X, R) defined by [Kx]> Thus, it is bounded in this neighbourhood
by rational faces Fi,...,Ffc of codimension one in H2(X,R). Each F{ is
cut out on NE(X) by some nef divisor A^ let F* = {Ai • z > 0}. Then
NEcr(X) = A n f|i Tj. Set Ai := A ± rKx for some r > 0; then A{ is big and
semiample, and if fi = {Ai'Z>0}1 then NEcr(X) = A n f|»r». For every
z, a suitably large positive multiple of Ai extends to a family of relatively
globally generated line bundles on the family. Hence for each i there is a
relative crepant contraction ipi: X —* X{ over A extending <p. Therefore

k

C P | Hi HA.

In particular, NE(A&) C F» for all b G 5 sufficiently close to the origin,
therefore NEcr(X&) C NEcr(X). The crepant effective cone is not locally
constant in the family if and only if one of the edges (crepant extremal rays)
i ? i , . . . , Ri of NEcr(X) is not effective on Xt, when b G B is general.

Suppose next that Kx is trivial. The statement then simply follows from
the fact that if a class £ G H2(X) is not effective, then the locus in A over
which it is effective is at most countable. Q.E.D.

We need the following slight variant of [Wsl], Theorem 1.2:

Proposition 5.2 Let X be a projective n-fold for which ±Kx is nef and big
or trivial, £ C N\(X) a crepant extremal ray of X and <p: X —• X its crepant
primitive birational contraction. Let X —> A be a 1-parameter family of holo-
morphic deformations of X, and <1>: X —> X a crepant birational contraction
over A extending (p. Let E C X be the exceptional locus of $, and E\ C E
an irreducible component. Suppose that F C E\ is an irreducible component
of a fibre of the restriction cp\E . Then

dim Ex + dim F > n. (1)

The proof is identical to the proof given by Ionescu [Io] and Wisniewski
[Ws 1] of the corresponding inequality

dim Ei + dim F > n + length £
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in Mori theory (here n = dimA* — 1). Since however we need to tell when
equality holds, we recall briefly the argument of [Wsl], p. 144. Pick a gen-
eral point x G F and let F D Co 3 x be a rational curve minimal among
the rational curves contained in F and passing through x, in the sense that
it minimizes the intersection number with some fixed ample line bundle on
X. Now let T be an irreducible variety parametrizing the embedded defor-
mations of Co C X, as constructed in [Io], and V C X x T the incidence
correspondence, with projections p: V —> X and q: V —> T. The standard
Riemann-Roch estimate yields dimT > n — 2 and therefore d imF > n — 1.
On the other hand, dimp~1(x) < d imF — 1: as in [Wsl], claim on p. 144,
this follows from Mori's breaking lemma and the minimality assumption on
C. Therefore, d im^i > dimp(V) > dim V — dimp~1(x) > n — dimF, and
this is the claimed inequality. We see furthermore that equality holds in (1)
if and only if p(V) = E\ and the general fibre of p: V —• X has dimension
d i m F - 1 .

We next recall [Ws2], Key Lemma 1.1, which in the present context we
may rephrase as follows:

Lemma 5.3 Let X be a smooth protective variety for which ±ATx is nef and
big or trivial and h?(X, Ox) — 0. Let £ be a jumping crepant extremal ray of
X and (f: X —> X its crepant birational contraction, and let E C X be any
irreducible component of the exceptional locus of (p. Then

2 dim E - dim (p(E) < n.

By Proposition 5.2 and Lemma 5.3, we have:

Corollary 5.4 Let X be a smooth protective n-fold for which ±Kx is nef
and big or trivial and h?(X, Ox) = 0. Let £ be a jumping extremal ray of X
and (p: X —• X its crepant birational contraction. If E C X is any irreducible
component of the exceptional locus of (p, then 2dim£' — dim <p(E) = n. In
particular, ifn — A then the exceptional locus of(p is either a union of surfaces
mapping to a finite set, or a 3-fold mapping to a surface.

Lemma 5.5 Let X be a smooth projective 4-fold for which ±Kx is nef and
big or trivial and h2(X,Ox) = 0. Let £ be a jumping ray on X, and as-
sume that the associated crepant contraction ip: X —• X is small. Then the
normalization of any irreducible component of the exceptional locus of ip is
isomorphic to P2.

P r o o f Let F C Ebe any irreducible component and x G F a general point,
lying in the smooth locus of Fred- Pick a rational curve F D Co 3 x of
minimal degree with respect to some fixed ample line bundle among curves in
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F through x (see [K]). Since equality must hold in (1), in the notation used
in the discussion following Proposition 5.2 we must have dimp~1(x) = 1, so
that dim V = 3. Setting 6y = dimp""1^) for y G F, it thus follows that 6y > 1
for any y G F . On the other hand, suppose that Sy > 2 for some y G F\ then
dimV^ > 3, and therefore every curve in the family T through x also passes
through y, and by the nonbreaking lemma, this contradicts the assumption
that Co is minimal. Thus Sy = 1 for every y G F.

(I am indebted to the referee for the concise argument used in the rest
of the proof.) Again referring to the notation used after Proposition 5.2,
in this case dimT = 2 and no point of F lies on all curves of the family.
Let F ' , T", V be the normalizations of F, T and V respectively, with the
induced morphisms q': V -* V and p': V -» F1. If F" -> F' is a minimal
desingularization of F , we have H\F, Op") = 0 for i = 1, 2, so that algebraic
and rational equivalence of divisors coincide on F". Let C C F' be a curve
from T" disjoint from the singular locus of F' , and C" C F " its inverse image.
By the above observation, the linear system \C"\ contains all deformations of
C C F' disjoint from Fs'ing; thus the map \C"\ —> V\ which is birational, is
an isomorphism, and therefore \C"\ = P2 = V. This linear system is base
point free, and therefore its general representative is a smooth rational curve.
By Riemann-Roch, since ti(F'\OF»(C")) = 0 for i > 0, ( C " , C " ) F " = L

Thus two general curves in the family T' are = P1 and meet at exactly one
point. Now let T'x C T' be the subfamily parametrizing those curves through
x; then T'x = (IZT̂ (Ĉ ) | = P1. By minimality, the incidence correspondence
V D Vx -+ Tx is a P^bundle. By the above, the induced map V'x -> F' is
birational and contracts a section to x; since however x is a smooth point of
F; , we conclude 1/' ^ Fi and F ' ^ P2. Q.E.D.

The proof of the theorem is then completed by the following:

Proposition 5.6 Let X be a 4-fold for which ±Kx is nef and big or trivial
and h2(X, Ox) = 0. Suppose that £ is a crepant extremal ray whose contrac-
tion ip: X —> X is divisorial. If (p is not as in the critical cases (a) and (b)
of Theorem 1.5, £ is not a jumping ray (that is, it remains effective on all
small deformations of X).

Proof Let E C X denote the exceptional divisor of y>, which is an irre-
ducible 3-fold, and set S = (p(E) C X. Then 5 is a surface of canonical
singularities of X. Given a 1-parameter deformation a: X —> A of X, we
prove that if ip is not critical then £ is effective on Xt, for all t close to the
origin. Let A G Pic(X) be a sufficiently positive very ample line bundle
such that H\X,A) = 0 for all i > 0, and set A = ip*(A). Fix a general
section o_ G H°{X,A), and set a = ip*o G H°(X,A). Set Y = div(a),
Y = (p*Y. Then Y is a smooth 3-fold, with nef and big canonical divisor
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Ky = (Kx + A)\y, and the restriction <p\y is a crepant birational contrac-
tion, whose exceptional locus is the surface Z = E D Y and is contracted to
the curve C = S C\Y. The ray £ is then the image of an effective ray £' on
Y, which is represented by the irreducible components of the fibres of the
conic bundle Z —> C. Arguing as at the start of the proof of Theorem 1.5,
perhaps after restricting the base A, we may extend A to a family of globally
generated line bundles A on X, such that dim \At\ is constant. By taking a
suitable local section of a*(.4), and the corresponding divisor, we obtain a
smooth family of 3-folds y C X with Yo = Y. Therefore, in order to prove
the statement it suffices to note that, by the results of [P2], if <p is not crit-
ical then the ray £' remains effective on all sufficiently small deformations of
Y. Q.E.D.
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The Bogomolov-Pantev resolution,
an expository account

Kapil H. Paranjape*

Statement of the result
Bogomolov and Pantev [3] have recently discovered a rather elegant geometric
proof of the weak Hironaka theorem on resolution of singularities:

Theorem 0.1 Let X be a projective variety and Z a proper Zariski closed
subset of X. There is a projective birational map e\ X -> X such that X
is smooth and the set theoretic inverse image e~1(Z) is a divisor with simple
normal crossings.

Before their work, and that of Abramovich and de Jong [1] (appearing at
roughly the same time) the only proof of this theorem was as a corollary of
the famous result of Hironaka [5]. These new proofs were inspired by the
recent work of de Jong [6], which Bogomolov and Pantev combine with a
beautiful idea of Belyi [2] "simplifying" the ramification locus of a covering
of P1 by successively folding up the P1 onto itself, over a fixed base. This
latter step unfortunately only works in characteristic zero, limiting the scope
of the argument (Abramovich and de Jong's paper gives some results even
in characteristic p). Hence, we work over the field of complex numbers; the
argument also works (with suitable modifications about rationality) over any
field of characteristic zero.

The outline of the argument we follow is the same as that of the paper
of Bogomolov and Pantev; however we offer different (and we hope simpler)
proofs of the corresponding lemmas. To begin with, their argument using
Grassmannians is replaced by an application of Noether normalisation in
Section 1. Belyi's argument to reduce the degree of individual components
of the ramification locus is presented in purely algebraic form in Section 1,
Lemmas 1.3 and 1.4. The presentation of Bogomolov and Pantev refers to

*The author thanks the University of Warwick for hospitality during the period when
this work was done.
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348 Bogomolov-Pantev resolution

"semi-stable families of pointed curves of genus 0"; the precise result required
from that theory is proved here by means of blowups in Section 2. Finally
we also give a summary (in Section 3) of the desingularisation of toroidal
embeddings which is used by both the papers [3, 1]. To summarise, the aim
of this account is to give all the details of the argument, so that it should
be accessible to anyone with a basic knowledge of algebraic geometry (as
contained for example in Mumford's book [8]).
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Trivial reductions

We begin the proof with some trivial reductions.

0.1 We may assume that X is normal.

0.2 Any normal curve is smooth and any proper closed subset of a smooth
curve is a simple normal crossing divisor (!). Hence the result is true in
dimension 1.

0.3 We prove the theorem by induction on the dimension of X. Thus we
may assume that n = dimX > 1 and that the result holds for all
varieties of smaller dimension than X.

0.4 We can blow up X along Z if necessary, and so we may assume that Z
is of codimension 1 in X.

1 P1-bundles
We will prove the following:

Claim 1.1 After replacing X by X', where the latter is the blow up of X at
a finite set of smooth points we have:

1. There is a finite surjective map f: X —> Py(F), where Y is smooth and
F is a rank 2 vector bundle on Y.
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2. The branch locus of f is contained in the union B — UiLi5*(^) °f a

finite number of sections s{: Y -» VY(F) of the P1 -bundle FY{F).

3. The image f(Z) of Z under f is a divisor contained in B.

Lemma 1.2 After replacing X by its blowup at a suitable finite set of smooth
points, we have the following situation. There is a smooth variety Y, a line
bundle L and a finite surjective map g: X -> Q = FY {O 0 L) such that if E
denotes the section corresponding to the quotient homomorphism O(&L —> O,
then there is a divisor B C Q disjoint from E and containing g(Z) and the
branch locus of g.

Proof This is essentially just Noether normalisation. Let X c->- FN be a
projective embedding of X and L — f>N~n~l a linear subspace in P^ that
does not meet X, where n = dimX. The projection from L gives a finite
map X —> P71. Let B be the hypersurface in P71 that contains the image of Z
and the branch locus of the map. Let p be a point of P71 not on B. Replace
X by its blowup at the points lying over p (which are all smooth) and let
Y = P71"1 with L = O{1). The blowup of P71 at p is naturally isomorphic
to Py(O 0 L) and the resulting morphism from X to this P^bundle has the
required form. D

Now B is a divisor in the P^bundle Q —>• Y that does not meet a section
E. Thus the projection B -> Y is finite and flat. In fact we have:

Lemma 1.3 In the above situation, if OQ(1) denotes the universal quotient
bundle, then OQ(B) = OQ(O) where b is the degree of the map B —>Y.

Proof Consider the line bundle OQ(B) 0 OQ(—b). Since this line bundle is
trivial on the fibres of Q —> V, it is the pullback of a line bundle from Y. But
it restricts to the trivial bundle on E, which is a section of Q —> Y. Hence it
is the trivial line bundle. D

Set Q = P y ( 0 0 L), and let B be a divisor in Q which is finite over
Y\ assume moreover that B = B\ U U!=isi(^O> w n e r e si a r e sections, and
Bi does not meet E. Now let d(B) denote the maximum degree over Y of
any irreducible component of Bi and m(B) the number of components of this
degree. We wish to construct a new map X -> Q' = Py (O®LN) for which B\
is empty. Thus we may assume that d(B) > 1 and m(B) > 0. The following
lemma shows that we can arrange for at least one of these numbers to drop,
and that completes the required inductive step.

Lemma 1.4 There is a map h: Q ->- Q1 = FY{O©Ld) such that if B1 is the
union of h(B) and the branch locus of h then (d(B),m(B)) > (d(B'),m(B'))
in the lexicographic ordering.
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Proof Let A be an irreducible component of B\ of degree d = d(B) and
consider the two maps OQ —>• OQ{O]) and LQ -> OQ(d) given by A and d • E.
Since these two divisors do not meet, the direct sum OQ 0 LQ -» OQ(d)
is surjective. Thus, by the universal property of Q' we obtain a morphism
Q —> Q' which on every fibre is a map P1 —> P1 of degree d. Its ramification
divisor R has the form R = (d — 1)E + R! for some divisor i?' that does not
meet E. Moreover, the Hurwitz formula on the general fibre P1 (equivalently,
computing the canonical divisors) gives OQ(R') = Oq(d — 1). Thus we have
the required result. •

We compose the morphism obtained from Lemma 1.2 with a succession
of morphisms obtained from Lemma 1.4. By the latter lemma the pair
(d(B),m(B)) can be reduced until eventually B\ becomes empty and thus
the composite morphism / is as stated in Claim 1.1.

2 Genus 0 fibrations
We will prove the following:

Claim 2.1 We can replace X by a blow up X' so that:

1. There is a finite map f:X—>W with W smooth.

2. The union of the image f(Z) of Z and the branch locus of f is contained
in a divisor D with simple normal crossings (or strict normal crossings).

For completeness, we recall the definition of a simple normal crossing divisor
D in a smooth projective variety. If D = \J"=1 A is the decomposition of the
divisor into irreducible components, then for each / C { 1 , . . . , n} the scheme
theoretic intersection Dt = f]ieI Di is reduced and smooth of codimension
equal to the cardinality # / of the set / .

Write g: X -» P = Py(F) for the map constructed in Section 1 and let
{sj™ i be sections of P -» Y such that the union (J^a Si(Y) contains g(Z)
and the branch locus of g. Let

be the divisor in Y obtained as the image of the pairwise intersections of the
sections. We apply the induction hypothesis 0.3 to obtain a map Ey: Y -> Y
such that the inverse image Zx = Syl{Z) is a divisor with simple normal cross-
ings in Y. Replacing Y by Y and P by its pullback, we obtain a configuration
with the following properties (A):
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(1) p: P —> Y is & flat morphism of smooth varieties whose reduced fibres
are trees of projective lines P1 (in other words, p is a genus 0 fibration);

(2) we have a finite collection {si}^ of sections of p such that

where Z\ is a divisor with simple normal crossings in Y\

(3) the morphism p is smooth outside p~1(Zi) and the latter is a divisor
with simple normal crossings.

We wish to perform a succession of blowups resulting in a configuration still
having the same properties, but with the sections disjoint.

For each component C of Z\ and each section s», the image C = Si(C) C P
is a codimension 2 subvariety. Write n(C) for the number of j such that
Sj(C) = C', and rip for the maximum of such n(C).

Lemma 2.2 Let C be so chosen that n(C) = rip. Then for any j , either
Sj(C) = C' orSj{Y)nC = <b.

Proof Suppose j is such that Sj(Y) n C is a proper nonempty subset of
C", and let C" be an irreducible component of this intersection. Choose i so
that Si(C) = C", let D' be a component of Si(Y) n Sj(y) containing C", and
denote by D the image p{D'). On the one hand we have

Sj{C)nCc 5 j ( r ) n c ' c c ' = 5<(C),

while Z)' = Sj(D) = Sj(D). Thus we see that D and C are different compo-
nents of Z\ containing p(C"). But C" C C" has codimension 3 in P, and p
restricts to an isomorphism from C to C. Thus p(C") is of codimension 2
in F ; hence it is an irreducible component of D D C. Since Zx is a simple
normal crossing divisor we see that D and C are the on/t/ components of Zi
that contain p(C").

Take any A: such that Sk(C) = C"; then Sfc(F)flSj(F) contains a component
£" which contains C". Then by the above reasoning we must have D = p(-E'),
and thus

£>' = Sj(Z?) = Sj(p(E')) = 0 = sk(p(E')) -

But then we get Sk(D) = D' for all k such that Sk(C) = C", and in addition,
5 j(D) = jy so that n(J9;) = n(C) + 1. This contradicts the maximality of
n{C). D

Together with the preceding lemma, the following result shows that blow-
ing up C with n(C) = rip again leads to a configuration of type (A).
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Lemma 2.3 Letp: P -*Y be a genus 0 fibration which is smooth outside Z\
so that the inverse image p~l(Z\) of Z\ is a simple normal crossing divisor
in P. For s: Y —» P a section and C a component of Z\, consider the blowup
P' - > P along s{C).

Then p': Pr —» Y is again a genus 0 fibration which is smooth outside Z\
so that the inverse image p'~l{Z\) of Z\ is a simple normal crossing divisor,
and the birational transform (or strict transform) of s(Y) gives a section of
Pf over Y. Moreover, if t is a section of p which is disjoint from s(C) then
the birational transform oft(Y) continues to be a section of p'.

Proof The first two statements and the final statement about P1 are obvi-
ous. The union of s{Y) with p~x{Z\) is a simple normal crossing divisor since
s is a section. Moreover, s(C) is the locus of intersection of s(Y) and one of
the components of p~l(C). Thus the blowup preserves the property of being
a simple normal crossing divisor.

Suppose that nP > 1 and let NP be the number of C attaining this
maximum. For each such C" and each pair z, j such that Si(C) = Sj(C) = C
let ra(z,j, C) denote the multiplicity of intersection of S{(Y) and Sj(Y) along
C. We are in the situation of the following lemma

Lemma 2.4 Let P be a smooth variety, D\ and D2 smooth divisors meeting
along a smooth codimension 2 locus B with multiplicity m > 0. Let P' be the
blowup of P along C, and let D[ and D2 be the birational transforms of D\
and D2 respectively. Then the multiplicity of intersection of D[ and D2 is
m — 1 along a codimension two locus B' lying over B.

Proof In a neighbourhood of the generic point of £ , the given condition
can be written as follows

Let E denote the exceptional divisor of the blowup e\ P' —» P and let B' be
the intersection D'2 PI E\ this is a section of the P1 -bundle E -> B. Now the
birational transform of D\ represents the divisor class e*(Di) — E and thus
we see that

Opf(D[) 0 OD,2 = (Op(Di) 0 O#2) 0 OD,2(-B') = OD,2({m - 1) • JB'),

which proves the result.

From this lemma, we see that the multiplicity of intersection of the bira-
tional transforms of Si(Y) and Sj(Y) is ra(z, j , C") - 1. If this becomes zero
then n(C') drops, hence either NP decreases or nP does so. This completes
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the argument by induction since all these numbers are positive and we wish
to obtain the situation where nP = 1.

Now we replace X by the normalisation of the fibre product X xPy(F) P ,
where P —> Y is the configuration of type (A) with np = 1 obtained above.
We then have a finite morphism h: X —> P. The image h(Z) of Z and
the branch locus of h are contained in the simple normal crossing divisor
consisting of the finitely many disjoint sections of the configuration (A) and
V~l(Zx). This proves Claim 2.1.

3 Toric singularities
As a last step we must prove the result in the following situation. There is
a finite map / : X -» W with W smooth and X normal and D = (J"=1 Di a
divisor with simple normal crossings so that / is etale outside D; moreover Z
is a union of (some of) the components of f~l(D). So we need to construct
a birational morphism e: X -» X so that X is smooth and e~lf~1(D) is a
divisor with simple normal crossings in X.

We will show (see Lemma 3.1 below) that the inclusion of X \ f~l(D)
in X is a strict toroidal embedding in the sense of [7], where the desingular-
isation problem for such embeddings has been studied and solved. For the
sake of completeness we also give a brief summary of their method. Many
statements below are given without detailed proofs—readers are invited to
complete the arguments on their own or look for proofs in one of the books
on toric geometry such as Oda [9], [10] or Fulton [4].

3.1 Affine toric singularities
Let us first consider the simple situation where W = An and D is a union of
coordinate hyperplanes. In this case W\D is isomorphic to GĴ  x An~r where
r is the number of components of D. Hence (because we are working over
the complex numbers C) its fundamental group is a product of infinite cyclic
groups and the finite cover X \ /^(D) is also isomorphic to Gr

m x An"r. In
fact, the homomorphism /* on rings has the form

C[Z\,Z1 ,...,Zr,Zr , Zr+i, • • • ) zn] —> M^i,^ , . . . , t r , t r , £r+i, . . . , tn]

j r r i i f o r i < r
z% •->• { ( 1 )

\U for i > r w

where the m^ are certain monomials in ti,...,tr (with negative powers al-
lowed). The natural action of the torus G^ o n l \ f~l(D) then descends
to an action via / making this map equivariant. Moreover, since X is the



354 Bogomolov-Pantev resolution

normalisation of W in X \ f~l(D), the action extends to X. Since the map
/ is equivariant there are only finitely many orbits for the torus action on X]
in other words, X is an (affine) toric variety.

An explicit description of X can be given as follows. Let M be the free
Abelian group of all monomials in the variables ti,... ,tr. Let M + be the
saturated submonoid of M generated by the m .̂ Then X = SpecC[M+] x
An~r. For future reference, we note that there is a unique closed orbit in X
which maps isomorphically to the closed orbit 0 x An~r in W. Moreover, M is
the group of Cartier divisors supported on /~1(D) and M4" is the submonoid
of effective Cartier divisors.

Let TV be the dual Abelian group to M and

AT+ = {n | n{m) > 0 for all m e M+}

the "dual" monoid to M+. Then iV+ is a finitely generated saturated monoid
in TV (like M+ in M). Let a be any finitely generated submonoid of iV+ and

Ma = {m | n(m) > 0 for all n e N+}

the dual monoid in M (which contains M+). Then X(a) = Spec C[Ma] x An~r

is an affine toric variety and the natural morphism X(a) —> X is birational
and equivariant for the torus action. Moreover, we see that X(a) is non-
singular and the pullback to X(a) of D is a simple normal crossing divi-
sor if and only if the monoid a is generated over nonnegative integers by a
(sub-)basis of iV; such a monoid is called simplicial.

Let E = {&i}?=i be a collection of finitely generated saturated submonoids
of N+ which give a subdivision of N+] i.e., iV+ is the union of all the O{ and
for any pair o^ Oj their intersection is a ak for some k. We then obtain a
collection of equivariant birational morphisms X{ = Xfa) —» X so that if
Gj C &i then Xj C Xi in a natural way. Thus we can patch together the Xi
to obtain X% -» X which is birational and equivariant (but X s need not be
affine any more). Moreover, the condition that the O{ cover N+ implies that
XY, —> X is proper.

Thus to obtain a desingularisation of X it is enough to find a subdivision
of N+ consisting entirely of simplicial monoids; an easy enough combinatorial
problem solved by barycentric subdivision. The intrepid reader is warned that
proving that the resulting morphism is projective is a little intricate since an
arbitrary simplicial subdivision need not result in a projective morphism;
however, the barycentric subdivision does yield a projective morphism.

3.2 Local toric singularities
Now we examine the general case locally. Let x G X be any point such
that w = f(x) lies in D. There is an analytic neighbourhood U of w in W
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and coordinates on U so that D n U is given by the vanishing of a product
of coordinate functions; by further shrinking U we can assume that U is a
polydisk in these coordinates. Let V be the component of f~l(U) which
contains x. The normality of X implies the normality of the analytic space
V. Hence, the open subset V \ /^(D) is connected. So it is a topological
cover of U \ D. The coordinate functions give an inclusion U c-^ W = An

so that D n U is the restriction to U of a union of coordinate hyperplanes in
W. The resulting inclusion U\D <-* Gr

m x An~r induces an isomorphism of
fundamental groups. Thus there is a Cartesian square in which the horizontal
maps are inclusions:

v\rl(D) —> G;XA-
/I if
U\D —> G^ x An~r

and / ' is a covering of the form (1) above. Let X' denote the normalisation
of W in the cover / ' . By the normality of X (and hence the normality of V
as an analytic space) it follows that we obtain a commutative diagram

V

fi

u

— • X'

if

so that V is isomorphic to an analytic open neighbourhood of a point in the
toric variety X'. By means of the two diagrams above we can carry over the
desingularisation of 3.1 to the local analytic space V.

3.3 General toroidal embeddings
The local description 3.2 can be repeated in a suitable neighbourhood of any
point x € X. This shows that the inclusion of X \ f~l(D) in X is a toroidal
embedding. The desingularisations obtained locally need to be constructed in
a coherent manner so that they "patch up".

Let us stratify W by connected components of intersections of the form

(2)

If U and V are as in 3.2, then there is a unique stratum S of W so that
S fl U is closed. Under the inclusions of U in W and V in X' of 3.2 the
strata correspond to the orbits of the torus action. As we have noted in
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3.1 the unique closed strata in U and V then become isomorphic. Thus, if
T = f~l(S) then T n V is closed in V and the morphism TnV -> SOU is
an isomorphism; indeed T C\V and 5 fl [/ are the restrictions of the closed
orbits in X' and W respectively. Thus we see that if S is any stratum in W
and T a connected component of f~l{S) then T —»• 5 is etale and proper. We
thus stratify X by connected components of the inverse images of strata in
W under / . Let {Ta}aEA denote this stratification; by abuse of notation we
define Sa = f(Ta).

Let E = Ujli Q be the decomposition into irreducible components of
the inverse image f~l(D) of D. Then there is a function i: { 1 , . . . , ra} ->
{ 1 , . . . , n} so that f(Ej) = A(j) for all j . For any stratum Ta let X a denote
the complement in X of all those Ej that do not meet Ta. Similarly, we denote
by Wa the complement in W of all A that do not meet Sa- The morphism
/ clearly maps Xa to Wa.

Lemma 3.1 Let Ma be the Abelian group of all Cartier divisors in Xa with
support in E D Xa; let M+ be the submonoid consisting of effective Cartier
divisors. Then Ma has rank ra = codimxTa. The distinct analytic compo-
nents of E in a neighbourhood of any point x of X are precisely the algebraic
components; i.e., X \ E <—> X is a strict toroidal embedding.

Proof Let M'a be the group of Cartier divisors on Wa with support on
DC\Wa. Clearly, this is the free Abelian group on those Di which contain Sa.
Since Sa is a connected component of an intersection of the type (2), there are
exactly ra = codim^ Sa of such D;. The pullback homomorphism makes M'a
a subgroup of Ma. On the other hand, consider an analytic neighbourhood
V = f~l(U) of some point x G Ta as in 3.2. If M" denotes the group of all
Cartier divisors on V supported on EC\V\ then we have noted in 3.1 that M"
is a free Abelian group of rank ra. Moreover, Ma is included as a subgroup
of M" under the restriction from Xa to V.

It follows that the homomorphism Ma -> M" has finite cokernel; but then
the normality of X means that it is surjective. In particular, we see that
the distinct analytic components of E D V correspond to distinct algebraic
components of E. This concludes the proof. •

Let M+ denote the monoid of effective divisors in Ma; under the isomor-
phism Ma -» M'x = M this maps isomorphically onto the submonoid M +

considered in 3.1. Thus Xa is smooth (and the divisor E is a simple normal
crossing divisor) if and only if M+ is simplicial. If Tb lies in the closure of Ta

then Xa is an open subset of X&. This induces by restriction a (surjective)
homomorphism Mb —> Ma which further restricts to a surjection M6

+ —» M+.
Thus we have a (finite) projective system of monoids.
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Let Na and iV+ be the dual objects as defined in 3.1. These form a finite
injective system of monoids. By a compatible family S of subdivisions we
mean a subdivision Ea of N+ for each a so that the subdivision £6 restricts
to the subdivision Ea on the submonoid iV+ of Nf. We then obtain a proper
birational morphism X%b -» Xb for each b which restricts to XEa -> Xa on
the open subset Xa of Xb. Thus, we see that any such compatible family
leads to a proper birational morphism X$ —> X.

Thus, in order to desingularise, we have to find a compatible family of
subdivisions so that each of the new monoids is simplicial. This is achieved by
the barycentric subdivision. As seen earlier, this ensures that the morphism
Xs —> X is locally projective. Since X is projective, this morphism is indeed
projective.
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Mordell-Weil lattices for
higher genus fibration over a curve

Tetsuji Shioda

To Soichi Kawai for his 60th birthday

1 Introduction, notation

Let K = k(C) be the function field of an algebraic curve C over an alge-
braically closed ground field k. Let T/K be a smooth projective curve of
genus g > 0 with a if-rational point O G T(K), and let J/K denote the
Jacobian variety of T/K. Further let (r, B) be the K/A:-trace of J (see §2
below and [4]).

Then the Mordell-Weil theorem (in the function field case) states that
the group of if-rational points J(K) modulo the subgroup rB(k) is a finitely
generated Abelian group.

Now, given T/K, there is a smooth projective algebraic surface 5 with
genus g fibration f:S—>C which has F as its generic fibre and which is
relatively minimal in the sense that no fibres contain an exceptional curve of
the first kind (—1-curve). It is known that the correspondence T/K «-» (S, / )
is bijective up to isomorphisms (cf. [7], [5]).

The main purpose of this paper is to give the Mordell-Weil group M =
J(K)/rB(k) (modulo torsion) the structure of Euclidean lattice via inter-
section theory on the algebraic surface S. The resulting lattice is the Mordell-
Weil lattice (MWL) of the Jacobian variety J/K, which we sometimes call
MWL of the curve T/K or of the fibration / : S -» C.

For this, we first establish the relationship between the Mordell-Weil
group and the Neron-Severi group NS(5) of S (Theorem 1, stated in §2
and proved in §3). Then (in §4) we introduce the structure of lattice on the
Mordell-Weil group by defining a natural pairing in terms of the intersection
pairing on NS(5). Thus the basic idea is the same as the elliptic case g = 1
(cf. [8]).

We think that Theorem 1 must have been known to mathematicians
such as Lang, Neron, Tate, Weil, . . . who did the foundational work on the
Mordell-Weil theorem and the theory of canonical height. But we could not
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locate the statement of Theorem 1 (as given below) in the literature; compare
e.g., [16], [4, Chap. 6, §6], [14, §4].

For the sake of completeness, we give a proof of Theorem 1 in §3. In the
proof, we use (a consequence of) Theorem 2 due to Raynaud which describes
a precise relationship between the if/A;-trace of J/K, the Picard variety of
5 and the Jacobian variety of C. As far as we know, Theorem 2 is new, in
that it takes care of the infinitesimal part, which is a delicate point in dealing
with the K/k-tr&ce. Actually, to prove Theorem 1, we do not need the full
strength of Theorem 2; its consequence on the A:-valued points (i.e., ignoring
the infinitesimal part) is sufficient. This was how we proved Theorem 1 in
the original version of this paper. But it is much nicer to have a statement
as definitive as Theorem 2.

The main results of this paper were announced in our short note [11] under
the assumption that the K/k-ti&ce in question is trivial. We apologize for
the delay in providing a detailed, generalized version. During this delay, two
important results have come to light; one is Raynaud's theorem mentioned
above, and the other is a new viewpoint to use the canonical height for Abelian
varieties over higher dimensional function fields (cf. [13]).

I am very grateful to M. Raynaud for informing me of his proof of Theo-
rem 2, and for allowing me to include it here. Also I would like to thank many
people for giving me the opportunity to reconsider the subject in a stimulat-
ing atmosphere, especially J. Coates (Cambridge Univ.), M. Reid (Warwick
Univ.), S. Ramanan (Tata Inst.), F. Hirzebruch (Max-Planck Inst.) and oth-
ers. The final version was completed during my stay at Johns Hopkins Univ.
(JAMI).

List of Notation
• k: an algebraically closed field

C or C/k: a smooth, projective curve defined over k
K = k{C): the function field of C/k
Jc = JCjk\ the Jacobian variety of C

• F or T/K: a smooth, projective curve of genus g > 0 defined over K
J = Jr/K: the Jacobian variety of T/K
(r ,B): the K/k-tmce of J

• f:S—>C: relatively minimal genus g fibration with generic fibre F
S or S/k: a smooth projective surface defined over k
T(K): the set of X-rational points of F, identified with the set of sec-
tions of / : S -> C
(P) (for P e T(K)): the image of P: C -> S (a curve on S)
Pics/k- the Picard scheme of S/k
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the Picard variety of S/k
Pics/c: the relative Picard scheme of S/C (see [6])
Pic(5) := Pic5/A;(A;);PicVar(S) := PicVars(A;)
NS(5): the Neron-Severi group of S
p(S): the Picard number of S (= rankNS(S))

R := {v G C\f~\v) = E S T 1 Vvj9v,i is a reducible fibre}
mv(v G R): the number of irreducible components of f~l(v)
@vj (for 0 < i < mv — 1): irreducible components
QVio'. the identity components of f~1(v) (with /iV)o — 1)
Tv: the subgroup of NS(5) generated by QVji (for 1 < i < mv - 1)
F: the class of any fibre of / in NS(5)
T: the subgroup of NS(5) generated by (O), F and Tv (for i; e R)

;-trace, Mordell-Weil group and Neron-
Severi group

We use the notation introduced above. Thus J is the Jacobian variety of a
curve F defined over K = k(C), C being a curve over an algebraically closed
field k. Unless otherwise mentioned, we always assume:

F has a if-rational point O. (Ao)

According to the Mordell-Weil theorem for the function field case, the group
of if-rational points J(K) modulo the subgroup rB(k), i.e., the quotient
group M = J(K)/rB(k), is a finitely generated Abelian group, where (r, B)
denotes the K/k-tr&ce of J/K (cf. [4] for this and the following). We call M
the Mordell-Weil group of J/K or of T/K.

For the convenience of the reader, let us recall here the definition of the
K/A;-trace of an Abelian variety A defined over K. It is a pair (r, B) in which
B is an Abelian variety defined over k and r : B -> A is a homomorphism
of Abelian varieties over K with the following universal mapping property:
given any pair (r;, B1) as above, there is a unique homomorphism ip: B' —>• B
such that r' = r oip. It is known that the if/A;-trace exists (Chow) and that
r : B —>• A is a radicial map (that is, it is injective on points, but it may have
an infinitesimal kernel in case of characteristic p > 0).

Now, letting A = J be a Jacobian variety as before, we state the following
basic theorems.

Theorem 1 Under (Ao), the Mordell-Weil group M = J(K)/rB(k) is nat-
urally isomorphic to the quotient group o/NS(5) by T:

J(K)/rB(k) ~ NS(5)/T. (1)
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Theorem 2 (Raynaud) There is a short exact sequence of Abelian varieties
over k:

0 —>JC —> PicVar5 —> B —> 0 (2)

The maps in these theorems are induced from the natural maps: restrict-
ing line bundles on 5 to the generic fibre F and taking the pullback (via
/ : 5 —> C) of line bundles on the base curve C to S.

Postponing the proof of Theorems 1 and 2 to the next section, let us
deduce some obvious consequences, which will be the most interesting case
for application.

Theorem 3 The following conditions are equivalent:

(i) The K/k-trace of J/K is trivial, i.e., B = 0.

(ii) f*: Jc -> PicVars is an isomorphism.

(Hi) The irregularity of S is equal to the genus of C.

If any (hence all) of these conditions holds, then J(K) is a finitely generated
Abelian group such that

J{K) ~ NS(5)/T. (3)

In particular, we have

rank J(K) = p(S) - 2 - ^ ( m v - 1) (4)
veR

(cf. the notation in §i and §^, Proposition 5).

The irregularity of a surface is, by definition, the dimension of its Picard
variety. A surface with irregularity zero is classically called a regular sur-
face. Examples of regular surfaces include rational surfaces, K3 surfaces and
smooth surfaces in P3.

Corollary 4 Suppose that S is a regular surface with a given genus g fibration
/ : S —> C = P1. Then the K/k-trace of its generic fibre T is trivial, and the
conclusion of Theorem 3 holds.
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3 Proof of Theorems 1 and 2
First we prove Theorem 1, assuming Theorem 2. Restricting a line bundle on
5 to the generic fibre F defines a group homomorphism

Pic(S) := Pic5/fc(A;) —> Picr/K(K). (5)

In terms of divisors, it associates with each divisor class cl(D) on S the class of
the divisor D\Y = DT on the generic fibre F. By adjusting the image to have
degree zero using the given rational point O G T(K), we get a homomorphism

» J(K) := Picl/K(K) (6)

which sends cl(J9) to cl(<J) with S = D • F - (D • T)O.
Obviously (5) and (6) are surjective, because given any if-rational divisor,

say S'f on F, we can take the fc-loci (schematic closure) of the components of
6' to obtain a divisor D' on S such that D' T = Sf'.

Next we determine the kernel of (p. Let T denote the subgroup of Pic(5)
generated by the divisor classes of irreducible components of fibres and the
zero section (O). It is obvious that T is contained in Ker(^). Let us show
that f = Ker(^). Take any element f = cl(D) G Ker(p). By definition, D\T

is linearly equivalent to zero on F, and hence it is equal to a principal divisor
(h) for some rational function h G K(T). Since the function field K(T) can be
identified with the function field k(S), we can find some function H G k(S)
such that (-ff)|r = (h) (note that H is unique up to multiplication by elements
in Kx = k(C)x). Then every component of the divisor D' := D — (H) on S
must be contained in some fibre; in other words, D' is a linear combination
of irreducible components of fibres. Hence £ = CK^) belongs to T.

Therefore we have an exact sequence (of Abelian groups):

0 —> f —» Pic(S) —> J{K) —* 0 (7)

Furthermore, the restriction of the map <p to the Picard variety PicVar(S) C
Pic(S) factors through the if/A;-trace B of J/K (see the proof of Theorem 2
below), which fits in the exact sequence of fc-points of (2):

0 —> Jc(k) —¥ PicVar(S) —+ B(k) —+ 0 (8)

From the above two sequences, we obtain a surjective map:

ip: NS(5) := Pic(5)/PicVar(5) —> J(K)/rB(k) (9)

which induces an isomorphism (1) in Theorem 1, since T is nothing but the
image of T in NS(5). This proves Theorem 1 (assuming Theorem 2).
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Proof of Theorem 2 Following Raynaud, we prove Theorem 2 under the
assumption:

For every fibre f'1^) of / : S —> C, the g.c.d. of , . .
multiplicities of irreducible components is equal to 1. ^ l'

This condition is weaker than our assumption (AQ) that F has a if-rational
point O, because the latter implies that every fibre has at least one component
with multiplicity 1, namely, the (identity) component intersecting the zero
section (O).

As proved in [6] (see also [1]), under (Ai), the sheaf R}f*Os is locally free
of rank g. The Leray spectral sequence for Os gives a short exact sequence

0 —> H\C, Oc) A H\S, Os) —> H°(C, RlhOs) (10)

(N.B. We can add the arrow —> 0 at the end under the stronger assumption
(Ao), but this is not needed for the argument below.)

At the level of Picard schemes, we have an exact sequence

0 —> Picc/k —> Pics/* —> Pic5/c (11)

in which Pics/c is the relative Picard scheme representing Rlf*Os (see [6]),
and (10) corresponds to taking the Lie algebras of (11), or more precisely to
the Lie algebras of the identity components of group schemes in (11):

0 —> Pic°c/fc —> Pic°s/fc - 4 Pic°s/C (12)

Note that the image of the map Jc = Pi^c/k ~^ ^lcs/k ^ e s m (Pics/fc)recb
since smooth part is mapped into smooth part, and that we have PicVar5 =
(Pic^/^red by definition.

On the other hand, the restriction to the generic fibre gives a map

P i 4 / C —> Jr/K (13)

such that the corresponding map of Lie algebras

H°(C,R1f*Os)->Ue(Jr/K) (14)

is injective, since Rlf*Os is locally free under (Ai) as remarked before.
By (12) and (13), we have

0 —> Jc ^ PicVar5 -^> J = JT/K- (15)

The map 7 factors through the K/fc-trace (r, B) by the universal mapping
property: 7 = r o /? for a unique homomorphism /?: PicVar5 -> B.
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Now we claim that

0 —> Jc - ^ PicVar5 - ^ B —> 0 (16)

is an exact sequence of Abelian varieties over fc, which will prove Theorem 2.
The most crucial point is the exactness at the middle. To take care of the

infinitesimal part, look at the corresponding Lie algebras:

Lie(Jc) - ^ Lie(PicVars) - A Lie(£)

II 0 IT' (17)
H\C,OC) A H\S,OS) —> Lie(J).

The bottom row is (10), combined with (14); hence it is exact.
Now we observe that r ' is an injective map (of a A;-vector space into a

K-vector space). Indeed, if Ker(r') ^ 0, then there would be some radicial
subgroup scheme G ^ 0 of B giving rise to a homomorphism B' = B/G -> J,
which contradicts the universality of the trace (r,B).

It follows that the top row in (17) is exact (at the middle).
Going back to (16), we show the exactness at the middle. First we note

that /? o a = 0. For, otherwise, Im(/3 o a ) / 0 will be an Abelian subvariety
of B which is mapped to zero under r: B ~> J; again this contradicts the
universality of r.

To prove Ker(/J) = Im(a), it is now enough to test it at the A>valued
points. Thus, take any f G Ker(/?). Then we have £ = cl(D) for some divisor
D with D\r = 0 (cf. (7)); hence it is a linear combination of components of
fibres. Thus we can write D = ^2V Dv (a finite sum) where Dv has support in
Fv = f'1^) (for v € C) and (Dv • 0) = 0 for every irreducible component 0
of Fv. We want to see that Dv is an integral multiple of Fv: Dv = nvFv (with
nv e Z). There is no problem at good fibres. At a bad fibre, we know in
general from [6] that dDv is an integral multiple of Fv if d denotes the g.c.d. of
multiplicities of irreducible components of Fv. Hence, under the assumption
(Ai), we conclude that D = f~l(52,vnvv), and hence £ belongs to Im(a).

To complete the proof of Theorem 2, we should also see that, in (16), a
is injective and /3 is surjective. The injectivity of a follows from the fact that
/ : S —> C is a flat morphism with f*Os = Oc-

For the surjectivity of /?, it is enough to show that r(B(k)) C r(/3(A(k))).
Let b be a generic point of B over K (in Weil's language [15] which will be
used in this section). Because the homomorphism r : B -» J is if-rational,
b' := r(b) is a if(&)-rational point of J. Taking a generic point t of C over fc,
we identify the function field K — k(C) with k(t). Then we have

K' := K(b) = k(t){b) = k(b)(t). (18)
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Let 5 be a if'-rational divisor on F of degree 0 representing &', and let D be
a /c(6)-rational divisor on S such that D\r = S. We have (cf. (6))

V(cl(£>)) = V = r(b). (19)

Now D defines an algebraic family of divisors {Du\u € W} on S parametrized
by some open subset W of B; Du is a specialization of D over the special-
ization b -± u over A:. Thus we have (p(cl(Du)) = r(u). For any ui,u2 £ W,
.DUl — DU2 is algebraically equivalent to zero, which defines a point, say a, of
the Picard variety A = PicVars. Then

r(/?(a)) = <p{cl(DUl - DU2)) = r(Ul - u2). (20)

Fixing u2 G W(k), let W be the translate of W by -u2 in 5 . Then the
above shows that T(W'(k)) C r(P(A(k))). Since S(fc) is obviously generated
by W'(k) as a group, we conclude that r(B(k)) C r(/3(A(k)))J i.e., that
/?: A —> B is surjective. q.e.d

4 Mordell-Weil lattices

In Theorem 1, we established an isomorphism of the Mordell-Weil group
M = J(K)/rB(k) with NS(5)/T. Once this is done, we can introduce a
natural pairing ( , ) on M by "splitting" this isomorphism and using the
intersection pairing ( • ) on NS(5). This simple idea has proved to be fruitful
in the elliptic case ([8]) and we follow it here.

Let iV := NS(5) and W := N/Ntor. Then TV is an integral lattice with
respect to the intersection pairing, and it has signature ( l ,p — 1) by the
Hodge index theorem, where p = p(S) is the Picard number of S (cf. [3]).
We can regard T as a sublattice of iV, since it is torsion-free by the following
well-known result (see e.g., [2, Chap. 9]).

Proposition 5 The lattice T has an orthogonal decomposition:

V, (21)

where U is the rank 2 unimodular lattice spanned by (O),F and Tv is the
negative-definite sublattice of rank mv — 1 spanned by the irreducible compo-
nents QVii (with i > 0), other than the identity component, of a reducible fibre
f~l(v) (forveR).

Let us denote by

y:M-*N/T (22)

the map giving the isomorphism (1) of Theorem 1.
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Lemma 6 There is a unique map

(p: M—>N®Q (23)

such that (a) it splits Tp in the sense that

cp(x) mod T <g> Q = Tp(x) in (N/T) ® Q for any x e M (24)

and (b) the image of (p is orthogonal to T w.r.t. ( • ):

<p(x) JL T for any x G M. (25)

Moreover, (p is a group homomorphism such that

Kerfa) = Mtor. (26)

Proof This is essentially the same as in the elliptic case (cf. [8, §8]). First
we assume the existence of the map ip, and prove (i) its uniqueness, (ii) that
ip is a group homomorphism, and (iii) Ker(y?) = Mt0T.

(i) Suppose that both cpi and <p2 are maps satisfying the conditions (a)
and (b). Take any x G M. Then, by (a), t = <pi(x) — ^ ( ^ ) belongs to T® Q,
while (b) implies t _L T. Using Proposition 5, it is easy to show that t = 0,
that is, (p\(x) — <f2{x). Hence <pi = <P2-

(ii) Take any x,y e M and let z = x-hy. We show that tp(x)+<p(y) = <p{z).
Indeed, noting that Tp is a homomorphism, we have by (a)

(<p{x) 4- <p(y)) mod T <g> Q = ^(x)

On the other hand, (p(x) -f y?(y) is obviously orthogonal to T by (b). Hence
the uniqueness (i) implies ip(x) + < (̂y) = y(z), proving (ii).

(iii) Suppose that x e M belongs to Kei((p). Then Tp(x) is an element
of N/T which is killed in (N/T) ® Q. This happens precisely when Tp(x) G
(N/T)tor. Since M 2̂  AT/r, we conclude that Ker(^) = Mtor.

Now we prove the existence of the map (p satisfying (a), (b). This will be
done elementwise. Thus fix any x G M. Take an element £ G N such that
£ mod T = ^(x). We can choose £ so that (f-F) = 0 by using (O), F € T. To
satisfy the condition (a), we write <p(x) = %+t for some t G T®Q, and express
t as a Q-linear combination of the free generators (O), F, 6V)i (v € i2, i > 0)
of T. Then by Proposition 5, this expression has a unique solution satisfying
the condition (b). Explicitly, we have

, • • •, e,,,ra,_1)(-j-
1)t((e • e.,i), • • •, (c • e.,™..!)), (27)

v£R

where /v denotes the intersection matrix of QVfi (for 1 < i < mv — 1) and *
denotes transpose, q.e.d
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Theorem 7 For any P G J{K), denote by P its image in M = J(K)/rB(k).
Define a symmetric bilinear form on J(K) by

(P,QeJ(K)). (28)

Then it defines the structure of a positive definite lattice on

M/Mt0T = J(K)/(J(K)tor + rB(k)). (29)

This will be called the Mordell-Weil lattice of J/K.

The pairing ( , ) is called the height pairing. The formula (27) gives an
explicit formula for the height pairing. If we take a representative divisor
class c\(Dp) o f ? G M - NS(5)/T for each P G J{K), then it reads as

(P, Q) = -(DP. DQ) - J2 contrv(P, Q) (30)
v€R

where the local contribution term is defined by

contiv(P, Q) = ((DP • Qv>1), • • • , (DP • e w > m , _ i ) ) ( - / - 1 )

x*((r>g-e.,1),-..,(D0-eu,m._1)) (31)

(cf. [8]).
In the following, we assume that the K/k-tr&ce of J/K is trivial: B =

0, and hence M = J(K) itself is finitely generated (cf. Theorem 3 in §2).
Further, for the sake of simplicity, we also assume that NS(5) is torsion-free.

Then the above process defines the structure of lattice on J(K)/J(K)tor,
the Mordell-Weil lattice of J/K. To define the narrow Mordell-Weil lattice
of J/K, let J{K)° be the subgroup of J(K) which is the image of L = TL C
NS(5) under (1). For P G J{Kf, we obviously have contrv(P,<2) = 0 for
any Q G J{K). In particular, we have (P, P) = — {Dp) by (30). Since we can
take Dp G L by definition, and L is negative definite under our assumption,
we obtain:

Theorem 8 Assume that (i) the K/k-trace of J/K is trivial and (ii) NS(5)
is torsion-free. Then J(K)° is a positive definite integral lattice, isomorphic
to the opposite lattice L~ of L. It will be called the narrow Mordell-Weil
lattice of J/K.

As in the elliptic case, the Mordell-Weil lattice embeds into the dual
lattice of the narrow one, and we have the following:

Theorem 9 In addition to the assumptions (i) and (ii) above, suppose that
the Neron-Severi lattice of S is unimodular, that is, detNS(5)/(tor) = ±1 .
Then the Mordell-Weil lattice of J/K is isomorphic to the dual lattice of the
narrow Mordell-Weil lattice J{Kf.
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The proof is the same as in [8, §9], and is omitted. This theorem applies,
for example, when 5 is a rational surface (see §2, Corollary 4).

5 Examples

5.1 Milnor lattice of the An singularities

For any positive integer n > 1, consider the hyperelliptic curve F = FA over
K = k(t), defined by the equation:

y2 = X
n+1 +p2X

n~1 + • • • +PnX +pn+l + t
2, A = (pa, . . . ,pn+i) € k

n. (32)

Its genus g is given by n = 2g or n = 2g + 1 according to the parity of n. For
simplicity, assume that k has characteristic 0.

This equation is a familiar one in the theory of rational singularities; it
defines a "semi-universal deformation" of the An singularity y2 = xn+l + 1 2 ,
with parameter A. We are interested in comparing the Mordell-Weil lattice
arising from this situation with the Milnor lattice which, for the An singu-
larity, is known to be the root lattice An. Such a viewpoint led to rather
interesting results in the framework of MWL of elliptic surfaces, covering the
exceptional case E6,E7,E8 (cf. [9], [10]).

Let u\,... , un, un+i be the roots of the algebraic equation

*(*) = *A(a0 = xn+1 + p2x
n~l + • • • + pnx + pn+1 = 0. (33)

Corresponding to them, there are if-rational points of F:

Pi:(x = uhy = t) and P[ : (x = uuy =-t) for i = 1 , . . . ,n + 1. (34)

(I) Assume first that n = 2g is even and that the Ui are all distinct. Let
O € T(K) be the unique point at infinity, and we take an embedding F into
J sending O to the origin of J. Then the 2(2g+l) points above satisfy the
following relation in J(K):

(35)

(For the former, look at the divisor of the function h ='y — t on F.)

Theorem 10 With the above notation, assume that n = 2g and the Ui
are mutually distinct. Then the Mordell-Weil group J{K) is a torsion-free
Abelian group of rank r = 2g. More precisely, the narrow MWL J{K)° is
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isomorphic to the root lattice A^, and the full MWL J(K) is isomorphic to
its dual lattice A\g:

J(K) ~ A*2g

U U index 2g + l. (36)

•2$J{K)° ~ A

Moreover {Pi,P!} correspond to the minimal vectors of A2g (with minimal
norm 2g/(2g+l)); in particular, {Pi,..., P2g} forms a set of free generators
ofJ(K).

The algebraic surface 5 associated with (32) is a rational surface, and so
we can use Theorem 9. It has a unique reducible fibre at t = oo, and we have

rank T^ = 2g + 4, det Too = 2g + 1. (37)

The case g = 1 reduces to the known result (Case (A2) in [9]); in that case,
we have T^ ~ E6. For g > 1, we need to resolve the singularity. Omitting
the details, we find that T^ is not a root lattice, but its dual graph can be
described as follows: first take the Dynkin graph of type Dig+i and then
adjoin a new vertex with norm g + 1 to each extreme vertex of the two short
branches in D2g+2- The sections (Pi) (or (P/)) pass through the irreducible
component corresponding to one (or the other) of the two new vertices.

(II) Still assuming that n = 2g is even, we consider the general case where
<&\(x) has multiple roots. Let

$x(x) = (x-u1r+1--.(x-ul)
n<+1 (38)

with u\,... , ui distinct, n i , . . . , ni > 0 and ^2J(TIJ -h 1) = n + 1. In this case
we have

Theorem 11 Assume n = 2g, and denote by L the orthogonal complement
of Tfin = Ani 0 • • • 0 Ani in An; let L* be its dual lattice. Then, the narrow
MWL J(K)° is isomorphic to L, and J{K) ~ L* 0 (torsion). In particular,
J(K) has rank r = n — ]>Z n j = / — 1.

It is easy to see that the trivial lattice T is equal to U 0 Tnn 0 T^ where
Tfin is as above and T^ is the same as in (I). By the theory of simultaneous
resolution of rational singularities (see the references in [10]), the surfaces
5A form a smooth family when a suitable change of parameter is chosen. In
particular, N = NS(5A) is constant over such a parameter space. Then the
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orthogonal complement of T in iV is equal to that of Tfin in A2g by (I), hence
the assertion follows from Theorem 9.

As a consequence, we have r < 2g where equality holds only for the case
treated in (I). On the other hand, we have r = 0 iff / = 1, which corresponds
to the totally degenerate case A = 0 with $\(x) = x29+l. In this case, J(K)
is a finite cyclic group of order 2g + 1 , i.e., J{K) ~ A^jA^ ~ Z/(2g +

(I l l ) In case n = 2g + 1 is odd, the structure of MWL depends more on
each individual parameter A. In any case, we choose one of the two rational
points over x = oo as the origin O of J.

Theorem 12 Assume n = 2g + 1. In the general case where there are no
reducible fibres other than f~1(oo), {Pi} generate a lattice isomorphic to the
standard unimodular lattice 7?9+2. The narrow MWL J(K)° is a sublattice of
index g + 1, consisting of (xi) € Z2g+2 satisfying Y^,%i = 0(# -f 1), and J(K)
is isomorphic to its dual lattice.

Even if $\(x) has no multiple roots, the structure of MWL can be different
from the above general case. For instance, for $\(x) = xn+1 — l ( n + l = 2g+2),
there are two more reducible fibres over t = ±1. In this case, we can prove
the following:

J(K) ~ A*g®A*g®Z/(g+l)Z

U U index {g +1)3. (39)

J{K)° - Ag®Ag

Here the torsion part is generated by Q which is the other point at x = oo
other than the chosen origin O. We have Pi + P[ = Q for all i. The g + 1
points Pi corresponding to the #+1 roots of x9*1 = 1 (or x9+l = —1) generate
a sublattice of J(K) isomorphic to A*.

5.2 The Jacobian of a pencil of hyperplane sections of
a regular surface

The following result was announced in [12]:

Theorem 13 Let X be a regular surface such that NS(X) is torsion-free and
suppose that it is embedded as a surface of degree d in a protective space J?N.
Let {Tt\t € P 1 } be a linear pencil of hyperplane sections of X such that every
member is irreducible. Let T be the generic member of this pencil and let J be
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its Jacobian variety defined over the rational function field K = k(t). Then
J(K) is a positive definite integral lattice of rank

r = p(X) + d - 2

whose determinant is equal to |detNS(X)|.

Proof By Bezout's theorem, the linear pencil has d base points. By blowing
up X at these points, we obtain a regular surface 5 with a fibration / : S —> P1

whose generic fibre is F and which has no reducible fibres. We have d sections
arising from the base points; choose one of them as the zero section O. The
Neron-Severi group NS(5) is torsion-free and has rank p(S) = p(X) + d, and
the Neron-Severi lattice NS(5) has |detNS(5)| = |detNS(X)|. The trivial
lattice T is equal to the rank 2 unimodular lattice U generated by (O) and F
(a fibre), and we have NS(5) = U 0 L with L = TL. Therefore, by Theorem
3 (cf. Cor. 4) in §2 and Theorem 8 above, we have J(K) = J{K)° ~ L~. It
has rank p(S) — 2 and determinant det L = det NS(5) up to sign, q.e.d

As noted in [12], an example is given by a linear pencil of degree m curves
in a projective plane all of whose members are irreducible. More precisely,
take X to be the isomorphic image of the projective plane P2 under the
embedding given by the complete linear system \mH\ (H: a line). In this
case, we have d = m2 and J(K) is a unimodular lattice of rank r = m2 — 1.
This gives a generalization of the Manin-Shafarevich theorem for m = 3
saying that, if we choose one of the base points as the origin, the remaining
r = m2 — 1 points are linearly independent and generate a subgroup of finite
index m in J(K).
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Introduction

Gromov-Witten (GW) invariants "count" algebraic curves on a smooth pro-
jective variety X with certain incidence conditions, but in a rather refined
way. They originated in the realm of symplectic rather than algebraic geo-
metry. Salient features are

(1) in unobstructed situations, i.e., if the relevant moduli spaces of algebraic
curves are smooth of the expected dimension ("expected" by looking at
the Riemann-Roch theorem), one obtains the number that one would
naively expect from algebraic geometry. A typical such example is the
number of rational curves of degree d in the plane passing through 3d— 1
generic closed points, which is in fact a finite number.

(2) GW invariants are constant under (smooth projective) deformations of
the variety.

For the original definition, one deforms X as an almost complex manifold
and replaces algebraic by pseudoholomorphic curves (i.e., holomorphic with
respect to the almost complex structure). For a generic choice of almost
complex structure on X, the relevant moduli spaces of pseudoholomorphic
curves are oriented manifolds of the expected dimension, and GW invariants
can be defined by naive counting. Not every almost complex structure J
is admitted though, but (for compactness results) only those tamed by a
symplectic form u, which by definition means that UJ(V, Jv) > 0 for any
nonzero tangent vector v G Tx- In the algebraic case, if J is sufficiently
close to the integrable structure, u may be chosen as the pullback of the
Fubini-Study form. It turns out that GW invariants really depend only on
the symplectic structure (or its deformation class), hence are symplectic in
nature. Since the original definition basically neglects singular curves, GW
invariants were restricted to projective manifolds with numerically effective
anticanonical bundle.

More recently the situation has changed with the advent of a beautiful,
purely algebraic and completely general theory of GW invariants based on
an idea of Li and Tian [Bel], [BeFa], [LiTil]. This development is surveyed
in [Be2]. Due to the independent effort of many people there is now also a
completely general definition of symplectic GW invariants available [FkOn],
[LiTi2], [Ru2], [Sil]. The purpose of the present paper is to supplement
Behrend's contribution to this volume [Be2] by the symplectic point of view.
We also sketch our own more recent proof of equivalence of symplectic and
algebraic GW invariants for projective manifolds.

While it is perfect to have a purely algebraic theory, I believe that the
symplectic point of view is still rewarding, even if one is not interested in sym-
plectic questions: apart from the aesthetic appeal of the interplay between
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geometric and algebraic methods, symplectic techniques are sometimes easier
and more instructive to use (if only as a preparation for an algebraic treat-
ment). In [Si3], Proposition 1.1, I gave an example of GW invariants of cer-
tain projective bundles that are much more readily accessible by symplectic
techniques. I also find that the properties of GW invariants, especially defor-
mation invariance, are more intuitively obvious from the symplectic point of
view, cf. also Section 4.2; this may just be a matter of taste. More philosoph-
ically, the symplectic nature of enumerative invariants in algebraic geometry
should mean something, especially in view of their appearance in mirror sym-
metry. Finally, it is important to establish algebraic techniques to compute
symplectic invariants. In fact, a closed formula for GW invariants, holding
in even the most degenerate situations, can easily be derived from the def-
inition, cf. [Si2]. The formula involves only Fulton's canonical class of the
moduli space and the Chern class of a virtual bundle.

Gromov-Witten invariants have a rather interesting and involved history,
with connections to gauge theory, quantum field theory, symplectic geometry
and algebraic geometry. I include some remarks on this, following the referee's
suggestion; however, I should point out that I concentrate only on the history
of how these invariants were defined, rather than their computation and their
many interesting applications.

The story begins with Gromov's seminal paper of 1985 [Gv]. In this paper
Gromov laid the foundations for a theory of (pseudo-) holomorphic curves in
almost complex manifolds. Of course, a notion of holomorphic maps between
almost complex manifolds existed already for a long time. However, Gromov's
points were that

(1) while higher dimensional almost complex submanifolds or holomorphic
functions might not exist even locally, there are always many local holo-
morphic curves;

(2) the local theory of curves in almost complex manifolds largely parallels
the theory in the integrable case, i.e., on Cn with the standard com-
plex structure (Riemann removable singularities theorem, isolatedness
of singular points and intersections, identity theorem);

(3) to get good global properties one should require the existence of a
"tamincf symplectic form u (a closed, non-degenerate two-form) with
UJ(V, Jv) > 0 for any nonzero tangent vector v (where J is the almost
complex structure).

In fact, in the tamed setting, Gromov proves a compactness result for spaces
of pseudoholomorphic curves in a fixed homology class. At first sight, the
requirement of a taming symplectic form seems to be merely technical. How-
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ever, Gromov turned this around and observed that given a symplectic man-
ifold (M,u), the space of almost complex structures tamed by u is always
nonempty and connected. With the then recent ideas of gauge theory, Gro-
mov studied moduli spaces of pseudoholomorphic curves in some simple cases
for generic tamed almost complex structures. One such case was pseudo-
holomorphic curves homologous to P1 x {pt} on P1 x T with T an (compact)
n-dimensional complex torus. He shows that for any almost complex structure
on P1 x T tamed by the product symplectic structure, such pseudoholomorphic
curves exist. In modern terms, he shows that the associated GW invariant
is nonzero. This can then be used to prove his famous squeezing theorem:
the symplectic ball of radius r cannot be symplectically embedded into the
cylinder B% x Cn for R < r.

Several more applications of pseudoholomorphic curves to the global struc-
ture of symplectic manifolds were given already in Gromov's paper, and many
more have appeared since. Probably the most striking of these is due to Floer
[Fl]. He interpreted the Cauchy-Riemann equation of pseudoholomorphic
curves as flow lines of a functional on a space of maps from the circle S1

to the manifold. He can then do Morse theory on this space of maps. The
homology of the associated Morse complex is the celebrated (symplectic) Floer
homology, which has been used to solve the Arnol'd conjecture on fixed points
of nondegenerate Hamiltonian symplectomorphisms. I mention Floer's work
also because it is in the (rather extended) introduction to [Fl] that a (quan-
tum) product structure on the cohomology of a symplectic manifold makes
its first appearance (and is worked out for Pn). As we now (almost) know
[RuTi2], [PSaSc] this agrees with the product structure defined via GW in-
variants, i.e., quantum cohomology.

An entirely different, albeit related, development took place in physics.
Starting from Floer's instanton homology, a homology theory developed by
Floer in analogy to the symplectic case for gauge theory on three-manifolds,
Witten [Wil] observed that one can formulate supersymmetric gauge theory
on closed four-manifolds, provided one changes the definition of the fields in
an appropriate way ("twisting procedure"). The result is a physical theory
that reproduces Donaldson's polynomial invariants as correlation functions.
Because the latter are (differential) topological invariants, the twisted theory
is referred to as a topological quantum field theory. In [Wi2] Witten applied
the twisting procedure to nonlinear sigma models instead of gauge theory.
Such a theory is modelled on maps from a Riemann surface to a closed,
almost complex manifold. The classical extrema of the action functional are
then pseudoholomorphic maps. The correlation functions of the theory are
physical analogues of GW invariants. Witten was the first to observe much
of the rich algebraic structure that one expects for these correlation functions
from degenerations of Riemann surfaces [Wi3].
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It is curious that, while simple versions of GW invariants were used as
a tool in symplectic topology, and the technical prerequisites for a system-
atic treatment along the lines of Donaldson theory were all available (notably
through the work of McDuff, the compactness theorem by Gromov, Pansu,
Parker-Wolfson and Ye), it was only in 1993 that Ruan tied up the loose ends
[Rul] and defined symplectic invariants based on moduli spaces of pseudo-
holomorphic (rational) curves, mostly for positive symplectic manifolds. It
was quickly pointed out to him that one of his invariants was the mathemat-
ical analogue of correlation functions in Witten's topological sigma model.

At the end of 1993 the breakthrough in the mathematical development
of GW invariants and their relations was achieved by Ruan and Tian in the
important paper [RuTil]. Apart from special cases (complex homogeneous
manifolds), until recently, the results of Ruan and Tian were the only methods
available to make precise sense of GW invariants for a large class of (semipos-
itive) manifolds, including Fano and Calabi-Yau manifolds, and to establish
relations between them, notably the associativity of the quantum product
and the WDVV equation. Many of the deeper developments in GW theory
used these methods, including Taubes' relationship between GW invariants
and Seiberg-Witten invariants of symplectic four-manifolds [Ta], as well as
Givental's proof of the mirror conjecture for the quintic via equivariant GW
invariants [Gi]. For the case of positive symplectic manifolds, proofs for the
glueing theorem for two rational pseudoholomorphic curves, which is the rea-
son for associativity of the quantum product, were also given by different
methods in the Ph.D. thesis of G. Liu [Liu] and in the lecture notes [McSa].

Early in 1994, Kontsevich and Manin [KoMa] advanced the theory in a
different direction: rather than proving the relations among GW invariants,
they formulated them as axioms and investigated their formal behaviour.
They introduced a rather big compactification of the moduli space of maps
from a Riemann surface by "stable maps" (cf. Definition 1.1 below). With
this choice, all relations coming from degenerations of domains can be for-
mulated in a rather regular and neat way. In the algebraic setting, spaces of
stable maps have projective algebraic coarse moduli spaces [FuPa]; fine mod-
uli spaces exist in the category of Deligne-Mumford stacks [BeMa]. Another
plus is the regular combinatorial structure that allows the use of methods
of graph theory to compute GW invariants in certain cases. No suggestion
was made, however, of how to address the problem of degeneracy of moduli
spaces, that in Ruan and Tian's approach, applied to projective algebraic
manifolds, forces the use of general almost complex structures rather than
the integrable one.

This problem was only solved in the more recent references given above,
first in the algebraic and finally in the symplectic category, by constructing
virtual fundamental classes on spaces of stable maps.
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Here is an outline of the paper: Chapter 1 starts with a simple model case
to discuss both the traditional approach and the basic ideas of [Sil]. Chapter 2
is devoted to the most technical part of my approach, the construction of a
Banach orbifold containing the moduli space of pseudoholomorphic curves.
The ambient Banach orbifold is used in Chapter 3 to construct the virtual
fundamental class on the moduli space. Chapter 4 discusses the properties of
GW invariants that one obtains easily from the virtual fundamental class. We
follow here the same framework as in [Be2], so a comparison is easily possible.
A fairly detailed sketch of the equivalence with the algebraic definition is given
in the last chapter. The proof shows that the obstruction theory chosen in
the algebraic context is natural also from the symplectic point of view. For
this chapter we assume some understanding of the algebraic definition.

After finishing this survey, I received a similar survey by Li and Tian
[LiTi3], in which they also announce a proof of equivalence of symplectic and
algebraic Gromov-Witten invariants.1

A little warning is in order: the symplectic definition of GW invariants
is more involved than the algebraic one. Modulo checking the axioms and
the formal apparatus needed to do things properly, the latter can be given a
rather concise treatment, cf. [Si2]. But as long as symplectic GW invariants
are based on pseudoholomorphic curves, even to find local embeddings of the
moduli space into finite dimensional manifolds ("Kuranishi model") means a
considerable amount of technical work. In this survey I tried to emphasize
ideas and the reasons for doing things in a particular way, but at the same
time keep the presentation as nontechnical as possible. While we do not
assume any knowledge of symplectic geometry or GW theory, the ideal reader
would have some basic acquaintance with the traditional approach, e.g., from
[McSa]. The reader who feels uneasy with symplectic manifolds is invited to
replace the word "symplectic" by "Kahler".

I thank the referee and Miles Reid for pointing out some unclear points
and M.R. for carefully editing the whole text.

1 Setting up the problem

1.1 The traditional approach

The purpose of this section is to present Ruan's approach to GW invariants
on a simple example. We refer to the lecture notes [McSa] for background
information and a more careful exposition. Let £ be a closed Riemann surface
with complex structure j , and (M, J) an almost complex manifold. We also
fix some k > 1 and a G (0,1). The space B := Cfc'a(£;M) of fc-times

1Note added in proof: Both papers are meanwhile available as [LiTi4], [Si4].
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differentiate maps from E to M with kth derivative of Holder class a is a
Banach manifold. Charts at (p: E —> M are given, for example, by

Here the exponential map is with respect to some fixed connection on M, and
V is a sufficiently small open neighbourhood of 0 where the map is injective.
The equation for tp to be J-holomorphic is

djip = 0, djip =^(D(p + JoDcpoj)e Cfc-1»°(S;</?*TM ®c O).

Here we write ^ = A 0 ' 1 ^ for the bundle of (0, l)-forms on E. The equation
djip o j = — (p* J o dj(p in the space of homomorphisms between the complex
vector bundles (Ts, j) and (<P*TM, <p*J) shows that, viewed as section of <P*TM,

djip is indeed (0, l)-form valued. Intrinsically, these equations fit together to
a section SQ J of the Banach bundle £ [B with fibers

Local trivializations of £ over the above charts can easily be constructed by
(the complex linear part of) parallel transport of vector fields along the family
of closed geodesies jz(t) with 72(0) = <p(z), 7^(0) = v(z).

Obviously, S-Q J is differentiable. As for any differentiate section of a
vector bundle, its linearization at a point of the zero locus, which is a linear
map Ts,(p —> £(p, is independent of the choice of local trivialization. Thus over
the zero locus Z of S-QJ the linearization induces a section a of Hom(T#,£).
One computes for the linearization at J-holomorphic (p:

Here ATj is the Nijenhuis tensor or almost complex torsion of (M, J) , a certain
tensor on M depending only on J that vanishes identically if and only if
J is integrable, see, e.g., [KoNo], Chap. IX, §2; and 9 j is the d operator
belonging to a natural holomorphic structure on <P*TM> Concerning the latter,
one actually defines 9 j as the (0, l)-part of the linearization of S-QJ. The
integr ability condition being void in dimension one, this complex linear partial
connection defines a holomorphic structure on V?*TM, cf. Section 2.4.

We see that up to a zeroth order differential operator, a^ is just the
Cauchy-Riemann operator of a holomorphic vector bundle over E of rank n =
dime M. But 9 j is a Predholm operator on appropriate spaces of sections, i.e.,
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it has finite dimensional kernel and cokernel. It is crucial at this point to work
with Holder spaces: the Predholm property is false for a = 0. Alternatively,
as below, one may work with Sobolev spaces. Now lower order perturbations
are compact operators by the Arzela-Ascoli compactness theorem, and the
Predholm property and the index (the dimension of the kernel minus that of
the cokernel) do not change under adding a compact operator. This shows
that o^ is a Predholm operator whose index is given by

-

the holomorphic Euler characteristic of IP*TM- The latter can be computed
by the ordinary Riemann-Roch theorem to be

deg{<p*TM, <p*J) + ( 1 - 5 ) dime M = *(M, J) • <p.\S\ + (1 - g)n.

If S-QJ is transverse at </?, which by definition means that a^ is surjective,
then an application of the implicit function theorem shows that in a neigh-
bourhood of (p, the space Chol(E,M, J) of J-holomorphic maps E —» M is
a differentiate manifold of dimension indcr^. Moreover, near such points,
Chol(E, M, J) is naturally oriented by complex linearity of <9j. Ignoring ques-
tions of compactness for the moment, if transversality is true everywhere,
Chol(E,M, J) is a good moduli space for enumerative purposes involving J-
holomorphic curves, i.e., GW invariants. In the integrable situation (i.e., M
a complex manifold), transversality at ip means that the deformation theory
of (p is unobstructed: ip deforms both under deformations of J and j . By the
same token we see that the same statement holds even under deformations of
J as almost complex structure.

Using the Sard-Smale theorem one can make S-Q J transverse everywhere
except possibly at so-called multiple cover curves, simply by a generic choice
of J. A multiple cover curve is a tp: E —» M that factors over a holomorphic
map of Riemann surfaces of higher degree. For J-holomorphic curves this is
equivalent to saying that cp is not generically injective. The reason is that the
Sard-Smale theorem requires that perturbations of J generate the tangent
space of the ambient space, and this may fail if cp is not generically injective.
For certain (positive) manifolds the bad locus of compactifying and multiple
cover curves can be proved to be of lower dimension for generic J and thus to
be ignorable for enumerative questions. This is the original, very successful,
approach of Ruan to GW theory [Rul], following a similar scheme in gauge
theory.

In the general case there are two ways of proceeding. If one wants to stick
to manifolds one can introduce an abstract perturbation term, which is just a
section v £ Cl(B',£), and consider solutions of the perturbed equation
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i.e., look at the zero locus of the perturbed section s$ j — v. Again by the
Sard-Smale theorem, for generic choice of v, Chol(£, M, J, v) := Z(SQ J — v) is
a canonically oriented manifold of dimension indcr^. So one replaces the pos-
sibly singular, wrong dimensional Chol(£, M, J) by an approximating manifold
inside B. In GW theory this has again been pioneered by Ruan to extend
the range of the previous approach to semipositive manifolds by removing
nongenericity of multiple cover curves (the perturbation term unfortunately
vanishes at "bubbling components" of the domain, cf. Section 1.3, that have to
be included on the compactifying part; so this method still does not work gen-
erally) . The idea of associating (cobordism classes of) finite dimensional sub-
manifolds to Predholm maps by perturbations goes back (at least) to Smale
[Sm].

The other approach, that we follow for the most part, is to replace the
manifold by a homology class located on Chol(£, M, J) . The homology class
should be thought of as the limit of the fundamental classes of the perturbed
manifolds Z(SQ J—V) as v tends to zero. Because its image in H*(B) represents
any of these fundamental classes, the homology class is called the virtual
fundamental class of Chol(£, M, J) . For conceptual clarity let us discuss this
topic in an abstract setting.

1.2 Localized Euler classes in finite and infinite
dimensions

First a note on homology theories. While cohomology has good properties on
a large class of spaces making it essentially unique, (singular) homology be-
haves well only on compact spaces. Several extensions to noncompact spaces
are possible. Since we need fundamental classes of noncompact oriented man-
ifolds, the natural choice is singular homology of the second kind, i.e., with
only locally finite singular chains, or Borel-Moore homology with coefficients
in the ring Z (or later also Q). These two homology theories are isomor-
phic under fairly mild conditions on the spaces, that are fulfilled in cases of
our interest, cf. [Sk]. Note that this homology theory has restriction homo-
morphisms to open sets, obeys invariance only under proper homotopy, and
pushes forward only under proper morphisms. General references are [Br],[Iv]
and [Sk].

Given a Hausdorff space X with a closed subspace Z the localized cap
products are homomorphisms

Ci:Hn(X)®H%(X) —> tfn-*(Z),

where, as mostly in the sequel, we suppressed coefficient rings. If s is a
section of an oriented topological vector bundle E of finite rank r over X,
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the Euler class of E can be localized on the zero locus Z of s. Namely, let
@E € Hx(E) be the Thorn class of E. Locally, O# is of the form TT*5O, where
TT: E\U —> Rr is a local trivialization and So G ii/T0-»(IRr,Z) is the unique
generator compatible with the orientation. Then S*QE € Hr

z(X) represents
the Euler class of E. And if X is an oriented topological manifold one may
pair S*QE with the fundamental class [X] using the localized cap product to
arrive at a homology class on Z which is Poincare dual on X to the Euler
class of E.

In a differentiate situation, i.e., E a differentiate vector bundle over
an oriented differentiate manifold X, let S{ be (differentiate) transversal
sections converging to s. Then [X] D S*QE = [^(si)]> the fundamental class
of the naturally oriented manifold Z(si). These converge to [X] D S*QE G
iJn_r(Z), n = dimX, which may thus be viewed as natural homological
replacement for the zero loci of generic perturbations of s.

In the infinite dimensional setting of the previous section, neither 0£ nor
[B] make sense. But if s is differentiate with Predholm linearizations, if
Z = Z(s) is compact and if B admits differentiate bump functions, we may
do the following: by hypothesis it is possible to construct a homomorphism
from a trivial vector bundle r : F = W —> £ so that for any x G Z(s),
rx + Dxs: Rr 0 TB,X -» £x is surjective. Replace B by the total space of F
(which is just BxM r , but we will need nontrivial bundles later), and consider
the section 7 := q*s + r of q*£, where q: F —> B is the bundle projection.
Note that if we identify B with the zero section of F then s]# = s. TX + DXS to
be surjective means that ?is a transverse section, at least in a neighbourhood
of Z = Z n S, Z = Z(S). So Z C F is a manifold near the zero section of F.
And F being of finite rank it has a Thorn class, no matter the base is infinite
dimensional. Ignoring questions of orientation we may then define

[£,s] := [Z]neF e H*(Z).

It is not hard to check independence of choices and coincidence with [Z] in
transverse situations. The dimension of [£, s] is locally constant and equals
the index of the linearization of s.

Similar ideas have been applied in certain cases to compute both Don-
aldson and GW invariants, notably if the dimension of the cokernel is con-
stant. In the presented generality this is due to Brussee who used it to study
Seiberg-Witten theory in degenerate situations [Bs].

I should also point out that, locally, [5,5] is uniquely determined by a
Kuranishi model for Z: let s be given locally by a differentiable Predholm
map f:U—> E = £x, U C B open. Let q: E —• Q be a projection with
finite dimensional kernel C ("C" for cokernel) such that D(qo f): TB,X -» Q
is surjective. Possibly after shrinking [/, Z = (q o /)~1(0) is a manifold of
dimension ind / + r, r = dimC. Then f\z: Z —> C is a differentiate map
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between finite dimensional manifolds. Again ignoring questions of orientation,
we observe

\ = [z}n(f\2ys0 e H.(znu),

So e H{Oy(C,Z) the positive generator. However, unless Z is of expected di-
mension inds, the glueing of the local classes may not be unique. So the
knowledge of Kuranishi models covering Z(s) may not be enough to deter-
mine the class [£,s]. It would be interesting to understand precisely what
additional datum is needed to globalize these classes. In a sense this is the
question how topological a theory of localized Euler classes of differentiable
Predholm sections can be made.

1.3 The compactification problem: stable J-curves

Since we used compactness of Z for the construction of [£, s], the method of
the last section applies directly to our model in 1.1 only on compact compo-
nents of the space of J-holomorphic maps from E to M. This never holds
for the important case of E = P1 because of noncompactness of Aut(Px) =
PGL(2), which acts on these spaces by reparametrization. This trivial cause
of noncompactness could be avoided by factoring out the connected com-
ponent of the identity Aut°(E). More fundamentally though, the space of
J-holomorphic maps is not compact if so-called bubbles appear in limits of
sequences of such maps. If ipi: E —• M is a sequence of J-holomorphic maps,
a bubble is a J-holomorphic rational curve ip: P1 —• M obtained as the limit
of rescalings of </?* near a sequence of points Pi —> P £ E with \Dipi(Pi)\
unbounded. A simple example of bubbling off in algebraic geometry is the
degeneration of a family of conies in the plane to a line pair. The content of
the Gromov compactness theorem is that this phenomenon is the precise rea-
son for noncompactness of moduli spaces of J-holomorphic curves of bounded
volume, cf. Theorem 1.2. As one knows from examples in algebraic geometry
this happens quite often unless (y>»)*[S] (constant on connected components of
Chol(EKM, J)) is indecomposable in the cone in H2(M, Z) spanned by classes
represent able by J-holomorphic curves.

We are thus lead to the problem of introducing an appropriate compactifi-
cation of Chol(E, M, J) .2 This is due to Gromov [Gv], and Parker and Wolfson
from a different point of view [PrWo], but has been put into its final form by
Kontsevich through the notion of stable map [KoMa]. It is convenient to also
incorporate marked points on E now.

Definition 1.1 (C,x,y?) is called a stable J-holomorphic curve if
2 Another reason compactification is essential is of course that we need a degree map to

extract well-defined numbers out of the homology class, cf. 4.1
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• C is a connected, reduced, complete complex algebraic curve with at
most ordinary double points (a "Riemann surface with nodes");

• x = (rri,... , Xk) with pairwise distinct X{ G Creg;

• for any irreducible component D c C , <p\c is J-holomorphic;

• Aut(C, x, ip) := {a: C —* C biregular | ip o a — ip} is finite. •

The first two conditions are sometimes summarized by saying that (C, x)
is a pre-stable (marked) curve. The condition on finiteness of the automor-
phism group is the stability condition. It can be rephrased by saying that
the normalization (=desingularization) D of any rational component of C
contracted by (p contains at least three special points (marked points or
preimages of nodes under D —• C). Note that by putting M = {pt} one
retrieves the definition of stable algebraic curves with marked points due to
Deligne and Mumford [DeMu] and Knudson [Kn]. So the notion of stable
J-holomorphic curve should be viewed as natural extension of the concept of
Deligne-Mumford stable curve to the situation relative to M rather than the
spectrum of a field. The genus g(C) of (C, x, (p) is by definition the arithmetic
genus hl(C,Oc) of C. Since hl(C,Oc) = 1 - x{C,Oc) is constant in flat
families, g(C) could alternatively be defined as the genus of a smooth fiber
of a deformation of C, i.e., the genus of the closed surface obtained from C
by replacing each double point x • y = 0 by a cylinder x • y = e.

How does this concept incorporate bubbling phenomena, say in our model
of maps (p: E —> Ml After rescaling at Pi in such a way that the differentials
become uniformly bounded at P^ there might be another sequence of points
with unbounded differentials. So we may end up in the limit with a tree
ip: B —> M of J-holomorphic rational curves at P. To be a tree means that
B is simply connected and has at worst ordinary double points. To achieve the
latter, one might have to introduce more rational components than necessary
to make sense of a limiting map, i.e., ^ might be trivial on some irreducible
components D C B, but only if D contains at least three double points.
Because the only marked Riemann surface with infinitesimal automorphisms
fixing one more point (a double point making the whole curve connected) is
P1 with fewer than two marked points, this is the stability condition! So in
this case, the domain of the limiting map will be (C,x) = (E Up 5,0), or
more generally, several trees B\,... , J3& of rational curves attached to E at
several points.

Conversely, if (C, x, (p) is a stable J-holomorphic curve, there is always
an associated stable curve (C,x)st = (Cst,xst) so that (C,x, ip) looks like the
curve obtained starting from a sequence of J-holomorphic curves by bub-
bling off (in reality this deformation problem might be obstructed). (C, x)st
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is just the stabilization of the abstract curve (C, x) obtained by successive
contraction of (absolutely) unstable components. The latter are by definition
rational components D C C with #{xi G D} + #Cs[ngr\D < 3. Equivalently,
Aut°(C, x) acts nontrivially on D. After contracting all unstable components
of (C, x), some previously stable components may become unstable. The
process is then repeated until the result is a Deligne-Mumford stable curve
(C, x)s t . Note that the genus does not change under this process.

By this picture it is natural to distinguish bubbling and principal compo-
nents of the domain of stable J-holomorphic curves (C, x, ip), depending on
whether or not the component gets contracted under the stabilization map
(C,x) —• (C, x)s t . Note that if (C,x)st is singular, there is another possible
type of bubbling off, different from that discussed above, introducing a chain
of P*s joining the two branches over an ordinary double point.

One subtlety in the discussion of stable J-curves is that their domains are
only pre-stable curves, which do not in general possess decent moduli spaces.
To explain this, recall the local description of Mg,k, the coarse moduli space
of (Deligne-Mumford) stable curves of genus g with k marked points. For
later use, it is better to work complex analytically now. If (C, x) G Mg,k
there is an open subset S C Ext1(Oc(^i + h xfc), Oc) ^ C3^"3+fc, a flat
family q: C —+ S (with C smooth) of pre-stable curves with k sections x: S —•
C Xs - - • X5 C, such that the germ of (C —» 5,x) at 0 G S is an analytically
universal deformation of (C, x). This means that the germ of any flat family
of marked stable curves with central fiber (C, x) is (canonically isomorphic
to) the pullback of (C —> 5, x) under a map from the parameter space to 5. If
(C, x) has nontrivial automorphisms, the action on the central fiber extends
to an action on (the germ at 0 G S of) C and 5 making q and x equivariant.
After possibly shrinking 5, one may also assume that s and s' e S parametrize
isomorphic marked stable curves if and only if there exists an automorphism
of (C, x) carrying s to s'. Since Aut(C,x) is finite we may assume that the
action is in fact well defined on all of C and S. The quotient S/ Aut(C,x)
exists as complex space and is a neighbourhood of (C, x) in Mg^-

If (C,x) is just pre-stable we still have a pair (C —• 5,x). But now
Aut(C, x) is higher dimensional and dim S = 3g — 3 + k + dimAut(C, x).
There is the germ of an action of Aut°(C,x) on C —> 5, which is a map
from a neighbourhood of {Id} x C in Aut°(C, x) x C to C (respectively, from
a neighbourhood of (Id,0) G Aut°(C,x) x 5 to S). Now (C -> 5,x) is no
longer a universal deformation, but only semiuniversal, which means that
uniqueness holds only on the level of tangent maps at 0 G 5. The moduli
"space" $gyk of pre-stable curves of genus g = g(C) with k = # x marked
points should locally around (C, x) be thought of as the quotient of S by
the analytic equivalence relation generated by this action. Now Aut°(C,x)
decomposes into a product with factors C* for each bubbling component with
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only two special (i.e., marked or singular) points and C x C* for each bubbling
component with one special point. In appropriate coordinates, the restriction
of the action to one such C* looks like the standard C* action on C cross a
trivial factor. So a quotient does not even exist as a Hausdorff topological
space, let alone analytic space or scheme.

Despite this, $9jk behaves in many respects like a scheme. It has a struc-
ture of what is called an Artin stack. We do not go into details of this,
but instead keep in mind the local description as a quotient of the base S
of a semiuniversal deformation of (C, x) by the analytic equivalence relation
generated by Aut(C, x).

It is also useful to observe that the semiuniversal deformation C —» S of
(C, x) fibers over the universal deformation C —> S of its stabilization (C, x)st.
The map S —> S is smooth (a linear projection in appropriate coordinates)
unless (C, x) has bubble chains (bubbles inserted at a double point of (C, x)st),
in which case it is only of complete intersection type (with factors of the form
(xi , . . . , xr) •—• X\ xr in appropriate coordinates). This is important in
the proof of the isogeny axiom of GW invariants in Section 4.2.

There is a natural topology on the set of stable J-holomorphic curves,
the Gromov topology [Gv], §1.5 cf. also [Pn], Def. 2.12. We do not give the
definition here because it will become obvious once we introduce local charts
for the ambient Banach manifold in Chapter 3. To state the compactness
theorem, let R e H2(M, Z) and g,k>0.

Theorem 1.2 ([Gv], [Pn], [PrWo], [RuTil], [Ye]) Assume that the al-
most complex structure J is tamed by some symplectic form u on M, i.e.,
u(Xy JX) > 0 for all I G T M \ { 0 } . Then the space

(C, x, ip) is a stable
J-holomorphic curve and 1S°

with the Gromov topology is compact and Hausdorff. •

The taming condition allows us to bound the volume of J-holomorphic
curves in terms of its homology class R by the analogue of the Wirtinger
theorem. In fact, Ye's method of proof uses only a bound on the volume.
That such a bound is crucial in compactness results has been understood in
complex analysis since [Bi]. The Hausdorff property is not proved in the given
references but requires some additional arguments as given in any of [FkOn],
[LiTi2], [Ru2], [Sil].

We also need to enlarge the ambient Banach manifold. We discuss this in
a separate chapter since it involves a number of subtleties.
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2 The ambient space

To carry out the program of Section 1.2 for the spaces C)^gk(M, J) of stable
J-holomorphic curves in an almost complex manifold tamed by some symplec-
tic form a;, we want to construct a Banach manifold into which C^^M, J)
embeds. Obvious choices are spaces of triples (C, x, (p) with (C, x) a fc-marked
pre-stable curve of genus g and cp: C —> M just a continuous map such that
ip*[C] = R, together with some kind of regularity. We will see that requiring
(p to be of Sobolev class L\ with 2 < p < oo, i.e., with one distributional
derivative in LP, is a very natural condition. The measure is with respect to
a metric on C with certain weights at the singular points. For general facts
on Sobolev spaces we refer to the books [Ad] (for Sobolev spaces on Rn) and
[Au] for the case of manifolds. Most standard textbooks on partial differential
equations also contain ample information on Sobolev spaces. Note that since
the domain is two dimensional, L\ is a critical case of the Sobolev embedding
theorem: there exist discontinuous Lf-functions on R2, but functions in L\
with p > 2 always have continuous representatives. Thus L\ with p > 2 is
the minimal possible regularity for a sensible formulation of the <9j-equation.
Conversely, it is unreasonable to expect maps of higher regularity to give rise
to a smooth total space, as will be clear from Section 2.4.

2,1 Charts

To produce charts, observe that, intuitively, a small deformation of (C, x, ip)
can be split into

(1) a deformation of the domain (C, x) as pre-stable curve, arriving at a
possibly less singular curve C", and

(2) a deformation of a pullback <poK, where K, : C —» C is some comparison
map that is a diffeomorphism away from the singularities of C.

As in our discussion of the Artin stack 3 ^ in Section 1.3, let (q: C —• 5, x)
be an analytically semiuniversal deformation of (C,x) = (g~1(0),x(0)). Let
us write Ca for g"1(s). If <p: C —> M is Lf, we want (pon also to be L\. Since
f\>2 ^ i = ^i° ( t n e Sobolev space of functions with essentially bounded first
derivative) and LJ° = C0)1 is the space of Lipschitz maps, a good choice that
works for all p should be Lipschitz. Using an analytic description of q: C —• 5,
it is not hard to construct a retraction
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which, when restricted to Cs, is a diffeomorphism away from CSing, and which
near the smoothing zw = t of a node zw = 0 is given by a linear rescaling

{z = reif) _> z = ^ = | p e* if \z\ > \w

and similarly for w if \w\ > \z\. In particular the circle \z\ = \w\ = |£|1//2 is
contracted to the node and K is Lipschitz (note that C is also smooth).

Next, we define our weighted Sobolev spaces. The choice is distinguished
by the fact that we want K to induce isomorphisms of //-spaces. Since the
ordinary Lebesgue measure on a nonsingular Cs corresponds to the finite
cylindrical measure drdtp = r~1dxdy on each branch of C near a singular
point (where z = rel(p = x + iy), our measure fi on C is required to be of this
type near CSing and locally equivalent to Lebesgue measure away from this
set. We write

and L\(C, R) C L\(C, R) for the functions possessing one weak derivative in
i>(C,R) (on each irreducible component of C). Since Z>(C,R) C i^(C,R),
by the Sobolev embedding theorem there is an embedding of L\(C^ R) into the
space of continuous functions C°(C, R) for p > 2. We adopt the usual abuse
of notation and identify L^(C, R) with its image in the space of continuous
functions, i.e., we take the unique continuous representative of any class in
L\(C, R). Note that in general there is no distinguished choice of metric on
C, so these spaces are well defined only as topological vector spaces, not as
normed spaces.

For vector bundles E over C one defines similarly IP{C, E) and I/i(C, E).
And as usual, spaces of maps L\{C^ M) can be defined either by embedding
M into some RN and requiring the Sobolev property componentwise, or by
taking local coordinates on M and require composition with the coordinate
functions to be L\. This is well defined for p > 2 by continuity.

Here is the definition of our ambient space. We fix once and for all some
p with 2 < p < oo.

Definition 2.1 (C, x, (p) is a stable complex curve in M of Sobolev class L\
if and only if

• (C, x) is a pre-stable marked curve;

• for any unstable component D of (C, x), ip\n is homotopically non-
trivial. •
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We use C(M;p) to denote the set of isomorphism classes of such curves
and

;p) := {(C,x,y>) € C(M;p) | ^ [C] = i?, # x = k,g(C) = g] / i so .

By abuse of notation, we write (C,x, <p) G C(M;p) to mean a representative
of the isomorphism class.

By construction K,*: L ^ C J R ) —> Z^C^R) is an isomorphism for any
s e S. On L\-spaces pullback is also well denned, because KS is Lipschitz, but
since </?OKS is constant on the contracted circles, K* is certainly not surjective.
What we are interested in for the construction of charts are identifications
n s : L\(C,(P*TM) —» L\(CS; (if o K3)*TM), i.e., a structure of Banach bundle
o n UsL

Pi{Cs; ((p o KS)*TM). The latter space will be denoted ^ ( / C V ^ M ) ,

which captures the idea of being the direct image of a sheaf of sections of
(ip o K)*TM that are fiberwise locally of class L\. We will sketch a proof of
the following result in Section 2.4:

Theorem 2.2 Let (C, x, (p : C —> M) be a stable map of class L\ and (q :
C —• 5, x) an analytically semiuniversal deformation of (C, x). Thus S is an
open set in CN, where N = 3g-3 + k + dimAut(C,x). Let K, : C -> Co = C
be the Lipschitz retraction to the central fiber as above. Then there exists a
family of isomorphisms

IIS: L\{C, <p*TM) - L{(CS; (tp o K.)*TM).

IIS enjoys the following continuity property: The composition with pullback to
the central fibre

Z5 a no77n continuous family of operators (between fixed Banach spaces!) para-
metrized by S.

Here the stated norm continuity implies that for v £ L\{C, (P*TM), small
changes of 5 lead to small pointwise changes of Hsv in an intuitive sense. Thus
the graphs of Usv in the total space of K,*<P*TM fit together continuously. More
regularity properties of IIS will be discussed later.

Given IIS we just need to write down the analogue of the charts for fixed
domains (cf. 1.1) to get charts for C(M]p):

: S x L\{C,V*TM) DSx V—*C{M;p), (s,v) .—> <p(s,v)

<p(s,v)(z) :=
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2.2 Automorphisms and differentiable structure

There are still two problems with the proposed charts $ of 3.1. First, since
5 does not in general parametrize pre-stable curves near (G, x) effectively, <I>
need not be injective. Not every \I> G Aut(C,x) has im<l> fl im(\I>* o <£) ^ 0,
but this is certainly the case for ^ close to Aut(G,x,y>) C Aut(C,x). Here
we write \I/ both for the automorphism of the central fibre of the deformation
and for the germ of the action on the total space C. Thus the best we can
hope for is the structure of a Banach orbifold on C(M',p).

Orbifolds are a generalization of the notion of manifolds where we replace
open subsets of vector spaces as local models by quotients of such open subsets
by linear actions of finite groups. More precisely, one defines

Definition 2.3 A local uniformizing system (of Banach orbifolds) is a triple
(q: U->U,G,a) where:

(1) a is a continuous linear action of the finite group G on some Banach
space T;

(2) U is a G-invariant open subset of T;

(3) q induces a homeomorphism U/G —> U.

For a more intuitive notation we often write U = U/G instead of (q, G, a). •

Compatibility of local uniformizing systems is defined through the notion
of open embeddings: let V = V/G', U = U/G be two local uniformizing
systems. An open embedding V = V/G' <—• U = U/G is a 7-equivariant
open embedding / : V —> U for a monomorphism 7: G' —» G. Thus this
induces an open embedding of the quotient spaces / : V c-^ U. If the actions
of the groups are not effective one should also require a maximality condition
for 7, namely

i m 7 = {9£G

This ensures that for any X G V, 7 induces an isomorphism of stabilizers

Recall that a covering {Ui}iei of a set X is called fine if for any i,j G / with
U{C\Uj T^0 there exists k G / with Uk C U{f!Uj. An atlas for the structure of
Banach orbifold on a Hausdorff space X is now a fine covering of X by local

3The group actions axe traditionally required to be effective. This is too restrictive
for our purposes: because any curve of genus 2 has a hyperelliptic involution, M2 is an
instance of an orbifold with Z2-kernel of the action everywhere, cf. below.
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uniformizing systems {Ui = Ui/Gi}iei (i.e., {C/J is an open covering of X)
such that for any i,j G / there is a k G / and open embeddings

Uk = Uk/Gk<->Ui = Ui/Gi and Uk = Uk/Gk ^ Uj = UJ/GJ.

It is in general not possible to find an open embedding of the restriction of
Ui = Ui/Gi to Ui fl Uj into [/,• = Uj/Gj. Consider, for example, the orbifold
structure on S2 with cyclic quotient singularities of orders 2 and 3 at the poles.
This orbifold can be covered by two local uniformizing systems R2 = C/Z2,
R2 = C/Z3 via stereographic projection from the poles. So unlike the case of
manifolds, one has to restrict to sufficiently small open sets to compare two
local uniformizing systems.

As usual a (topological) Banach orbifold is defined as an equivalence class
of atlases (or as a maximal atlas). If one requires all open embeddings / to
be differentiate or holomorphic immersions, one arrives at differentiable and
complex Banach orbifolds. In the latter case, the representations G —» GL(T)
should of course also be complex.

Quotients of manifolds by finite groups are examples of orbifolds, but
the whole point of the concept of orbifold is that not every orbifold is of this
form. An easy example is S2 with a Zm-quotient singularity at one point P: if
q: X -> S2 were a global cover (connected, w.l.o.g.), X \ q^iP) -> S2 \ {P}
is an unbranched cover, hence trivial by simply connectivity of the base,
hence bijective. But any local uniformizer at P is m to one. Contradiction,
such a global cover X does not exist! According to Thurston, orbifolds are
called good or bad depending on whether or not they are globally covered by
manifolds.

Note that to build up an orbifold from a set of local uniformizing systems
[JJi = Ui/Gi] through glueing by open embeddings, we need only require the
cocycle condition to hold on the level of the underlying sets U^ on the level
of uniformizers £/», it needs to hold only up to the group actions.

Note also that any x G X has an associated group Gx, the isomorphism
class of the stabilizer G% of a lift X of x to any local uniformizing system
containing x. It is the smallest group of a local uniformizing system containing
x. Thus the concept of orbifold incorporates groups intrinsically associated
to the points of X.

Natural examples of orbifolds are thus moduli spaces of objects in com-
plex analysis with finite automorphism groups and unobstructed deformation
theory (the latter to ensure smoothness of the local covers). As we saw in the
last section, moduli spaces Mg (or M9yk) of Deligne-Mumford stable curves
of fixed genus are examples of this: local uniformizers at C are of the form
S —> S/ Aut(C), where S C Ext1(flc» ®c) is an open set. What is nice about
viewing Mg as an orbifold is that, unlike the underlying scheme or complex
space, the orbifold is a fine moduli space, i.e., it wears a universal family
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of stable curves. The latter is the orbifold Mg,\ of stable 1-pointed curves
(C,x) fibered over Mg via the forgetful and stabilization map (C,x) —• Cst:
any family X —• T of stable curves of genus # over a complex manifold, say,
is isomorphic to the pullback family T xMg M9ti —• T for some morphism
of orbifolds T —• Mg (where T is viewed as orbifold with trivial groups).
Similarly for M.g,k-

Such a morphism of orbifolds is just a continuous map of the underlying
topological spaces with compatible lifts to local uniformizers. We also need
the notion of (vector) orbibundle. This is a morphism of orbifolds IT : E —> X
that is locally uniformized by projections E$ x U —• £/, with 2?o a Banach
space. If the local groups are GE and G for i£|[/ and U then the action of
GE on EQ x U is required to be diagonal via a linear representation of GE

on EQ and an epimorphism GE —> G. Open embeddings of £7 have to be
linear on the fibers EQ. Note that the topological fiber n~1(x) is isomorphic
to E0/G

E and thus does not have an additive structure in general. Tangent
bundles of differentiate orbifolds are examples of orbibundles (with GE = G
everywhere).

We now proceed with our discussion of charts for C(M;p). We will see
that if the domain (C, x) of (C, x, ip) is stable as an abstract curve then the
map 3>: S x V —• C{M\p) from the end of Section 2.1 will indeed provide
a local uniformizing system at (C, x, <p). But if (C,x) is not stable as an
abstract curve, i.e., if (C, x, <£>) has bubbles, then dimAut(C, x) > 0 and any
rj € LieAut(C, x) induces a vector field vv on S in such a way that the pre-
stable curves are mutually isomorphic along any integral curve of v^. We will
see in the next section how to deal with this problem by taking a slice of the
induced equivalence relation on S x V. The slice will again be a family of
Banach manifolds over S but with tangent space at (0,0) G S x V oi the
form S x V, where V C L%(C, <P*TM) is a linear subspace of codimension
equal to the dimension of Aut(C, x). Moreover, the slice can be taken to be
Aut(C, x, (^)-invariant.

The existence of the slice is not merely a simple application of the implicit
function theorem; this is related to the second problem that we face with our
charts: the action of the group of self-diffeomorphisms of C (and even of
Aut°(C, x)) on L\(C,M) is only continuous, not differentiate. In fact, the
differential with respect to a one parameter group of diffeomorphisms would
mean applying the corresponding vector field to the maps ip: C —> M, and
this costs one derivative. So looking at the simple case of nonsingular C, two
choices of retraction ft, K! : C —> C will lead to two different structures of dif-
ferentiable Banach orbifold near (C, x, tp): the coordinate change need not be
differentiable. The solution to the problem is that, locally, the differentiable
structure relative to S is well defined. Since S is finite dimensional, this is
enough to make the implicit function theorem work, albeit locally in a version
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relative to S.
From a categorical point of view, we are thus led to a category of topolog-

ical Banach orbifolds that locally have a well-defined differentiable structure
relative to some finite dimensional spaces. Prom a point of view closer to alge-
braic geometry, one might alternatively view our Banach orbifold as "fibered
in differentiable Banach orbifolds over the Artin stack

2.3 Slices

According to the discussion in the last section, when bubbles are present
in (C, x, </?), we need to find slices of the equivalence relation generated by
the germ of the action of Aut°(C,x) on S x V C S x L?(C,^*TM). The
usual method, applied both in algebraic geometric and analytic approaches,
is rigidification. This means adding enough points y = (i/i, . . . , yi) to (C, x) to
make (C,xVy) stable as an abstract curve; here xVy = (x i , . . . , Xk,2/1,... ,yi)
is the concatenation of x and y. Explicitly, this means that we add at least
3 — i points to each rational component having only i special points, i £
{1,2}. By stability (!) the y{ can be chosen in such a way that ip is locally
injective there. Choose locally closed submanifolds i ? i , . . . , Hi C M of real
codimension two and transversal to (p through <p(yi),... ,<p{yi)- The slice is

7 = {(3,1/) e S x V I <p(s,v){yi) £ Hi}.

This will be a submanifold at (0,0) G S x V if transversality to Hi is an open
condition in the function spaces we employ. This is indeed the case in function
spaces with at least one continuous derivative. So the idea of rigidification is
to let the map rule the deformation of the points we add.

Unfortunately, this method does not work in our case, because local in-
ject ivity is not an open condition in L\. The way out is an integral ver-
sion of rigidification: let z: U —• C restrict to holomorphic coordinates on
Us = U flC5, where U C C is an open set with UQ contained in a bubble we
want to rigidify. By stability, if UQ is sufficiently large, there are differentiable
bump functions p on M with <p*p\uQ nontrivial and having compact support.
Consider

\{S,V) = — ? 7 _ . N

JU3(p(s,v)*pd/j,{z)

which computes the center of gravity of <p*p in the coordinate z(s) on Us.
Assembling one (respectively, two different) such A for each unstable compo-
nent of (C, x) with two (respectively, one) special points into a vector valued
function A: S x V —• C6, where b = dim Aut°(C,x), our candidate for a slice
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is

7 = A-^Ao), Ao = A(0,0).

Due to the lack of differentiability it seems hard to prove that this is in fact
a slice, i.e., induces a local homeomorphism Aut°(C,x) x 7 —> 5 x V on
appropriate domains of definition. However, this is easy if we choose z to be
a linear coordinate, i.e., such that the action of Aut°(C, x) is affine linear.
Such coordinates can be constructed explicitly, cf. [Sil]. Then the implicit
function theorem allows us to change coordinates on S x V relative to S in
such a way that 7 = S x V, with 7 c ^ a linear subspace of codimension equal
to dimAut(C,x). Moreover, the slice can be chosen Aut(C,x, (p)-invariant.

An alternative in the differentiable setting is to take directly linear slices
of the form S x V, with V C V complementary to the finite dimensional
subspace spanned by the action of LieAut(C,x). This is the approach of
[FkOn]. Since in the final analysis we are only interested in the germ of
C(M]p) along Chol(M, J) , we may assume the centers (C, x, tp) of our charts
are J-holomorphic. The map ip is then smooth by elliptic regularity. So Dip
maps Lie Aut(C, x) to a finite dimensional subspace in L\(C, <P*TM), to which
we may choose a complementary subspace V. However, in our setting, it still
seems hard to prove that S x V is in fact a slice.

2.4 Trivializing the relative tangent bundle
What is still missing is a structure of Banach bundle on

ses
which should be viewed as the tangent bundle of \JS L\{CS\ M) relative to 5,
restricted to {(Cs,xs,</? o «s) | s £ S}. This problem is at the heart of our
approach to symplectic GW invariants. Our solution has three ingredients:

(1) For any tp G L\(C, M) there is a natural structure of holomorphic vector
bundle on the complex vector bundle (<^*TM, <£*</), even though ip is
only L\. In particular, we get a y?*J-linear first order linear differential
operator

Wj: L[(C, <p*TM) —* I/(C, ip*TM ®c fi).

Here fi = A0'1 is a bundle only away from CSing, and the right-hand side
is defined using frames of the form dz on a branch of C near P e CSing,
where z is a holomorphic coordinate of this branch at P.4

4Equivalently, one may use the relative dualizing bundle UJQ/SI which is more natural
from the point of view of algebraic geometry. Local frames near a singularity of C are now
of the form dz/z, which requires insertion of the p-dependent weight \z\p in the definition
of the measure /z near CSing.
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(2) Prove the Poincare Lemma for the above d operator. Then the sequence
of coherent sheaves on C

0 -> O(<p*TM) —+ C\{!p*TM) - ^ CP(V*TM <g> 12) -> 0 (*)

is exact (this is well known for smooth C).

(3) Use (2), plus the trivialization of ZAspaces via pullback by «, plus
a Cech construction for the holomorphic part to exhibit the Banach
bundle structure on

Informally speaking, the d operator is used to reduce the nonholomorphic
part to the simple case of ZAspaces, while the holomorphic part is taken care
of by a Cech construction. We should remark that this kind of argument
does not work for Uk with k > 1 because only a subspace of Ifk is mapped to
L\_i by d. This is due to the continuity at the node imposed on sections of
the sheaf £^_1(</?*TM <8> ft). Restricting to this subspace would mean a higher
tangency condition of the two branches at the nodes which is not what we
want in the application to J-holomorphic curves. This dictates the choice of
L\ as modelling space in our approach.

The rest of this section is devoted to filling in the details of the above
steps.

Holomorphic structure on ¥>*TM

The logic here is actually the opposite of that presented above; namely, the
operator d^ is constructed first. There are various ways to do this, but
at J-holomorphic ip the choice should reduce to the ip* J-linear part of the
linearization of the dj operator (which is independent of choices of local
trivialization). Letting V be the Levi-Civita connection on M with respect
to some fixed Riemannian metric, V^ = <£*V the induced connection on
<P*TM, our choice for (d^)^v is the (p* J-linear part of

for f G T(TC) and v G L\(C, <p*TM)] here dj(p := \(Dtp - J o Dip o j) and
j is the complex structure on C. Note that since we assumed tp to be only
of class Lj, this expression does not make sense pointwise, but only as IP-
section of <P*TM, itself only a complex vector bundle of class L\. Nevertheless,
an application of the implicit function theorem shows that local solutions of
Wj define a locally free coherent sheaf on C, i.e., induce the structure of a
holomorphic vector bundle on IP*TM, cf. [HLiSk] and [IvSh], Lemma 6.1.1.



398 Symplectic Gromov-Witten invariants

Poincare Lemma for weighted Sobolev spaces

Away from the singularities of C, exactness of the stated sequence of sheaves
is well known. What is left at a node is to prove surjectivity of the restriction
of the ordinary d operator to each branch in nonstandard Sobolev spaces:

d: L?(A) -> LP(A).

These spaces can be identified with Sobolev spaces on a half-infinite cylinder
with exponential weights e~^s by the identification

A* —* R>0 x S\ reiv .—> (s, i>) = ( - logr, <p),

under which the d operator transforms to an operator of the form e~s • (ds +
id^). For such linear elliptic differential operators on manifolds with cylindri-
cal ends (R>o x N with compact N) there does exist a general theory, which
implies the result we need [LcMc].

Alternatively, and maybe even more enlightening than invoking general
theory, one may employ the explicit right inverse to the d operator on the
disk given by the Cauchy integral operator

T(gdz)(z) = ^- [ - ^ - d i

To show that T does indeed map IP to Lf, one just needs to estimate d o T.
The latter equals a singular integral operator

S(0dJ)(z) = — (lim / g(W' dwAdw) dz.

The classical Calderon-Zygmund inequality says that S is a continuous endo-
morphism of L^A). The corresponding statement for the relevant case with
weights can be found in [CfFe].

The Cech construction

Because (*) is a soft resolution of O(<P*TM), the long exact cohomology se-
quence reads

0 -» H°(<p*TM) —> L\{<p*TM) - ^ U-^TM ®?5) —» H\<p*TM) -» 0,

where all sections are understood over the domain C of ip. Now let U =
{[/i}i=o,...,<f be a finite open covering of C with the properties:

(1) UQ has components conformally equivalent to the unit disk minus a
number of pairwise disjoint closed disks in its interior (so is an open
Riemann surface of genus 0);
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(2) each [/» for i > 0 is conformally equivalent to (possibly degenerate)
cylinders Zt = {(z, w) e A2 \ zw = t}, and such that U{ n [/,- n [/fc = 0
for any three pairwise different indices z, j , A:.

Write C*(ZY; O((P*TM)) for the zth (alternating) Cech cochains of holomorphic
sections extending continuously to the boundary. These are Banach spaces
under the sup norm. Since U is a Stein (hence acyclic) cover, there is a similar
sequence

0 -> H°(tp*TM) -> C\U- O(<p*TM)) - i C\U; O(<p*TM)) -> tf V ? M ) -> 0,

where d is the Cech coboundary operator. Note that C1{U\O{^P*TM)) con-
sists of cochains rather than cocycles, because by our choice of W, triple in-
tersections are empty. To find an explicit quasi-isomorphism between the two
middle arrows <9j and J, we just need to go through standard constructions
of cohomology theory: define maps

9 : Li(v*TM) - C°{U;O{V*TM)) by / ~ (f\Ut -

and

A: LP(<p*TM®Ti) -> C\U\O{V"TM)) by «

where T£: D>{Ui\ip*TM ®Si) -> I%(Ui;(p*TM) is a right inverse of the above
dVj. One can show that © and A induce isomorphisms on kernels and cokernels
of c>j and d. This is equivalent to exactness of the associated mapping cone

; O(<p*TM)) - . 0.

We have thus exhibited the L^-spaces as kernels of epimorphisms of Banach
spaces, and we can reasonably hope to trivialize these in families. Alterna-
tively, since all maps have right inverses, one may use a similar sequence with
the arrows reversed, cf. [Sil].

Introducing parameters

So far we have discussed the situation at a fixed curve (C, x, ip). For the
purpose of producing charts we wanted to identify L\{CS\ (<p o KS)*TM) with
L\(C,p*TM), where q: C -+ S (together with x: S -> C xs - - *sC, which is
not of interest here) is a semiuniversal deformation of (C,x), and K: C —» C
is a Lipschitz retraction to the central fiber as in 2.1, Cs = q~l(s), KS = K>\ca-
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Using K3 we may identify 1/(0, ip*TM ® ft) with LP(Ca; (<£ o «S)*TM 0 ft). In
view of (a parametrized version of) the exact sequence of Banach spaces in the
last paragraph, it remains to trivialize spaces of Cech cochains. We choose an
open covering U = {£/*}»=o,...,d of the total space C in such a way that on Ui
there are holomorphic functions z, w identifying Ui(s) := Ui D Cs, i > 0, with
possibly degenerate cylinders Zti^% U € O(S), while on U$ there is just one
holomorphic function z identifying UQ(S) with a union of plane open sets as
above. (Holomorphic relative to S would suffice for what follows.) Together
with continuously varying holomorphic trivializations of (<p o K,)*TM\ui(s) we
are left to find isomorphisms between O(Zt)C\C°(Zt) for different t. This can
be done by observing that these spaces are given (up to constants) by positive
Fourier series Yln>oaneinip o n the two boundary circles \z\ = 1 or \w\ = 1 via

n>0 n>0

A similar method works for Uo.

2.5 Summary

We summarize our discussion in the following

Theorem 2.4 Let (M,J) be an almost complex manifold. Then the space
C(M\p) of stable complex curves in M of Sobolev class L\ has the structure
of a weakly differentiable Banach orbifold with local group Aut(C, x, if) at

Moreover, C(M\p) has a weakly differentiable Banach orbibundle £ with
fibers £(c,x,yO uniformized by £(c,x,y>) = L?(C,<P*TM 0 f t ) . £ has a weakly
differentiable orbibundle section S-QJ sending (C,x,y>) to dj(p. Its zero lo-
cus Z(S-QJ) is the space Chol(M, J) of stable J-holomorphic curves with the
Gromov topology. •

Here "weak differentiability" means that the differentiable structure is
well defined locally only relative to some finite dimensional space. The differ-
entiability properties of the section S-QJ will be discussed further in 3.1. The
construction of £ is straightforward.

3 Construction of the virtual
fundamental class

In this chapter we outline our construction of the virtual fundamental class
along the lines of Chapter 1 inside the ambient space of Chapter 2.
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3.1 Local transversality

We first show how to solve the problem locally, i.e., how to construct a man-
ifold Z containing a neighbourhood of (C, x, ip) in Chol(M, J) as the zero set
of a map to a finite dimensional space. In view of the analogy with the con-
struction of germs of moduli spaces of complex manifolds by Kuranishi [Ku],
this data is often called a Kuranishi model (here for Chol(M, J) at (C,x, <p)).
Since the construction relies on the implicit function theorem we must now
discuss the regularity properties of SQJ.

Recall that charts at (C, x, <p) are of the form S xV ^ S x L\(C, <p*TM),
where V is of finite codimension in L\(C, <P*TM)<> of positive codimension
whenever (C, x, <p) has bubbles. Fixing s means fixing the domain (C, x),
which implies differentiability of all objects involved, including the local uni-
formizers £ of £ and % j of S-Q j . However, due to the phenomenon discussed
in Section 2.2, one cannot even expect the differential a of % j relative to 5
to be uniformly continuous. But since we used the <p* J-linear part of a as d
operator to trivialize ^ ' P («*^?*TM), O turns out to be uniformly continuous
at the center of our charts. This is just enough to apply the implicit function
theorem in a version relative to S.

Now let (C, x, (f) be J-holomorphic and let <Jo be the differential of % j
relative to S at (0,0) G S x V. Then

ao(w) = l%w + <p*Nj(w,D(p) for w eT0V C L\{C,y*TM).

So possibly up to a zeroth order term and restriction to a subspace of finite
codimension in L\(C, <P*TM)I CFQ is just the d operator on P*TM- By the results
of Section 2.4, the latter is a Fredholm operator to LP{C, <P*TM 0 fi), and so
is <70. Moreover, it is not hard to see that when restricted to sufficiently
small neighbourhoods of CSing, the corresponding operators are surjective.
Therefore we may choose a i , . . . , ac G LP(C, (P*TM®&) supported away from
Csing> c = dimcoker<j0, such that imcr0 + ^Cai = LP(C,(P*TM)- We say
that the c^ span cokerao- Define a morphism r from a trivial bundle F — Rc

over 5 x V to £ by sending the ith standard section to the parallel transport
of ^. Then an application of the implicit function theorem relative to 5 to
the section J := q*s + r of q*£ (q: F —> S xV the bundle projection), viewed
as map from S x F x E c t o £(c,x,y>) = ^(C,<P*TM®0), shows that Z = Z(s)
is a topological submanifold of F of expected dimension plus rank F. The
restriction of q*F to Z has a tautological section scan (mapping / G F to / ) .
A germ of Chol(M, J) at (C, x, (p) is given by the zero locus of scan-

If (C, x, tp) has nontrivial automorphisms we would like to make the Kura-
nishi model Aut(C,x, <^)-equivariant. Since it is not always possible to span
cokercro by Aut(C,x, ^-invariant sections (this is the notorious obstruction
to transversality under the presence of multiply covered components) this
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inevitably forces a nontrivial action of G = Aut(C, x, (p) on the fibers of F.
The easiest way to make r equivariant is then to replace F by FG (#(? copies
of F) and define rG: FG -> £ on the ^ th copy of F , ^ G Aut(C,x,y>), bY

Choosing a to have support away from Csing will be convenient in going
over to other charts that we will need below.

3.2 Globalization

To globalize we would like:

• to extend FG to an orbibundle over C(M;p)]

• to extend r by multiplication with a bump function that is differentiate
relative to 5 in any chart S xV.

Neither of these problems is immediate. On Banach orbifolds the existence of
finite rank orbibundles with effective actions of the local groups on the fibers,
say on a neighbourhood of a compact set, seems to be a nontrivial condition.
The general solution to this question given in a previous version of [Sil] is
insufficient, because the cocycle condition cannot be verified. Fortunately,
such orbibundles do exist on C(M\p) by a method similar to that given in
[Bel], Prop. 5.

To this end, we now assume J tamed by some symplectic form u. By
slightly deforming u and taking a large multiple, we may assume u to rep-
resent an integral de Rham class. Then there exists a U(l)-bundle L over
M with [a;] = C\(L). L is a substitute for an ample line bundle in the al-
gebraic setting. Let V be a U(l)-connection on L. Let TT: F —> C(M;p) be
the universal curve and ev: F —> M the evaluation map sending p G C
over (C, x, (p) G C(M\p) to <p(p). Thus TT is a morphism of topological
orbifolds with fiber over (C, x, ip) equal to the complex analytic orbispace
Cj Aut(C, x, tp). As in Section 2.4 one shows that via V, ev*L has naturally
the structure of a continuously varying family of holomorphic line bundles
over the fibers of TT. And since [ui] evaluates positively on any nonconstant J-
holomorphic curve, (p*L is ample on any bubbling component. To achieve am-
pleness on the other components we just need to tensor with uc{x\ H hXfc),
which is the sheaf of meromorphic 1-forms on C with at most simple poles at
Csing and the marked points X{. These sheaves again fit into a continuously
varying family of holomorphic line bundles ^ ( x ) over the fibers of n. Then
ev*L ^ ^ ( x ) is 7r-ample (i.e., ample on each fiber), hence a sufficiently large
multiple (power > JVo, say) has vanishing H1 on any fiber of IT. Let N > No
be an even bigger natural number such that for any # Aut(C, x, (p) points on
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C there exist a section of ((pL
 <S>UJC{X))<S>N vanishing at all but one point. We

consider

(C,x,<p)eC(M;p)

Using a Cech construction as in Section 2.4, one shows that this is locally
uniformized by the kernel of a Predholm epimorphism of Banach bundles (of
Cech cocycles) over C(M;p) and hence glues to an orbibundle F of finite
rank. Moreover, by the choice of TV, for any section a of I^(C, (P*TM <g> Q)
with sufficiently small support there exists a vector v of the fiber of F at
(C, x, (p) such that the dimensions of the linear subspace spanned by the
Aut(C, x, </?)-orbits of v in F and of a in IP{C, <P*TM ® fi) coincide. Direct
sums of bundles of this type allow us to extend FG on a neighbourhood of
C h o l (M,J )cC(M;p) .

As for extending the morphism r, one might try to use parallel trans-
ports of differentiable bump functions on L\{C, P*TM), which do in fact exist
provided p is even. This will be insufficient for our purposes though. The
problem is that if we look at such bump functions constructed at a curve
with bubbles (with deformation space S say) from a chart centered at a curve
without bubbles (with deformation space 5 say) then, locally, 5 fibers over 5.
Differentiability holds relative to S but will fail relative to 5. The way out is
to take a "bump function" x which only takes into account the behaviour on
an open set U C C \ Cs\ng. U has to be chosen in such a way that the coordi-
nates of S ruling the deformations of nodes belonging to the bubbles do not
influence the trivialization of ql'p (K* <P*TM) over U. x w ^ no^ have bounded
support on C(M;p), but its restriction to Chol(M, J) does. This is enough for
extending r along a neighbourhood of Chol(M, J) in C(M\p). Note that by
choosing suppa^ inside [/, r will be differentiable even relative to A49^ in
any appropriately chosen coordinate chart.

3.3 The Main Theorem

Since we need compactness (and for the construction of F) we further as-
sume J tamed by some symplectic form u. Fix R € i?2(Af,Z), #, k. Then
C]^fc(M, J) is compact. The direct sum of finitely many morphisms to £ as
in 3.2 yields a morphism r : F —» £ spanning the cokernels of the differentials
of S-QJ relative to S in any chart S xV centered at J-holomorphic (C, x, cp).
Thus Z = Z(s), where ? = q*s + r, q: F —• C(M;p), is a finite dimensional
(topological) suborbifold of the total space of F. It is also not hard to see
that Z can be naturally oriented by complex linearity of <9j, provided that
F is also oriented. The latter can be achieved by taking F 0 F if necessary
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(this is just a matter of convenience; what one needs is a relative orientation
of q*F over Z). Let Qp be the Thorn class of F. For the virtual fundamental
class of C^gk(M, J ) , we set

where d(M, i?, g, A;) = dime Mg,k + ci(M, J) • i J+ (1 — g) dime M is computed
by the Riemann-Roch theorem to be the index of <9j plus d imA^^ (this
needs to be corrected if 2g + k < 3).

Theorem 3.1 The class OWR'^ ™ independent of the choices made. Its
image in H*(C(M;p)) depends only on the symplectic deformation class of
UJ. •

Independence of choices (of r, and of the Sobolev index p) is easy to establish.
The second claim asserts independence under deformations of J inside the
space of almost complex structures tamed by some symplectic form. To this
end, one sets up a family version of the approach with fixed J, from which
independence of the image in C(M\p) follows immediately. For details we
refer to [Sil].

3.4 Alternative approaches

The purpose of this section is to discuss, in a rather sketchy way, various
other approaches to the construction of virtual fundamental classes, as given
by Fukaya and Ono [FkOn], Li and Tian [LiTi2] and Ruan [Ru2]. Still an-
other definition can be extracted from a paper of Liu and Tian [LiuTi] on
a solution to the closely related Arnol'd conjecture on nondegenerate exact
symplectomorphisms (the latter is also covered in [FkOn] and [Ru2]).

Recall that in formulating our problem as that of constructing a localized
Euler class of a section of a Banach orbibundle over a Banach orbifold we had
to pay the following price:

(1) working in spaces of maps with very weak differentiability (this caused
problems in the slice theorem, cf. 2.3),

(2) the loss of differentiability in a finite dimensional direction (which made
the construction of r more subtle, cf. 3.1), and

(3) having to construct a finite dimensional orbibundle F with effective
actions of the local groups on the fibers, cf. 3.2.

But what we are finally interested in is the zero locus Z C F of a perturbed
section ? = q*s + r . As a set, Z consists of (isomorphism classes of) tuples
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(C,x, tp, / ) with (C,x, y>) G C(M;p) and / G ifax,*) such that dj<p = r ( / ) .
Thus if the sections a G L?(C'\ ( ^ ; ) * T M 0 ^ ) spanning the cokernel at various
(C",x',<//) G Chol(M, J) used to construct r, are chosen to be smooth, solu-
tions <p of dj(p = r(f) will also be smooth by elliptic regularity. That is, in
constructing Z we may safely restrict to spaces of smooth maps. A common
feature of the other approaches to GW theory is that they work in ambient
spaces of C°° maps, and that Z is first constructed locally for any local, finite
dimensional perturbation. The problem is then to find a global object that
matches up the local perturbations.

The local construction of Z can be done by more or less straightforward
modifications of the known glueing constructions for J-holomorphic curves
in generic situations (i.e., when the linearization of the relevant Fredholm
operator is already surjective), as given in [RuTil], [Liu], [McSa]. "Glueing"
means the following: given a nodal J-holomorphic curve (p: C —> M and
a family {Cs}s65 of deformations of C as a pre-stable curve, one wants to
deform <p to a family of J-holomorphic curves cps: Cs —> M. This is achieved
by first constructing (ps approximately by some kind of differentiate glueing
construction involving bump functions. The dj operators on the Cs set up a
family of elliptic problems, albeit with varying Banach spaces (here: versions
of L\ and LP). The basic analytic problem is to establish a uniform estimate
on the norm of the inverse of the linearized problem. Here one has to assume
that the linearization is invertible at s = 0, which is true for generic situations
as in op. cit. The inverse of the linearized problem enters into effective versions
of the implicit function theorem, which can then be applied to identify the
solution set as a manifold. In the nongeneric case one can consider a perturbed
problem by introducing abstract perturbation terms spanning the cokernel.
A solution to the latter problem will yield an ambient smooth space into
which the original solution set is embedded as the zero set of finitely many
functions, i.e., a Kuranishi model for Chol(M, J) at (C, x, </?). Several choices of
spaces, differentiate glueing and deformation of abstract perturbation terms
are possible, cf. op. cit. Notice that if the perturbations are chosen to be
smooth, then the solutions of the perturbed equation will also be smooth by
elliptic regularity.

The problem of globalization of local transversality in this setting (in
particular in the presence of local automorphisms) is new. This is where the
approaches differ most.

1. Fukaya and Ono let the dimension of the perturbation space (rankF in
our setting) and hence also the dimensions of the manifolds containing Z =
C^l

g fc(M, J) locally (dim Z in our setting) vary along a finite open cover of Z.
The result is that Z is the zero locus of a section sf of a strange fiber space
F —> Z. Locally, the fiber space is a finite union of orbibundles of finite ranks
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over finite dimensional orbifolds fitting together nicely, but of jumping ranks
and dimensions. The basic observation of [FkOn] is that while it is usually
impossible to make orbifold sections transverse by perturbation, one may do
so by going over to sufficiently high multivalued sections ("multisections").
These are sections of a symmetric product SlF that locally lift to F®1. And
transversality means transversality of each component of a lift, i.e., of each
branch of the multisection. The zero locus of a multisection is defined as
the union of the zero loci of its branches. A generic perturbation of ? will
thus have a zero locus which locally is the finite union of (oriented) orbifolds
of the expected dimension. The sums of the fundamental classes of these
orbifolds, appropriately normalized, glue to a homology class on the base.
The samejvorks for sections of the strange fiber space F —* Z. The homology
class on Z thus obtained is the virtual fundamental class of Z. Note that if
one insists on a class localized on Z one might take a limit of these classes
as the perturbations tend to zero. But since the maps ev: Z —> Mk and
q: Z —• M.g,k extend to Z, this is not important for GW theory.

2. Li^and Tian also describe Z as the zero locus of a section of a fiber space
F —> Z with jumping dimensions as in (1). But instead of trying to perturb
the section, they show how to glue cycles representing the Euler class and
supported on Z directly.

3. Ruan works inside the stratified Prechet orbifold of C°°-stable complex
curves in M. This is a topological space, but locally stratified into finitely
many Prechet orbifolds, depending on the combinatorial type of the curve.
Nevertheless, by the glueing construction, it suffices to work within this space.
The argument proceeds in an analogous way to Section 1.2, i.e., one constructs
the perturbation as a morphism from a stratified orbibundle F of finite rank
over the ambient space to a Banach bundle. Ruan claimed that one may
take a trivial orbibundle of the form (base space) x (RN/G), where G is
the product of the local groups of finitely many Kuranishi models covering
Z = C^l

gk(M, J). This is not in general possible. The argument is however
right if one takes a nontrivial orbibundle, e.g., as in Section 3.2.

4. Another method, due to Liu and Tian, uses a compatible system of per-
turbation terms in the following sense: Z can be covered by finitely many
local uniformizers {V/ = V//F/}/, / = {i\,... ,2*.}, iv G { 1 , . . . , n}, k < m,
with

• Vl n Vj = 0 if # / = # J and / ^ J

• whenever I d J there are morphisms TT/J : Vj = VJ/TJ —> Vi
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uniformizing open embeddings V} C V/, and these are compatible in
the obvious way.

The Vj = VI/TI are open sets in fibered products Uix x# • • • xB Uik, and
so are not smooth for # / > 1, but finite unions of manifolds. Using the
7T/j one may compare perturbation terms over different Vj and thus define
compatible systems {VI}I of perturbation terms. For a generic choice of {vi}
the zero loci of the perturbed section {(%?j)/ — vi) form a compatible system
of finite dimensional oriented orbifolds Zj cVi. This is enough to produce a
homology class on the underlying space of the expected dimension of Zu C B.

While it might be somewhat tedious to do this in detail, it is rather ob-
vious that all these definitions lead to the same homology class in an appro-
priate common ambient space, say C(M;p). In fact, in all these approaches
one might take the Kuranishi model to be the restriction of our embedding
Z = Z(scan) C Z to open sets, at least if we choose our perturbations a
sufficiently smooth. The problem is then essentially reduced to comparing
various constructions of Euler classes for orbibundles in finite dimensions.

4 Axioms for GW invariants

4.1 GW invariants

There are several ways of extracting symplectic invariants from the virtual
fundamental classes S W ^ f c G #*(C]^>fc(M, J)). Assume that 2g + k > 3.
Then Aig,k exists as orbifold and, in particular, it satisfies rational Poincare
duality. There are diagrams

with ev and p the evaluation map and the forgetful map, sending (C, x, <p)
respectively to (^(xi) , . . . ,(p(xk)) and to the stabilization of (C,x). Note
that both maps extend to CRi9jk{M;p). By Theorem 3.1, we conclude the
following:

Proposition 4.1 The associated GW correspondence

is invariant under deformations of J inside the space of almost complex struc-
tures tamed by some symplectic form. In particular, GW^gk is an invariant
of the symplectic deformation type of (M, a>). •
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The following equivalent objects also occur commonly:

• composition of G W ^ k with Poincare duality H*(Mg,k)

• the associated homomorphism H*(AAg,k) ® H*(M)k —> Q;

• the cycle (p x ev)*QW%gtk G H*{Mg,k x Mfc).

Of these the second one is perhaps the most intuitive. For cycles K C
Mg,k, Ai,... , Ak C M, it counts the "ideal" number of /c-marked stable
J-holomorphic curves (C, x, <p) in M of genus # with (C, x)s t G if and the zth
point mapping to A{. "Ideal" means that this agrees with the actual (signed)
number only in nice situations, say when C]%gk(M, J) is indeed an orbifold
of the expected dimension which is transversal to K x A\ x • • • x Ak under
p x e v . I prefer to reserve the name GW invariant for such numbers, i.e., by
applying the second map to a product of cycles.

As already pointed out in [RuTil], Remark 7.1 one can also define in-
variants by restricting the domain to certain singular curves and requiring
homological conditions for the restriction of the maps to subcurves. The full
perspective of this point of view has been given in [BeMa], where marked mod-
ular graphs r are introduced as a bookkeeping device for the combinatorial
data, cf. [Be2], Definition 1.2 (we adopt the abuse of notation and use r both
for the marked modular graph and the associated stable modular graph, i.e.,
with the marking omitted). If r has n vertices and / edges, the corresponding
moduli spaces CT(M) = C^°\M, J) (which corresponds to Jd{M,r) in [Be2])
are constructed as the fiber over a product of diagonals A1 C M21 of a partial
evaluation map

P e v :

The meaning of this is that any edge of r implements the requirement that
the two marked points of the subcurves (= vertices of r) bounding the edge,
map to the same point in M. We refer to [Be2] for details of this concept.

To define virtual fundamental classes on these more general moduli spaces,
let 8Ai G H^(M21) be the Poincare dual class of A1. We may then set

A' € H.(Cr{M))

as the virtual fundamental class of CT(M) (this corresponds to J(M,r) in
[Be2]). As above, we get an associated GW correspondence

GWf: H\Mf*sr —> H.(MT :=
i

where ST is the set of tails of r (which encode the positions of marked points).
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4.2 Properties

Prom the intuitive geometric meaning one expects GW invariants to have a
number of properties. These turned up as proved identities for a restricted
class of varieties [RuTil], Theorem A and Prop. 2.5, and in [RuTi3], or as
axioms for GW^gk in [KoMa]. The corresponding axioms for the system
of GW correspondences parametrized by marked modular graphs are given
in [BeMa], cf. also [Be2]. As the presentation in the last reference is quite
appropriate we just indicate what is to be added to establish Axioms I-V in
op. cit. in the symplectic context. For statement and geometric explanation
of the axioms we mostly refer to op. cit.

One should probably add to the axioms the important property of invari-
ance under deformations of the (tamed) almost complex structure (respec-
tively, under smooth projective deformations in the algebraic setting) that
we have already commented on.

I. Mapping to point This is the case R = 0. Since by the Wirtinger
inequality, Lu(ip*[C]) = 0 for a connected J-holomorphic curve (p: C —» M
implies ip = const, we get

C x M

with universal curve TT = p x Id: Mg,k+\ x M —• Ai9jk x M. This is an
orbifold, but possibly of the wrong dimension. In fact, the cokernels of the
linearization of s-$j glue to R}-K^V*TM = Rxp*O El TM (that we view as
orbibundle, rather than its orbisheaf of sections). We set F = i?17f*ev*TM and
define r : F —» £ = ftJ(evTM®^) in such a way that it restricts to a lift of this
identification. For clarity, this time we write 5F, ev for the extensions of TT, ev to
Co,g,k(M;p). Then Z = Z(s = q*s+r) C F is nothing other than C$°g\k(M, J) ,

and [ Z ] H 0 F computes the Euler class of R1-K*Q\*TM = Rlp*OWTM as claimed
in the mapping to point axiom.

II. Products This axiom forced our definition of the virtual fundamen-
tal class for nonconnected r.

III. Glueing tails/cutting edges Again, this axiom follows directly
from our definition of virtual fundamental classes, now for connected compo-
nents of r with more than one vertex.

IV. Forgetting tails Forgetting tails in a marked modular graph means
omitting marked points from a stable complex curve and stabilizing (as a
complex curve in M). Let us restrict to r = (i?, g, k), from which the general
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case follows easily. In view of the analogous fact for A4g^ and our construction
of charts for CR,g,k(M;p), it is easy to check that the corresponding map

is the universal curve. If £k and sk = S-Q j are the Banach bundle and section
over Ci?)P)fc(M;p), then <£*£*;, $*sk can be identified with the bundle and
section £fc+i, Sk+i over C R ^ + ^ M J P ) . Let T: F -^ £k span the cokernel of
the (relative) linearization of sk. Then #*r will span the cokernel of the
(relative) linearization of sk+\. We obtain

and hence

V. Isogenies Among the axioms this is the most interesting, having as
consequence for instance the associativity of quantum products. The axiom
comprises those modifications of marked modular graphs that do not change
its genus. There are four basic cases:

(1) Contraction of a loop: omitting a loop, i.e., an edge connecting a vertex
with itself, from a modular graph corresponds to dropping the require-
ment that a certain subcurve has a nondisconnecting double point. In
a sense this case says something about potential smoothings of such
double points of the domain.

(2) Contraction of a nonlooping edge: nonlooping edges correspond to dis-
connecting double points of the curve. Contraction of such an edge
means that we consider two adjacent subcurves of genera #i, g^ as one
subcurve of genus g\ + g2. So here we deal with potential smoothings
of disconnecting double points.

(3) Forgetting a tail: as in axiom IV, but the conclusion is different.

(4) Relabelling: this treats isomorphisms of marked modular graphs, which
in particular covers renumberings of the set of marked points.

Let r be the marked modular graph obtained from o by any of the operations
(1-4). There is an embedding Ca{M) «̂-> CT(M) over the closed embedding of
moduli spaces of curves M,a

 c~> MT- The latter is divisorial in the first three
cases and an isomorphism in the last case. Except possibly in (2), the choice
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of r and the underlying modular graph of a determine the marking of a and
the diagram

CO{M) —• CT(M)

<lo I i <lr

is Cartesian. Let 5 ^ G Hj^a(AiT) be Poincare dual to M.G. The axiom can
then be stated by requiring

QW? = r

In case (2) the homology class R of the joined subcurve of r can be arbitrarily
distributed to the two adjacent subcurves of a. We get a proper surjection

Note that h is not injective if there are J-holomorphic curves with bubbles
inserted at the double points. The claim is

R=Ri+R2

Except in the obvious case (4), the proof runs as follows. We again re-
strict to the basic case r = (R,g,k). The embedding Ma ^ MT identifies
Ma with a divisor parametrizing singular curves or curves with two infinitely
near marked points. By the form of our charts it is not hard to see that the
Kuranishi space ZT C F for CT(M) intersected with q~1(M(T) is a union of
suborbifolds Za that can be identified with Kuranishi spaces for the compo-
nents of q~1(Ma). Capping with the Thorn class of F yields the result.

5 Comparison with algebraic GW invariants
For a smooth complex projective variety M C FN we have now two defini-
tions of virtual fundamental classes fulfilling the list of axioms plus defor-
mation invariance: the symplectic ones OW^f discussed so far (where J = /
is the integrable complex structure tamed by the Fubini-Study form), and
the algebraic ones J(Mya) discussed in [Be2]. The latter are taken here in
Hic(C<J(M)) by sending the analogous Chow class in the Deligne-Mumford
stack M(M, T) to its homology class on the underlying complex space. It is
natural to expect
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Theorem 5.1 [Si4] For any marked modular graph a

gw™ = j(M,a). a

It is of course enough to treat the case a — (i?, g, k). To compare the two
definitions it is most convenient to work in the category of complex orbispaces,
which are defined analogously to complex orbifolds, but with local models
taken as finite group quotients of complex spaces (the underlying space will
also be a complex space, but we want to keep in mind the group actions).

We first present an argument that does not work as stated, but where the
basic reason for this equivalence is clear, and then outline the actual proof.

5.1 A model argument
Let us pretend that we can find r : F —> S such that

• Z = Z(s = q*s + T) C F is a complex suborbifold and F = q*F\z

is a holomorphic vector bundle with holomorphic tautological section
scan: Z -> F.

• The induced structure of complex orbispace on Ca(M) = Z = Z(scan) is
the right one (coming from the notion of holomorphic families of stable
holomorphic curves in M).

According to [Fu], §14.1, the Euler class of F can be expressed in terms of
the normal cone CZ\z of Z in Z and the total Chern class of F\z by

{c(F)ns(Czl2)}d.

Here d = dim Z — rank F = d(M, R, g, k) is the expected dimension of Z and
s(CZ\z) is t n e Segre class of Cz>^. By construction, Z is smooth over the Artin
stack $9ik of pre-stable curves (we should work with the analytic analogue
here). Let T^ fc be the relative tangent bundle, which is in fact an ordinary

vector bundle over Z, cf. below for an explicit construction. Next observe
that CF(Z/$g,k) := c(Tz^ J fl s(Cz^) is a class intrinsically associated to
Z —> $g,k, i-e., does not depend on the choice of embedding into a space
smooth over $9)k> This is a relative version of Fulton's canonical class [Fu],
Expl. 4.2.6. We may thus write

gW? = {c(F-Tz/sJ<lcF(Z/3g,k)}d.

There is a quasi-isomorphism

i i
F - U £
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where g* and the tangent bundle and differential relative to $gjk are only
meant formally, but are defined directly. The right-hand vertical arrow in turn
is quasi-isomorphic to RTT^V^TM (to make this precise one should represent
i?7r+ev*TM by a morphism of vector bundles, cf. below). We obtain

= {c(Rir,ev*TM)ncF(Z/Zg,k)}d.

This is exactly the formula that one can derive for J(M, cr) [Si3], for Behrend's
relative obstruction theory is of the form {RTT^Y*TMY —» Lm

Co(M)/$ *•
This argument is of course somewhat ad hoc and does not work as stated,

because a r with the required properties does not in general exist. But it
shows already the basic reason behind the equivalence of the two theories:
R7r*ev*TM can be interpreted as the virtual tangent bundle of Ca(M) rela-
tive to $gyk when viewed either as zero locus of SQ J or as equipped with an
obstruction theory relative to

5.2 Sketch proof by comparing cones

Recall that the construction of J(M, cr) worked by writing Rlit*ev*TM as
homomorphism of vector bundles [G —> H], constructing a cone CH C H
invariant under the additive action of G and intersecting [CH] with the zero
section of H. Our proof that this class coincides with the symplectic virtual
fundamental class is divided into three steps:

(1) The local construction of complex analytic Kuranishi models;

(2) a limit construction to obtain a (bundle of) cone(s) C(r) C F\z of
dimension d + rank F and supporting a homology class [C(r)] of the
same dimension;

(3) finding an inclusion of vector bundles ji: H c->> F\z with /i![C(r)] =
[CH\. Here /J} is defined as the cap product with the pullback of the
Thorn class of (F\z)/H.

The theorem then follows from

gw*{M) = [z]neF = [C(r)]neF = [cH]neH = J(M,CJ).

Analytic Kuranishi models

Finding Kuranishi models in an integrable situation is actually easier than
generally, because we may restrict to holomorphic maps near the double
points. Let (C, x, ip) be a stable holomorphic curve, i.e., the map <p: C —• M
is holomorphic. As in Section 2.4, let (q: C —> 5,x) be a semiuniversal defor-
mation of (C,x). If Ci are the irreducible components of C, we choose this
time an open covering U = {Z4}t=o,...,d °f ^ w i t h ^he following properties:
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• for i > 0 there are holomorphic maps

extending holomorphically to [/» and inducing isomorphisms £/*(s)
Ui H q'^s) -» A for any s G S;

£/i(0) C Q and Ui n £/,- = 0 for z, j > 0;

% = C \ \Ji>Qz-l(K^2), A 1 / 2 = {zeC\\z\< 1/2};

for z > 0 there are holomorphic charts

with <p(£/i(0)) C

The part over f/0 is dealt with by the space Horns (C/o;M), that as a set
consists of holomorphic maps UQ(S) —> M extending continuously to Uo(s).
Using a Cech construction together with the fact that open Riemann surfaces
have vanishing higher coherent cohomology (they are Stein), one can show

Proposition 5.2 Homs(Uo; M) is a complex Banach manifold mapping sub-
mersively onto S. O

By this we mean of course that this complex Banach manifold represents
a certain functor. The functor sends a morphism tp: T —» S to the set of
holomorphic maps from T xs UQ to M that extend continuously to T xs UQ.

For i > 0 we may identify (an open set in) U[{Ui(s)\M) with L^(A
via Zi and 7*, and L\{Uo(s) n Ui(s)\ M) with L\(Al/2\ Wi), A1/2 = A \
Consider the differentiable map of complex Banach manifolds

H:Eoms(U0;M)xY[Lp
1(A;li(Wi)) —•

i>0 i>0

: ^0(5) - • M; ^ J 1—• (ipi - 7i o <0o o ^ - 1 J •

iif~1(0) can be identified with an open neighbourhood of <p in the space of L\
maps ifr: Ca —> M, some s € 5, that are holomorphic on E/o(s). H is a split
submersion along ^ " ^ O ) . Hence

Proposition 5.3 B := H~x(0) is a complex Banach manifold. •

The d operator can now be viewed as a holomorphic map
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and this induces the complex analytic structure on Homs(C; M) = G~l(0).
An embedding of Horns (C;M) into a finite dimensional complex manifold
submerging onto 5 can be found as follows: let Q C rii>o^P(^i/2;Cn) be a
finite dimensional linear subspace spanning the cokernel of the linearization
of G at some holomorphic ip. Q exists by the Stein property of Uo(O). Then
G~1(Q) is the desired finite dimensional complex manifold containing (an
open part of) Homs(C; M) as a closed complex subspace.

Note that by taking a basis of Q as perturbation terms a and a trivial-
ization of £ compatible with the complex analytic structure over Wi in the
construction of r : F —> £ (Section 3.2), we can achieve:

Let (C, x, ip) G Ca(M). Then, locally, there is a complex sub-
bundle Fh C F such that rh := r\ph spans the cokernel of the
linearization of SQ relative to 3^*. and Zh := Z n Fh is a complex
orbifold.

For this purpose let B be the image of B in C{M\p). Then by the choice
of r, Zh must be a subset of Fh\^ while over B a uniformizer of S* factorizes
over G. Note that Zh is Z(3*) with s*1 = (qh)*s + rh, qh = q\ph.

The limit cone

The next step concerns the construction of the cone C(r) C F\z that we get
as the limit of t • Z C F as t tends to infinity. This has nothing to do with
holomorphicity.

We start with any r : F —> £ over our Banach orbifold Ca(M;p) span-
ning the cokernel of a and write as usual q: F —> Ca(M;p) for the bundle
projection. For any I > 0,

FxRl3(f,v) —> «*(«(/)) + M M / ) € E

defines a section 5/ of <?*£, where <# = q o prx is the projection from F xRl to
Ca(M;p). Si is constant on spheres {/} x 5^~1(0). For £ ^ 0 the zero locus Z\
of Si restricted to F x S\'l{Q) is just (t • Z) x S^^O), while Zz n (F x {0}) =

Definition 5.4 Set A = Zt n (F x (R* \ {0})) and write ~A for its closure in
F xRl. The Zzraztf cone C(r) C F of s$ with respect to r is denned to be

In(Fx{o}). •

C(T) is the set theoretic limit of t • Z as t tends to infinity. As such:

(1) it does not depend on I; and
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(2) it lies over the zero locus Ca(M) of %.

The reason for introducing I is the exact sequence of homology groups (of the
second kind, see the discussion in 1.2)

Hl+d+r(C(r)) —> Hl+d+r(A) —> Hl+d+r(A) —* H^^.^Cij)).

Here r = rank F and d = d(M, #, #, fc). The fundamental class [A] of the ori-
ented manifold A extends uniquely to a (/+d+r)-homology class (conveniently
denoted [A] by abuse of notation) on A, provided that l+d+r — 1 > dim C(r).
This uses the general vanishing theorem for homology, cf. [Iv], IX. 1, Prop. 1.6.
But from C(r) C F\C(T(M), it follows that dimC(r) < r-f-dim Ca(M) is always
finite, so the inequality can be satisfied by choosing I large enough. We can
now define a homology class on C(T) that is the limit of [t • Z\.

Proposition 5.5 Let 50 e Hl
{0}(R

l) be the Poincare dual of {0} C R'. Then

[C(T)] := [A]nS0 eHd+r(C(r))

is independent of I and homologous to [Z] as class on F. •

Note that the construction of C{r) and [C(r)] actually happens in finite
dimensions. This is more apparent if we work in q*F over the fixed finite
dimensional orbifold Z. Let scan be the tautological section of q^F. The
natural map q*F —• F identifies the graph rVScan of t • sc&n with t • Z, and we
may as well work with these graphs.

In a holomorphic situation we retrieve the following familiar picture [Fu],
§14.1 (the following construction also works for singular spaces): let E be
a holomorphic vector bundle over a complex manifold A/", and let Z be the
zero locus of a holomorphic section 5 of E. The differential of 5 induces a
closed embedding of the normal bundle NZ\N of Z in N into E. NZ\N is the
linear fiber space over Z associated to the conormal sheaf 1/J2 (the analytic
analogue of SpeczS'T/X2 in the algebraic situation), X the ideal sheaf of Z in
N. The normal cone CZ\N (the analytic analogue of Spec^ (Bd>oTd/Td+1) is a
closed subspace of NZ\N- Let t: CZ\N ^ E be the induced closed embedding.
Take the identity morphism E —> E for r. Then t • Z is the graph of t • s.
One can show ([Fu], Remark 5.1.1) that

C(T) = L(CZ\N) (as spaces) and [C{r)} = L*[CZ\N] = V(CZ\N)]-

This is used below to identify C(rh) with the image in Fh of the normal cone
of Z = Ca(M) in Zh. The use of s£an is equivalent to the present use of the
identity morphism.

The other ingredient is the following method to get rid of a nonholomor-
phic part of r locally.
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Proposition 5.6 Let F = Fh © F be a decomposition such that

• rh := r\Fh spans the cokernel of the linearization a along Z = Z{s) and
has the regularity properties of r;

• r := r\p maps to ima along Z.

Then C(r) = C(rh) © F and [C(r)] = [C{rh)} © [F]. •

The proof runs by considering the two parameter family Jt,u •= q*s+t'Th+u-T
of perturbed sections with \u\ < \t\. This interpolates between the original
family 7t = lftit and the family 5ij0 having F added as trivial factor. As long
as 17^ 0, Zt,u = Z(st,u) is a suborbifold of F . The essential point is this:

Lemma 5.7 The set theoretic limit of Zt,u as t,u —> 0; \u\ < \t\, equals
C(rh) © F . More precisely,

|J Zt|ttx(t,ti))n(Fx(0,0)) =

Intuitively if slightly imprecisely, we write [C(r)] = limt_^o[^t], to indicate
both set theoretical and homological convergence. The proposition follows
from

Um[

0 [F].[ t i 0 ]

As for the lemma we may restrict attention to a fixed fiber Fz over z G Ca{M).
One may then use uniform continuity of the relative differential a at centers of
local uniformizing systems in^connection with the implicit function theorem to
modify sequences (fUJ gu) G Ztv,Uv with limit (/, g) G_C{r) to (/£, g'u) € ZU®F
with the same limit. This shows C(r) C C(TH) © F. The converse inclusion
is obvious. •

The following will also be used.

Lemma 5.8 Let x be a continuous function on Ca(M\p) without zeros on an
open set U. Then

C(r)\u = C(X-T\U), [C(T)]\U = [C(X-r\u)}.

This is because multiplication by \ o n the fibers of F induces an isomor-
p h i s m f rom Z(q*s + 1 • % • r ) t o Z(q*s + t-r). D
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Global comparison

We begin by recalling the global free resolution of Rn*ev*TM used by Behrend
[Bel], Prop. 5. Let TT: F —> Ca(M) be the universal family, ev: F —• M the
universal morphism. By a twisting procedure with a relatively ample line
bundle one obtains a sequence of holomorphic vector bundles

0 -> K —-> N —> ev*TM -> 0

with 7r*if = 7r*iV = 0. Then RK^Y*TM is (up to unique isomorphism) given
by the homomorphism of vector bundles G := iV-ir+K —> if := I&n+N,
viewed as a complex in degrees 0 and 1, as element of the derived cate-
gory. The latter vector bundles can be described as cokernels of d operators
obtained by resolving the above sequence by sheaves of fiberwise Sobolev
sections and pushing forward. We get a diagram of complex (rather than
holomorphic) Banach bundles

0 ->

0 -»

0

i
TCI*K —>

7r£(if®n) —> IT

i

i
0

0

1

1
P(N.

i
H

i
0

= : T -> 0

= £ -» 0

As we occasionally do in the sequel, we omit to indicate some restrictions
to Ca(M). Similarly to the above construction of rh, we may now construct
local homomorphisms r»: H —> £ that come from lifts to TT£(7V ® ft) of local
holomorphic sections of H with support away from the singular locus of TT. Ti
is easily seen to span the cokernel of o = d. In fact, locally, we even obtain
a Cartesian diagram of vector bundles

/£" and N extend naturally to CCT(M;p), as do H, G and n. Keeping the
notations H, G and Tj for the extended objects we may set

F := H@l and r =
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where we now insist that the bump functions x% form a partition of unity along
Ca(M) (this can be done by going over to x%l J2j Xj)- Then r composed with
the diagonal embedding H -̂> F spans the cokernel of a along all of Ca(M).
To compare Behrend's cone CH C H and C(r) we embed H in F diagonally:

H:H —+ F, h K—> ( / i , . . . , / i ) .

Over an open set where r« spans the cokernel, put Fh := Fi and Li'. Fi
c-^ F the

embedding. Then, up to a harmless scaling factor, r ^ = Xiri is of the form as
given in the construction of analytic Kuranishi models. Put rh := r{. TO find
the complementary subbundle F , let f := F 0 r T = {(/, v) | r ( / ) = cr(v)}.
T should be viewed as the tangent bundle of Z relative to $g,k- Both Fi and
im [i span the cokernel of the projection T —> F. A linear algebra argument
gives:

Lemma 5.9 Over the open set under consideration there exists a (continu-
ous) suborbibundle P C T with F := a(P) complementary to both ^(H) and

a
Proposition 5.6 applied to F = Fh 0 F now shows that

C(T) = C(XiTi)®F and [C(r)J = [C{XiTi)] ® [F]-

By Lemma 5.8 we may also replace x%Ti by rh = r». Let p: F —• Q be the
cokernel of /i. By transversality of F to im/x we may identify F with Q via
p. Let 0 Q be the Thorn class of Q. Then

M![C(r)] = [C(T)}np*GQ = [C(TH)}.

It thus remains to show that C{rh) coincides with CH C H. To this end
note that the morphism

] —+ [ I / I 2 - ^

that we obtain from the description of Z as zero locus of s^&n in Zh (with
ideal sheaf X), is a (global resolution of a perfect) obstruction theory as defined
in [BeFa], or a free global normal space in the language of [Si2]. Note that
the right-hand side of ipm is isomorphic to the truncated cotangent complex
T>-\Lm

z of Z. And C(rh) is exactly the closed subcone of Fh\z obtained from
this obstruction theory.

Let Q = O(GV), H = O{Hy) be the sheaves corresponding to G and H.
Then H = Ti and Q can be identified with fijfh/^lz- Let

IP: [W-*0] — [X/X2-> ft^U]

be the obstruction theory used for algebraic GW invariants in [Bel], cf. [BeFa]
before Prop. 6.2. The central result is
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Proposition 5.10 With the identifications H = T{ and Q = Qzh/$\z> ^he

morphisms ipm and ij)m are locally homotopic, i.e., equal as morphisms in the
derived category. •

Since the cone belonging to an obstruction theory depends only on the
morphism in the derived category, this shows that CH = C(rh) as complex
subspaces of H. So the proposition will finish the proof of Theorem 5.1.

To prove the proposition it suffices to check equality of the maps in co-
homology, because we are dealing here with locally split two-term complexes
[Si2], Lemma 2.4. ip* is constructed from the morphisms of the universal
curve over C^ol(M) to M (evaluation map) and to C^ol(M) (projection) by
constructions in the derived category. The difficulty in proving the proposi-
tion is to make the abstract constructions in derived categories explicit in a
way suitable for comparison with the d operator. Let us just briefly indicate
here how the d operator shows up, which is the key part.

First note that it suffices to work with truncated cotangent complexes
r>_iL*. By embedding into smooth spaces these can always be expressed in
the form "conormal sheaf maps to restriction of cotangent sheaf of ambient
smooth space'\ The smooth spaces we take are of course Zh and the universal
curve F over Zh. The holomorphic evaluation map from the universal curve
F over Z does not in general extend holomorphically to F. The point is that
ev provides a differentiate extension. The defect in holomorphicity leads to
the d operator in the following explicit description of the map

ker(W -> G) ~ 7r*(ev*ftM ® w) —> l/l2.

Namely, for U C Z an open set, we send a G (ev*f^M(8)^)(7r lU) to fa G T(U)
by

where (pz: Fz —» M is the curve parametrized by z, and where we apply the
dual pairing QM ® TM —> C to make a(d(pz) a (1, l)-form on f z. Note that
(pz is holomorphic near the singularities, so this form is smooth (in contrast
to a, which may have poles at the singularities of Tz). It should be more or
less clear, and can be checked easily that this is exactly H~l{}pi*)) the map
induced by s^&n. Similarly for the cokernels of (p* and ipm.

One final remark concerning rigidification: the limit cones that one obtains
over an unrigidified chart S x V are invariant under the automorphism group
of (C, x) and hence restricts to the limit cone uniformizing C{r) on the actual,
rigidified chart 5 x V. A similar statement holds for the algebraic cones.
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0.1 Introduction
This paper proves the generic Torelli theorem for the family of quintic hyper-
surfaces I 5 C P 4 :

Theorem 1 The period map V3 defined on the quotient C//PGL(4); where
U C P(if°(Op4(5))) parametrizes smooth hypersurfaces, is of degree one onto
its image.

Recall that if B parametrizes a family (X^J^B of compact Kahler varieties
of dimension A;, the period map

Vk:B->V/T,

* Partially supported by the project "Algebraic Geometry in Europe" (AGE), Contract
ERBCHRXCT 940557
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426 A generic Torelli theorem for the quintic threefold

sends b € B to the Hodge filtration F'Hk{Xb) on Hk(Xb)C) = Hk(X0,C)-
Here V is the period domain parametrizing all filtrations on Hk(X0,C) of
given ranks, and F the group of automorphisms of Hk(Xo,Z) preserving the
intersection form, so that the isomorphism Hk(Xb,Z) = Hk(X0,Z) is well
defined up to F. It is known (Griffiths [13]) that Vk is holomorphic and
satisfies Griffiths transversality.

Theorem 1 says that if X C P4 is a generic quintic threefold, any iso-
morphism of its polarized Hodge structure

with that of another quintic threefold X' is induced by a (projective) iso-
morphism X = X'.

We mention that Torelli statements for Calabi-Yau varieties may have an
important role to play in mirror symmetry: at present, the mirror symmetry
conjecture can be formulated in Hodge theoretic terms, as identifying the
quantum variation of Hodge structure parametrized by H2(X*, C), where X*
is a mirror Calabi-Yau threefold, with the variation of Hodge structure on
H3(X, C) parametrized by the Kuranishi family of X. In this formulation it
has been proved by Givental [8] when X* is the quintic threefold and X its
mirror (see [1]). It seems likely that Givental's method should also prove it
when X is the quintic threefold and X* its mirror. This last statement, to-
gether with our results would in fact prove a stronger conjecture, namely the
fact that a complexified Kahler parameter on X* determines a complex struc-
ture on X: indeed, what we show is that the generic quintic X is determined
by its infinitesimal variation of Hodge structure, and it turns out that for
Calabi-Yau threefolds, the infinitesimal variation of Hodge structure is equiv-
alent to the isomorphism class of the Yukawa cubic (see below the discussion
of the derivative of the period map) on the vector space Hl(Tx)- Moreover,
the mirror symmetry conjecture identifies this with the quantum product on
H2(X*), which is determined by the complexified Kahler parameter on X*.

The Torelli theorem for K3 surfaces was used in a similar way in Voisin
[19] to construct the mirror map in this stronger sense for a particular class
of Calabi-Yau threefolds. It seems that a Torelli statement could also play
an important role in the new construction of mirror symmetry proposed by
Strominger, Yau and Zaslow [17], and studied in Morrison [15] and Gross and
Wilson [14].

0.2 The methods of Griffiths and Donagi

In the case of a Calabi-Yau threefold X (of which the quintic threefold is
the most standard example), it is known that the local period map V$ from



Claire Voisin 427

the Kuranishi family B of X to the local period domain is immersive. This
follows from Griffiths' general description of the derivative of the period map
at 0 € J5, where X = XQ\ by transversality, this derivative is described by a
series of maps

/ V TBto -> Hom(iF ' 9 p0 , Hp~l^+1(X)) for p + q = 3.

Griffiths proved that /JLP is the composite of the Kodaira-Spencer isomorphism
TB,O — Hl(Tx) with the natural cup product map

H\TX) -> Eom(Hp^q(X),Hp-1^1(X)).

Now consider the period map V3'0 for holomorphic (3,0) forms, which
sends t G B to the line # 3 ' 0 C H3(X0,C) based by the holomorphic (3,0)
form on Xt. It is obviously determined by Vz, and by Griffiths transversality,
its derivative is a map

with image contained in Hom(if 3)0(X), i?2)1(X)), which can then be identified
with /x3. Now the cup product map

H\TX) -+ Hom(//3'°(X),if2'1(X))

is clearly an isomorphism, since Kx is trivial, which implies that 'P3'0 is
injective; therefore Vz is an immersion.

Apart from this general fact, there are very few results on the Torelli
problem for Calabi-Yau threefolds. Oh the other hand, Donagi proved the
generic Torelli theorem for many families of hypersurfaces in projective space,
with a series of possible exceptions including Calabi-Yau hypersurfaces:

Theorem 2 (Donagi [4]) The generic Torelli theorem holds for hypersur-
faces in F 1 of degree d, with the possible exception of the following cases:

(a) d divides n + 1;

(b) d = 3 and n = 3;

(c) d = 4 and n = 1 mod 4;

(d) d = 6 and n = 2 mod 6.

(In fact, (d) has since been excluded, see Cox and Green [3].) In the
remainder of this section, we sketch the ideas of Donagi's proof, and explain
how his methods enable us to deduce Theorem 1 from the purely algebraic
statement of Theorem 5.
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Let X be a smooth hypersurface of degree d in Pn, with equation F = 0.
We write Rp for the Jacobian ring of F, that is, the quotient of the polynomial
ring in n + 1 variables 5 = 0 f c > o S* by the ideal Jp generated by the partial
derivatives of F. We note for future use that RF = Y?d=v ^ F *S a graded
complete intersection ring, with dth graded piece R<

F) having element of top
degree a(n + l)(d - 2), and the multiplication Rd

F x RF~d -> Ra
F = C is a

perfect pairing, defining a duality {Rafd)* = Rd
F (see [2]).

Then if n > 3, and d > 5 if n = 3, the natural map

{infinitesimal deformations of F} —> {infinitesimal deformations o

defines an isomorphism

The infinitesimal variation of Hodge structure of X, or the differential of the
period map at [X], is given as described above by a series of maps

Mp: H\TX) -> H o m ^ p Q , H$£*\X)) for p + q = n - 1.

We have the following theorem:

Theorem 3 (Carlson and Griffiths [2]) There are natural isomorphisms

which, up to universal coefficients, identify the jip with the multiplication maps

Rd
F - Hom(R{;-p)d-n~\ R{;-p+l)d-n-1). (0.1)

It is known that, except if d = 3 and n = 3, the (polarized) period map for X
is a local immersion. To prove that it is of degree 1 onto its image, it is enough
to prove that if V and V are simply connected open subsets of the quotient
{7°/PGL(n + l) parametrizing smooth hypersurfaces without automorphisms
up to projective equivalence, and j : V = V a given isomorphism such that
Vn-\ ° j = Vn-u where Vn-i is the local period map, then V = V (here
we identify the local period domains for V and V by the given isomorphism
of polarized Hodge structures H^(Xto) * H^(Xm) for some t0 G V).
By translating the condition that Vn-u ° 3* ~ 'Pn-u, it follows immediately
that we have an induced isomorphism of infinitesimal variations of Hodge
structure at t and j(t).

Using Theorem 3, we see that this isomorphism of infinitesimal variations
of Hodge structures gives a partial isomorphism between the Jacobian rings
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of Ft and Fj(ty.

Rd
Ft

Fj(t)

(0-2)
n-l\

h

where the second vertical arrow is an isomorphism induced by isomorphisms
ft(n-p) ~n~ ^ FCp~f ~n~ for each p. In other words, knowing the Hodge
structure and infinitesimal variation of Hodge structure of Xt determines
some graded pieces of the multiplication map of the Jacobian ring Rpt. The
key ingredient in going from this to the proof of Theorem 2 is the following
result, which allows us in many cases to recover the whole Jacobian ring from
the above data:

Theorem 4 (Donagi-Green symmetrizer lemma, cf. [6]) Let R be the
quotient of S by a regular sequence ofn + 1 homogeneous elements of degree
d — 1; write a = (d — 2)(n + 1) for the top degree of R, and define

Ta,b = {v> e Hom(i?a,Rb) | w(p{v) = v(p(w) for allv,w € Ra}.

Then Ta,6 = Rb'a if a + b < a andb + d-1 < a.

This means that multiplication by elements of Rb~a is uniquely determined
by the multiplication map Ra x Rb —• .R0"̂ 6. In the range considered in
Theorem 2, Donagi and Green [6] apply Theorem 4 to diagram (0.2) to recover
isomorphisms between other pieces of the Jacobian rings of Ft and Fj(t), and
eventually to obtain a whole isomorphism between the Jacobian rings of Ft

and Fj{t) themselves; the degree 1 piece of this isomorphism then gives an
isomorphism a: S1 ^ S1 inducing ad~l: S^1 = Sd~l such that ad-l{J^~l) =
Jp~*. It is then immediate to conclude that Ft and F^t) are projectively
equivalent. Thus Donagi's result is that, in the range of Theorem 2, the
existence of the commutative diagrams (0.2) implies that Xt = Xj(t) for
generic t. See Donagi's survey [5] for more details.

The argument does not work for the series (a) of possible exceptions to
Theorem 2, because when d divides n + 1 , the symmetrizer lemma applied to
the multiplication maps (0.1) can never give new pieces of the Jacobian ring
of degree not divisible by d.

0.3 Start of our proof
Prom now on we consider the case of the quintic threefold. This is a Calabi-
Yau threefold, and its infinitesimal variation of Hodge structure is described
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by the maps

M3: H\TX)
fi2: H\TX)

We proved above that the first map is an isomorphism, and the last map is
the same isomorphism, in view of the duality isomorphisms

H°>\X) = H3>°(Xy and H^2(X) = H2'\X)\

Thus the only algebraic invariants of the infinitesimal variation of Hodge
structure of X are contained in the map

well defined up to a coefficient depending on the choice of a generator of
), which is obtained from the map

given by ^2, after using the isomorphism ^3 to substitute Hl(Tx) for
and /ii to substitute Hl(Tx)* for iJ2(Qx)- The map {x is easily seen to come
from a cubic form on Hl(Tx), the Yukawa coupling. It follows from the above
that this cubic determines the whole infinitesimal variation of Hodge struc-
ture. Theorem 3 identifies //: S2Hl{Tx) -> Hl(Tx)* with the multiplication
map

ti:S2R5
F-+Rf, (0.3)

(for simplicity, we write xy for //(#, y) G FOp in what follows) followed by the
duality isomorphism Rf = (#F)*-

To extend Donagi's method to the case of the quintic, it is enough to show
that, at least for generic F , the multiplication map

: S1 (8) R% - > R5
F (0.4)

is uniquely determined by the map \i (0.3) and the isomorphism R}p =
In other words, we need to prove that an isomorphism R5

F = R5
F, compatible

with /x induces isomorphisms S1 = S1 and RA
F = RA

F, compatible with ^i)4.
Indeed, if we can do this iterated application of the symmetrizer lemma allows
us to reconstruct the whole Jacobian ring RF, and hence F itself.

We view /xi>4 as an inclusion RA
F C Hom(51, R5

F) = ( ^ ) 5 , where the last
isomorphism involves choosing a basis of 51 , and write W C (R5

F)5 for the
image of this inclusion. Prom now on, W is the main unknown in our proof;
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our first attempt is to try to determine W from the following properties (a-g),
which are stated in terms of the known map ji and isomorphism Rl

F = (R5
F)*.

First, some notation. The typical element of W is w = (wi,..., W5) =
(xi(p,..., £5^), where <p G Rp and x\,..., x$ are coordinates on P4. For
t = (£1, . . . , £5) G C5 we write wt = Yli U^i £ #F> which corresponds simply
to the product A<£ of ^ with a linear form A G S1. We think of w i-» wt as
defining a projection pt: W -+ R5

F oi W C (R5
F)5 to one factor R^?, and its

image pt(W). In Section 2, we refer to this image as a component of W\ in
particular when t is one of the basis vectors t = e» of C5, we call p»(W) =
Pei(MK) the ith component of W C (R5

F)5- I n a similar way, two elements
t, f G C5 give rise to a 2-term projection Wtj

f = {(wt, t^tON ^ ^ } c
 ( ^ F ) 2 -

Proper t ies of W

(a) dim W = dim R4
F = 65 = (*) - 5.

(b) The symmetrizer property. For w, wf G VK we have

WiWj = Wjw't G i?^° for i, j = 1,2,..., 5.

More generally, WtU't7 = Wt'W*t for any £, £' G C5. Indeed, w,wf corre-
spond to elements </?,</?' of RA

F, and t,t' to elements A, A1 of S1. Then
in R5

F, we have the equalities: wt = A(p, wt> = A'<p, w't = A<p; and
^J, = AV', so that the result is clear.

(b') More precisely,

W = {z G (i?|05 I ̂ ^ j = zjwi f°r a n *>i a n d a n ^

This follows from the symmetrizer lemma (Theorem 4).

(c) dimi?^ • W = 135, where R5
F • W C ( ^ ° ) 5 i s defined using the natural

map R5
F 0 ( i ^ ) 5 ~+ (R1FT-

 T n i s n o l d s because R5
F • W is isomorphic

to i?^, which by Koszul has dimension (x
4
3) - 5(J) + 10(5 = 135-

The next property is less obvious. Assume that X is generic, and for
generic t, t' G C5, define the partial symmetrizer of the 2-term projection
Wtttf by

Rf for all K

then (b) says that Wt,t> C W/t/. The following fact, while technical, is
very helpful in the remainder of our calculations:
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(d) codim(Wt)t/ C W[t,) = 2 and codim(i^Wt)t/ C RpW^,) = 2; moreover,
we can identify Rb

FW[t, with the orthogonal complement of Wtyt
f in

(Rp?)2 and vice versa, using the pairing (z, w) = Z\W2 — z2wi between
(R5

F)2 and (i?)?)2, so that R5
FW^t, / R

5
FWtj and W^/Wtj are dual to

one another. Equivalently, for generic <p G R5
F, the skew pairing on

W[t,/Wt}t
f defined by (z, w)^ = (p(ziw2 — z2w\) G Rl

F is nondegenerate.
This form vanishes when <p belongs to Pt(W) +Pt'(W).

We sketch the proof of (d) later. The other properties that we use
are the following:

(e) For generic t ^ 0 G C5, the projection pt: W —> R5
F given by w «-> wt is

injective. Furthermore, the map C5 —• Hom(W, Rjfr) is injective.

Indeed, W is identified with R%, and t with a generic element A of 51;
the map pt is simply the multiplication by A from RA

F to i?^. Thus
it is enough to exhibit one example where this multiplication map is
injective: take X to be the Fermat hypersurface, and A the form ^ Xi.
The second statement is simply Macaulay's theorem (see [20]).

(f) For any z G (R5
F)5, the map i/z: W —> R™ given by w H-» Yliziwi ls

zero or has rank > 21.

Indeed, let X* be the basis of S1 giving the isomorphism 5 1 = C5; using
the isomorphism W = i?^, it is immediate to see that vz: Rj? —• R$ is
identified with the multiplication map by Yli x%zi € R%- So the state-
ment is that for generic X, and any nonzero element P G i?^, the
multiplication map \ip: i?^ —• i?)? has rank > 21, which is not difficult
to prove: in fact this bound, which we need for technical reasons, is not
at all sharp. For example, for the Fermat quintic, the only polynomials
not satisfying this bound are, up to a permutation of the coordinates,
of the form X\X\A, for A a linear form. Then an infinitesimal com-
putation shows that these polynomials P with rank/xp < 20 will not
continue to exist for a generic deformation of the Fermat.

(g) For any four linearly independent elements £i , . . . ,£i G C5, we have

ZiPti(W) = &F-
Indeed, four independent elements of 5 1 generate the ideal of a point
in P4, and since JF has no base point, they generate S5 modulo JF, or
equivalently, they generate R^.

Our plan in the next sections is to prove the following

Theorem 5 Suppose that F is generic, and let W C (R%)5 be a subspace
satisfying (a-g) above. Then there exists an isomorphism S1 = C5 which
identifies W with R% C Hom(S\ R5

F).
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This shows how to reconstruct ^ 4 from \x and the isomorphism R}p =
* the properties above are stated using only this data: the theorem

shows the uniqueness of W C (i?jp)5 satisfying these properties, up to Aut C5:
choose such a W\ put RA

F = W, S1 = C5 and define /xM: S1 (g) R4
F -> R5

F as
the natural map C5 0 W —> i?^. Then, as in Donagi's arguments mentioned
above, the symmetrizer lemma allows us to recover the multiplication maps

A*i,fc: S1 0 Rk
F -» ii^+1 for A; < 4,

giving the whole Jacobian ring of F , and therefore allows us to recover F
itself. Thus Theorem 5 implies our main result Theorem 1.

Proof of (d) t,tf are identified with generic elements A, B of 51; for any
integer 2, define the space Hl

AB as the middle cohomology of the complex

In degree z = 5, clearly Wt̂ 7 is identified with Im(A, B) and VFt't, with
Ker(£? — A), so that Wtt,jWt<t' is naturally isomorphic to H\B. It is easy
to prove that for generic A, B and X, (A, B): Rp -+ R5

F x R5
F is injective

and B — A: R5
F x R5

F —• /?|, is surjective. (This last fact means that the
5 partial derivatives of a generic quintic F , together with two generic linear
forms, generate an ideal containing all sextic polynomials; this can be checked
easily, for example using Macaulay.) Thus, since dim Rjp = 65, dimi?^ = 101,
dimi?^ = 135, it follows that dimW^/Wi,*/ = 2.

Now it is immediate to see using the selfduality RF = (R1^'1*)* of the
ring Rp that H™B is naturally dual to H\B, the duality being given by
the pairing ( , ) between R5

F x R5
F and Rp x R$. On the other hand,

HA°B = wtt'/RWt,t> by definition, and R5
FW^f C W&. For <p e R%,

the multiplication map by ip: H\B —> H™B is skewsymmetric, and since
dimH\B = 2, it is either zero or an isomorphism; in this last case, ( , )(p is
nondegenerate. It is easy to show that it is generically nonzero, hence we con-
clude that R^W{t, = Wj^t and that ( , )(p is generically nondegenerate. •

0.4 Overall plan of the proof
Although Theorem 5 is stated for generic F , for which W satisfies the above
properties (a-g), we prove it via an appropriate specialization Fo, when (a-g)
no longer hold for Wo. We now discuss the logic of this reduction. First,
(a-g) are used in Section 1 in connection with the following definition:
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Definition 1 Given a subspace W C ( ^ ) 5 , the conductor of S1 to W is the
subspace [W : S1] C (R4

Ff defined by

[W : S1} := {z G {R4
Ff \ Az e W for all A e S1}.

Section 1, Proposition 1 gives the lower bound dim[W : 51] > 19, assum-
ing that W satisfies (a-g). The next definition collects together for use in
Section 2 the properties of Wo that survive the specialization from F to Fo.

Definition 2 Let Fo be the equation of a nonsingular quintic threefold. We
say that a subspace Wo C {RF0)

5 has Property P if it satisfies (a), (b) of 0.3,
and the following supplementary conditions (c'), (e) and (h):

(c') dim R5
FQW0< 135.

(e) The first projection Wo —> R5
Fo and the map C5 —> Hom(W0,J?|b) are

both injective.

(h) The conductor ZQ = [Wo : S1] has dimension > 19 (see Section 1,
Proposition 1).

We justify these properties. Let U C F(H°(O^(b))) be the open set
parametrizing smooth hypersurfaces; over £/, we can define the bundles V?
and 7£10, with fibres Rb

F and RX
F over F eU. The multiplication in the ring

RF for any F gives a map

In the Grassmannian of 65 dimensional subspaces of (7£5)5, the set of spaces
W satisfying (b) and (c;) is Zariski closed. It follows that if W C {R5

F)5

(defined over some finite cover of U) satisfies (a), (b), (c) for generic F , when
F specializes to Fo, the corresponding limit Wo of W satisfies (a), (b) and
(c').

Now assume that the generic W satisfies the remaining properties. By
specializing along a suitable curve, it can be seen that we can impose the
following conditions on Wo. Since we may assume using the AutC5 action
and (e) that the first projection prx: W —> R5

F is injective for generic (W, F),
we may also assume this is true for (Wo, Fo): for this, we consider the spaces
Wt as subspaces of R?Ft for generic t via the first projection; we then define Wo
as the limiting subspace of R^Q. Moreover, since the map C5 —• Hom(W, R5

F)
is injective for generic W, we may also assume this to be true for Wo- In fact,
for this it suffices to define the subspace C5 C Hom(Wo, ^ 0 ) as the limit of
the subspaces C5 C Hom(Wt, RFt)

When we specialize W to Wo, the dimension of the conductor [W : Sl]
can of course only jump up, so our specialized Wo will satisfy (h).

An important role in the proof is played by the following definition.
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Definition 3 The subspace Wo C (RF0)
5 is degenerate for X4 if one compo-

nent of Wo C (R%)5 (in the sense explained in 0.3) is contained in the ideal
(-X4), or in other words, the composite

C5 -> Hom(W0, R%) -> Hom(W0, R%/{X4)) (0.5)

is not injective.

Section 2, Propositions 2-3 describe all the possible degenerate subspaces
Wo C (R%)5 satisfying property P. There turn out to be just two possibilities:
either Wo is the image of RA

FQ in Hom(51, R5
Fo) for some isomorphism Sl = C5,

so that Wo satisfies the conclusion of Theorem 5; or Wo is a certain explicitely
described degenerate limit of these under the action of Aut C5. In Section 3,
we use an infinitesimal argument to prove that any deformation of Wo to
a subspace Wt satisfying property P for generic t satisfies the conclusion of
Theorem 5, whenever Wo is degenerate or not.

The specialization FQ we use is of the form

Fo(Xo,..., X4) = X\ + G(X0, ...,X3), (0.6)

with G a generic polynomial of degree 5. In this case R?FQ/(X±) occuring in
(0.5) is simply R%, the degree 5 piece of the Jacobian ring of G. The final
Section 4 proves that for Fo of the form (0.6), any subspace Wo C ( # F 0 ) 5

satisfying (a-g) above is degenerate, which combined with the results above
concludes the proof of Theorem 5.

Remark To keep the paper to a reasonable length, we have chosen to skip
the proofs of a certain number of technical lemmas giving lower bounds for
the ranks of the multiplication map by a nonzero homogeneous element of
the Jacobian ring of a generic hypersurface of degree 5 in P3.

1 Dimension of the conductor Z = [W : S1}

Proposition 1 Let F be a generic quintic, and W C (R%)5 a subspace sat-
isfying (a-g) of 0.3. Then dim[W : S1] > 19 (see Definition 1).

The rest of this section is devoted to the proof of Proposition 1. We first
show the following result.

Lemma 1.1 For generic A,B G Sl, we have [W : S1} = [W : (A, B)].
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Proof If z G [W : (A, B)] then ZiWj — ZjWi G R9
F is annihilated by A, B

for any w G W\ but the surjectivity of B — A: R?F ® R?F —> R^ used above
implies by duality the injectivity of the map (A, B): R9

F —> RX
F x RX

F. Hence
ZiWj - ZjWi = 0 e R9

F, which by (b;) implies that z G [W : S1]. D

We use the notation H\B introduced in 0.3 in the proof of (d). We have
shown that H\B is two dimensional and that a generic <p G R?F gives a skew
linear isomorphism H\B —> Hl£B. Consider the map B — A: W x W —>
S1!^ C (i?i?)5- ^ s kernel Ker(5 — A) admits a natural projection a to
(H%B)5- We have the next result:

Lemma 1.2 The map a: Kev(B — A) —• ( i ^ ^ ) 5 «5 ̂ /ie 2;ero map.

Proof Suppose that £?w — Aw' = 0; then we set

a((w,w')) = ( a i , . . . , a 5 ) := ((wuw[),..., (w5,w'5)).

Now we claim that (a»,aj) = 0 for all i , j , where ( , )(p is the (generi-
cally nondegenerate) pairing introduced in (d): indeed (OL^OLJ) = (p(wiWj —
Wjw'i) G Rp?i which is zero by (b). It follows that the a* generate a subspace
of H\B of dimension at most one; thus after a change of basis of C5, we may
assume c^ = 0 for i < 4. This means that for some zi,..., z± G Rj?, we have
w = (Azi,..., Az±, W*,) and w' = (Bz\,..., Bz±, w'5). Now this implies that

Xia5 = 0 in RF for any % = (Xi> • • •, Xs) € W and any i < 4.

This is because by (b), Xi™s = Xswi = XsAzi and Xiw'5 = Xs^i = X5&zi' But
by (g), we know that Xli<4Pri(^) = -^F- SO a5 is annihilated by -R ,̂ and
hence is zero. •

It follows from Lemmas 1.1 and 1.2 that

d i m S 1 ^ > 2dimW - dim[W : S1]. (1.1)

Let W\2 = pr12(VK) and W[2 = Weue2 for a generic choice of basis of C5. We
note first that pr12: SlW —> SlWn is injective; indeed by (b), dimR5

FW =
135, while dim R5

FW12 = dimW^ - 2 = 135 by (d). Thus pr12: iJ^W ->
R^W\2 must be injective, and so is pr12: SlW 1

Now we prove the following fact.

Lemma 1.3 d i m S ^ y S 1 ^ > 6.
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Proof It is enough to show that for x,y independent in W'l2/W\2, we have
dim Slx/Sly > 3, where Slx/Sly is the image of Slx in (S1 W[2/S

lWn)/Sly.
Let K be the kernel of the natural map S1 —> Slx/Sly\ for a G if and
P G ii£, we have (Pax,y) = 0, so that P a x = 0 in R5

FW[2/R
5
FW12, by (d),

since obviously also (Pax.x) = 0 in fl^W^/i^W^. This implies that Pa
annihilates W[2/Wi2, since multiplication by Pa is a skew morphism. (We
use the notation and results of (d).) Now assume dimK > 3. We know
that pr1(W) + pi2{W) + R%K annihilates W[2/W\2, so it must be a proper
subspace of R?F. In particular RFK must be a proper subspace of R5

F.
Now we use the following fact which holds for generic X, as follows from

an easy dimension count:

Fact 1.4 The set of lines A C P4 such that I A does not generate Rh
F is one

dimensional, and for such a line, I A generates a hyperplane of R5
F.

So under the assumption dimK > 3, we find that there is a line A as
above, for which W\ is contained in /A (5). Since the set of such lines is one
dimensional, and the basis of C5 is generic, for a fixed such A, there is a
hypersurface in P(C5) consisting of t such that Wt C I A (5) mod JF. This
contradicts (g). •

Now let A, B e S1 and <?i, q2 G S2 be generic; we prove the following:

Lemma 1.5 (i) [SlWl2 : (A, B)] = Wl2;

(ii) [S'W{2:(A,B)} = W{2;

(iii) [SlW12:(quq2)] = [Wl2:S
1];

(iv) [S1Wi2:(q1,q2)] = \Wl2'S1];

(v) [W{2 : S
1] = [W12 : S

1] = pi12([W : S1]).

Proof (i) and (ii): let (zuz2) G [SlW'l2 : (A,S)]; then for w G W we
have that Z\w2 — z2w\ G Rl

F is annihilated by A and B. Since the map
(A, B): Rl

F —> i?^1 x i?^1 has kernel of dimension 6, it follows that the map
W —• i?^° given by it; i—• ziw;2 — 2:2^1 has rank < 6. By (f) it vanishes
identically, hence (zi,z2) G [ S 1 ! ^ • S1], which proves (ii). Now if (z\,z2) G
[5^12 : (A, B)] we know that (zuz2) G W{2 and its image in W[2/Wi2 is
annihilated by A, B. Using (d) and the fact that A, B are generic, we conclude
that (z\,z2) G W\2. Indeed, if A annihilates a nonzero element of W[2/W\2,
RjpA annihilates W[2/W\2, and clearly this is not true for generic A.

The proof of (iii) and (iv) are completely similar, so we only prove (v).
If z G [W[2 : S1], consider the map S1 -> W[2/W12 given by A *-> Az:
its kernel has dimension > 3. But then for any C G 51, the annihilator
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of Cz G W[2/Wi2 has dimension > 3, which implies that Cz = 0, by the
proof of Lemma 1.3. Hence z G [W12 : S1]. Finally let z G [W12 : S1];
for generic i , 5 G S1 we have w = (Azi,Az2iwz,W4,w^) G [Wu : 51] and
w'(Bzi,Bz2,w'3,w

/
A,w/

5) G [W12 • 51]. So the first two components of Bw —
Aw' G SlW vanish. But we have already used the fact that pr12: SlW —>
SlW\2 is injective; it follows that Bw — Aw' = 0 hence Wi = Az{ and w\ = Bzi
for i = 3,4,5 for some ^ G ̂ , using Lemma 1.2. Then (z i , . . . , 25) G [W :
(A, S)], hence (^i , . . . , z5) G [W : 51] using (i) above. Therefore z G pr12([VF :
S1]). D

Define Hqliq2 as the middle cohomology group of the sequenceqliq2

r,i_2 (91.g2) ™ pj 92-91 pi+2
lip r tip X Tip • Tip .

There are natural maps

a: Ker[£ - A: S^u x S 1 ^ -f 52W^12] -»( i? l ,B) 2 ,

a': Ker[5 - yl: S 1 1 ^ x SlW[2 -* S2W{2] -» (#! i B ) 2 ,

/?: Kerfe - 9 l : S 1 ^ x SlWn - 53W12] -> « , , 2 ) 2 ,

/?': Kerfe - qi: SlW[2 x 5X^{2 -» SzW'n]

From Lemma 1.5 we deduce the following inequalities:

Corollary 1.6

= 2dim51VF1
/
2-67-ranka/,

dimS3Wi2 > 2 d i m 5 ^ 1 2 - dim[5xW12 : (qi, q2)} ~ rank/?

= 2 dim S1 Wi2 - dim[VFi2 : 51] - rank /?,

dim S 3 ^ ^ > 2 dim S1!^^ - dimIS1 Wj2 : (gi, 92)] - rank 0

= 2 dim SlW[2 - dim[^i2 : S1] - rank

Using Lemma 1.3 and inequality (1.1), we get then the following inequal-
ities



Claire Voisin 439

Corollary 1.7

dim S2 Wl2 > 4 dim W - 65 - 2 dim[W : S1] - rank a

dim S2W[2 > 4 dim W - 67 + 12 - 2 dim[W : S1] - rank a'

= 2 0 5 - 2 dim[W : S1] - rank a',

dim S3W12 > 4 dim W - 3 dim[VF : S1] - rank /?

= 260 -3d im[W: 51],

dim S3W[2 > 2 7 2 - 3 dim[W : 51] - rank /?'.

Note that on ff^>j3, there is a natural skew pairing with values in i?)?,
defined by ((^1,^2), (^1^2)) = ziz2 "" Z2^i- One can show that for generic
(f £ RS

F (and generic A,B,X) the pairing ( , ) = <p ( , ) with value in
Rlp = C is nondegenerate. Similarly we can define a nondegenerate skew
pairing ( , ) on H^iqr Hence there is an induced symmetric pairing on
H\B x H\B, defined by

((ai , OL2), (ai, a;
2)J = (ai, a'a)^ -f (ai, a2)^ ,

and similarly for H*uq2. We have the following result.

Lemma 1.8 Ima and Ima ' are orthogonal under ( , ) , as are Im/? and
Imp'.

This is immediate using (b) and the definition of the pairing. D
Since we have iankH\B = 14, and ranki/^i<?2 = 50, we deduce from

Lemma 1.8 that

rank a + rank a' + rank (3 + rank (3' < 128,

which together with Corollary 1.7 gives

Corollary 1.9

dimS2W12 + dimS2W[2 + d i m S 3 ^ + dimS3W[2 > 804 - 10dim[W : S1].

But note that by definition S 2 ^ C R7
F x R7

F and S3W[2 C RS
F x RS

F are
orthogonal with respect to the perfect pairing ((ai ,a2) , (A, ^2)) = <*i/?2 —
a2/?i e R}? ^ C. Similarly, S2W{2 C R7

F x R7
F and 53Wi2 C R8

F x RS
F are

orthogonal with respect to the same pairing. Since dimR7
F = dim R^p = 155,

we conclude that

dim S2W12 + dim S2W[2 + dim S3W12 + dim 53W{2 < 4 dim / i j = 620,

Using Corollary 1.9, we conclude that

6 2 0 > 8 0 4 - 1 0 d i m [ W : S1],

hence dim[VF : Sl] > 19 and Proposition 1 is proved. •
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2 The degenerate case

In this section we assume that Wo is degenerate in the sense of Definition 3
of 0.4. We first prove the following result.

Proposition 2 / / Wo is degenerate and satisfies Property P of Definition 2,
then one of the following cases holds:

(i) Wo is the image of RFo in (R5
Fo)

5 for some isomorphism Sl = C5.

(ii) Up to a change of basis o/C5, Wo contains the 5-tuples (X±zy 0 , . . . , 0)
for any z G R%0 and for some T G Rp0 (well defined modulo X4), and
for some Ai for i — 1 , . . . , 4 independent modulo X± in S1, Wo contains
the 5-tuples (AT,X%AiA) for any AeS1.

Remark It is immediate to see that such a Wo satisfies Property P. (b)
holds because X\ = 0 in Rp0. In fact one can check that any Wo as in the
proposition can be realized as the limit of a family Wt C (R%)5 in Case (i).

By assumption, the first projection prx: Wo —• R5
Fo is injective, thus of

rank 65, and since rankXji^0 = 61, the first component pr1(Wo) of Wo (see
0.3) is not contained in (X4). We assume first that

there exists a component ofW0 contained in (X4) but not in (X%);

we may of course assume this is the second component pr2(Wo) of Wo. We
prove first the following proposition.

Proposition 3 Under this supplementary assumption, Wo is in Case (i) of
Proposition 2.

The proof of this proposition involves various technical steps, but the idea is
the following: an element of Wo is of the form w = (wi^X^z, w$, W4,1^5), with
z G Rjp0. Now we have the relations given by property (b)

X4{wiZf - wlz) = 0 for w,w'e Wo, (2.1)

which are part of the assumptions of the symmetrizer lemma (Theorem 4) for
the correspondence z \-> Wi, and we would like to show that there are enough
such relations to conclude that this correspondence is of the form W{ = A{Z
for some A» G S1.

In doing this, we meet two problems: first, we need to show that enough
elements z' are involved in the relations (2.1). Secondly, the factor X4 in front
of these relations makes them weakened symmetrizer relations; however, we
show that they induce enough true symmetrizer relations in RQ.
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This leads us to split the proof into two main steps. The first is Lemma 2.1,
where we show that if Wi is divisible by Xk then z is also divisible by
Xk. This shows that the graded pieces of Wo for the nitration given by
the order of divisibility by X4 are also generated by elements of the form
X4(wi,X4Z,W3,W4,ws), with z G R^~k and Wi G R5^k- This step allows us
to translate relations (2.1) into symmetrizer relations in RG.

The second step is Lemma 2.7, where we show that there exists A{ G S1

such that Wi = AiZ mod X4. This is done by showing that (2.1) gives enough
symmetrized relations in RG to apply the symmetrizer lemma. The conclusion
of the proof of the Proposition is then comparatively easy.

We write W for the 2-term projection pr12(Wo) C (R%)2- An element of
W is of the form (wi,x4z2). Using (h), we prove the following:

Lemma 2.1 If wi G X\Rhfo
l then z2 G X\R^r\

The proof proceeds through Lemmas 2.2-2.6.

Proof of Lemma 2.1 Set Zo = [Wo : S1]. We know that dimZ0 > 19,
and of course the first projection is injective on Zo, since it is on WQ. Thus
dimpr^Zo) = dimZ' > 19, where Zf = pr12(Z0). We define a filtration on
W and Z' using the order w.r.t. X4 of the first component; the successive
ranks of the associated graded objects will be denoted by a, /?, 7,5 for W\
and by a', /?', 7', 5' for Z'. So a basis of W can be listed as

a elements

ID e l e m e n t s i^*.^/^^, ^ »-^^'; # , , -. <• •»».

; ; ) , where wuzutuqx ^ 0 mod X4.
7 elements (X|t i , -
5 elements

Similarly, a suitable basis of Z' can be listed as

a'elements

ff elements

Y elements

^elements

, where z'^t'^qf
v A\ ^ 0 mod X4.

Of course, a-h/?+7+5 = 65 and ot+fi+1+81 > 19. We first assume a > 12:
(b) gives witf2 = 0 in R% for any (wuXAz2) G W and (X4ti,X4t2) G Z\
since X4w1t'2 - X\t\z2 = 0 in R%. Similarly wi(% = wxt2 = 0 in R% for
(X|gi, X4t2)» ( ^ M i , ^4*2") elements of Z'. Next, we use the following result.

Lemma 2.2 IfG is generic, for any nonzero t G RG, the multiplication map
fit: R% -» R% by t has rank > 29, that is, \it has kernel of dimension < 11
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(since dim RQ = 40 / Equivalently, by duality, the map fit: RQ —» R>G has
kernel of dimension < 2. D

It follows that if a > 12, we have t'2 = t'2' = t'2" = 0 in R%. We now
write t2 = X4q[2,t!2 = X4q2,t2 = X4q2 and show exactly as above that
q» = q

f» = 0 in R2
G, since (XfaXlfi) and (XlAuX%<g') G Z'. Similarly we

write q'2" = X4A2 and find that A2 = 0 mod X4 since (X$AUXZA2) G Z'. In
other words the property stated in the lemma is true for Z', and we can list
a suitable basis of Z' as

ol elements (z[,X4t2)

/?' elements
, where z[,tf

v q[,A\ ^ 0 mod X4.
y elements (X^qvX^A2)

5' elements (X |A\ , 0)

We now note that, again by (b), z2t[ = 0 in RQ for {X4z\,X4z2) G W
and (Xrf^ X%q2) G Z\ since X\z2t'x — X\q2z\ = 0 in R9

FQ. NOW we use the
following result.

Lemma 2.3 If G is generic, for any nonzero z G RQ the multiplication map
\iz: RQ —• RQ by z has kernel of dimension at most one. It follows by duality
that fiz: RQ —• RQ has kernel of dimension < 21. •

So if p' > 2, we have z2 = 0 in R%, and similarly z2 = z2 = 0 in R%. We
write then z2 = X4t2, z2 = X4t2 and using a > 12 and Lemma 2.2, show
that t2 = t2 =0mR% since (XltuX^), (XlquX^t2) G W. Then writing
t2 = Xi^", w e find again that q'2" = 0 in RQ, since (XfgijXl^') € W7. So
if a > 12 and /?' > 2, Lemma 2.1 is true. It also holds if a > 12 and 7' > 1,
using the following lemma.

Lemma 2.4 IfGis generic, for any nonzero z G RQ, the multiplication map
fiz: R!Q —• R% by z is injective. •

So assume a > 12 but /?' < 1, 7' = 0. In this case we have a' > 14,
since 8f < 4. On the other hand, z2z[ = 0 in R% for (X4zi,X4z2) G W" and
( z ^ X ^ ) G Z', by (b), since X\z\t2 — X4z[z2 = 0 in R9

FQ. NOW we use the
following result.

Lemma 2.5 If G is generic, for any nonzero z G RQ the multiplication map
fiz: R%-+ RQ by z has kernel of dimension < 11. •

It follows that z'2 = 0 in RQ. Similarly we find that z2 = z2 = 0 in RQ.
Exactly as above we conclude that Lemma 2.1 is true in this case.

It remains to consider the case where a < 11. Note that 7 < 20 = dim RQ
and S < 10 = d i rn i^ , so a < 11 implies (3 > 24. Now for (X4zuX4z

f
2) G W



Claire Voisin 443

and (wi,X±z2) G W , we have W\Z2 = 0 in R%, by (b), since X4W\z'2 —
X\z\z2 = 0 in R]?Q, hence the space spanned by the z'2 in RQ has dimension
< 19 by the following lemma.

Lemma 2.6 IfG is generic, for any nonzero w G RQ the multiplication map
/jiw'- R% —• R% by w has kernel of dimension < 19. Equivalently, by duality,
the map jiw: RQ —» RQ has kernel of dimension < 8. •

End of proof of Lemma 2.1 It follows that there exists (X4z'v X4z2) G W
with z2 = 0 mod X4 and z[ ^ 0 mod X4. Then for any ( X ^ X ^ ) G W,
we have 2:^2 = 0 in i?^, by (b), hence the space generated by the z2 in R% has
dimension < 11 by Lemma 2.5. But then the space generated by the z[ in RQ
for (X±z[,X±z2) G W , with z2 = 0 mod X4 has dimension > 13. Still using
Lemma 2.5 and (b), we conclude that z2 = 0 in i?^ for any (X4zi, X4z2) G W;.
It is then easy to conclude that W satisfies the conclusion of Lemma 2.1. •

By Lemma 2.1, a suitable basis of W can be listed as

a elements (u)\,X±z2)

P elements (XAzuX%t2)

7 elements (A|t i ,

S elements (Xfqi, 0)

We want to show the following result.

Lemma 2.7 There exists A G 51 , with A^O mod X4 such that

w\ = Az2, z\ = At2 and ti = Aq2 mod X4.

The proof proceeds through Lemmas 2.8-2.11. We begin with the following
statement.

Lemma 2.8 (i) z2 = 0 mod X4 ==> w\ = 0 mod X4.

(ii) t2 = 0 mod X4 = > zi = 0 mod X4.

(iii) g2 = 0 mod X4 ==> t\ = 0 mod X4.

Proof We only give the proof of (i), the others being similar, or in fact
even easier: so assume z<i = 0 mod X4 but w\ ^ 0 mod X4; then for any
(XAzi,X%t2) G W , we have ^ i t 2 = 0 in .R^, using (b), since X42iz2 -
X%wit2 = 0 in iijg, and z2 = 0 mod X4. Similarly, for any (Xjfti, X|g2) € W;,
we have ^1^2 = 0 in ii^. Now we use Lemma 2.6 and the following result.
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Lemma 2.9 If G is generic, for any nonzero w e RG the multiplication map
V"w • R% —• R>G by w has kernel of dimension at most one. •

This implies that the space generated by the t2 in RG (respectively, by
the q2 in RG) has dimension < 8 (respectively 1).

Suppose P > 12: then the second projection pr2: W[/W2 —> RG (which
is well defined as a consequence of Lemma 2.1) has kernel of dimension > 4,
where W[ is the filtration defined at the beginning of the proof of Lemma 2.1.
Now let (X4zi,Xft2) with t2 = 0 mod X*, be in this kernel; then using (b),
we see that z\ annihilates the image of pr^: indeed, for (X4z^, X4£2) G W[y

we have X\z\t'2 — X\z'xt2 = 0 in i?J£, and £2 = 0 mod X4. By Lemma 2.2,
we conclude that prj = 0. But then for any element (X4zi,X4£2) G W[,
and any (wi,X4z2) G W\ we have z\z2 = 0 in R% (by (b) and by t2 = 0
mod X4). By Lemma 2.5 and /? > 12 we conclude that z2 = 0 mod X4,
which contradicts our assumption that the second component of W is not
contained in X\. Using the fact that the second projection pr^: W2/W^ —• RG

has rank at most one, we conclude similarly that 7 > 3 is absurd (we use
Lemma 2.3). So we must have /? < 11 and 7 < 2; but 5 < 10 = dimi?^,
hence a > 42 > rank iJ^, which is absurd. D

If we use the notation pr£: W'/W{ -+ RGy pr^: W[/W£ -+ R3
G and

pr2: W2/W^ —> RG for the second projections (modulo X*), Lemma 2.8 gives
the following

Corollary 2.10 rankpr^ + rankpr2 + rankpr^ > 55.

This follows from a + /? + 7 + 6 = 65 and 5 < 10. •
Since rankprJ; + rankpr^ < 30 = rankfi^ + rankii^, we conclude that

rankpr2 > 25. This allows us to show the following:

Lemma 2.11 For (XltuXlq2), ( X ^ X f ^ ) G W2, we have

t\42 — t[q2 = 0 in RG.

Proof Since by (b), w\q2 — t\z2 = 0 in RG and wiqf
2 — t\z2 — 0 in RG for any

(^i,X42:2) G W7, we have ^2(̂ 1^2 "^1^2) = 0 in i?^ for any z2 G Impr2. Prom
rankpr2 > 25, one concludes that tiqf

2 — t[q2 = 0 in RG using Lemma 2.6. •

Proof of Lemma 2.7 Now assume that rankpr^ > 18 or rankpr2 > 8.
Then Impr2 generates RG (respectively, Impr2 generates RG). Applying
the symmetrizer lemma (Theorem 4) to G and to RG(W[/W2) C R% x RG

(respectively, ^ ( ^ 2 / ^ 3 ) CiJ6
Gx RG), which surject on the second factor

and by Lemma 2.11 satisfy (b), that is, the assumptions of the symmetrizer
lemma, we find that there exists A G S1/(X4) such that z\ = At2 mod X4 for
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all (XiZuXfa) G W'JW!} (respectively, there exists A G S1/(X4) such that
ti = Aq2 mod X4 for all (X| t i ,X|g2) £ W2/W3). I n either case, we conclude
that wi = Az2 mod X4 for (wi,X4z2) € W', since by (b) w\ — Az2 G RQ
is annihilated by a 18 dimensional subspace of RQ (respectively, by an 8
dimensional subspace of RQ). Since z2 varies in a 25 dimensional subspace of
RQ, one concludes easily that z\ ~ At2 and t\ = Aq2 mod X4.

Finally, if rankpr| < 7 and rankpr^ < 17, we have rankprSJ > 31 by Corol-
lary 2.10, that is, pr° is surjective. But then we can apply the symmetrizer
lemma to W jW[ C RQ x RQ and we can conclude the proof as above. •

Proof of Proposition 3 It is easy to conclude from Lemma 2.7 that Propo-
sition 3 holds if the composite map C5 —• Hom(W0, RQ) has rank 4; indeed,
applying Lemma 2.7 to a generic component of W in place of the first, we
conclude that after a change of basis of C5, there exists elements A\,..., A4

of S1 such that elements of Wo have the form w = (tui,... ,w4yX4z^)y with
Wi = X\A{Z'T) mod Xl

4
+1 when z$ = Xl

4z'5, except maybe if Z > 3, in which
case Wi G {X^). In fact, this last restriction can easily be removed, because if
Xl(w[,..., w4,0) G Wo, by (b), z^A^ - AJW[) = 0 mod X4 for at least one
nonzero z& G RQ. By Lemma 2.3, this implies that the space generated by
the AiWj — Ajw'i in RQ has dimension at most one. But clearly the A{ have
to be independent modulo X4, otherwise C5 —• Hom(Wo, RQ) will not have
rank 4; it is then immediate to conclude that in fact A^w'j — AJW\ all vanish.
Hence by the symmetrizer lemma, we find that w[ = AAi mod X4 for some
AeS1.

Now it follows from this that Wo can be deformed to WQ = Rjr0 C
Hom(51,i?^0), by a deformation preserving (b): for this we use the one pa-
rameter group of automorphisms of the ring Rp given by multiplication of
X4 by A G C* and note that the limit of A (Wo) as A tends to 0 is equal to
the WQ corresponding to the basis of 5 1 given by A'ly..., A1^ X4, where A\ is
the unique element of S1 such that A\ = A* mod X4, and not involving the
coordinate X4. We conclude then that Wo = WQ for some choice of basis of
S1 using the following easy rigidity lemma:

Lemma 2.12 Choose a basis of S1; the only (small) deformations O/WQ =
RpQ C Hom(51,i?^0) = {R%)5 preserving (b) come from a change of basis of
Sl. D

So to conclude the proof of Proposition 3, we have to exclude the existence
of another component of Wo contained in (X4). We may assume such a
component is the third one; now let W be the projection pr123(Wo) C (R%)3-
As above, we put a filtration W[ on W7, where W/ is the set of elements
whose first component lies in (X\), and denote by a, /?, 7,5 the ranks of the
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successive quotients; using Lemmas 2.1, 2.7, we find that a suitable basis of
W can be listed as follows:

(2.2)

a elements (wi,X4z2,X4zs)

/? elements (X4zi,Xlt2,Xlts)

7 elements (X%ti,Xlq2, Xlq3)

6 elements [X\q\ ,0,0)

and there exists A2, A3 G 5 1 such that W\ = A2z2 = ^3^3, %i =
and t\ = A2q2 = A^qs mod X4. It is easy to show that this implies that
A2 = As mod X4i using the fact that a + /? + 7 > 55. It follows that some
combination of the second and the third component lies in (Xl). Of course
we can assume the third component lies in (Xl). We use now Lemma 2.14
below to conclude that the third component is in fact contained in (Xl). We
then list a suitable basis of W' as

(2.3)

a elements (w\, X4z2,

0 elements (X4Z!, X\t2, X4
3

7 elements {X\tx, X\q2,

S elements (X4
3gi,0,X4

3g3")

with w\ = Az2 mod X4 etc. In particular, we find that a > 25, since /3 < 20,
7 < 10 and 6 < 10. Now clearly by (b), Wiq'3 = W\q3 = W\q% — 0 in RQ, in
the notation of (2.3). We now use the following lemma:

Lemma 2.13 If G is generic, for any nonzero q G R% the multiplication
map [iq\ RQ —• R7

G by q has kernel of dimension < 9. •

It follows that q'3 = qf
3' = q3" = 0 in RQ. NOW it follows that the third

projection W'/W[ —> RQ is well defined and has kernel of dimension > 15.
If (itf^Xiz^O) belongs to this kernel, by (b), w[qs = 0 in R?G for any #3,
and using Lemma 2.13 again, this implies that #3 = 0 in RJQ. But then the
third component of W vanishes identically, which contradicts the fact that
the map C5 —• Hom(W0, R

5
Fo) is injective. Hence Proposition 3 is proved. •

Proof of Proposition 2 By Proposition 3, to prove Proposition 2, it re-
mains only to study the case where any component of Wo contained in (X4)
is contained in (Xl). We split the proof in several lemmas. We first show
(Lemma 2.14) that any component contained in (Xl) is contained in (Xl).
We then show (Lemma 2.15) that if some component is contained in (Xl),
then at most one component is not contained in X4. We then conclude that
Wo has the form (ii) of Proposition 2. We begin with the following result.

Lemma 2.14 Any component of Wo contained in (Xl) is contained in (Xl).
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Proof We may of course assume it is the second component. We again set
W = pr12(W0) C (R5F0)

2 and introduce the filtration W- used above (by the
order of vanishing in X± of the first component), with successive quotients of
ranks a, /?, 7, S. Then by assumption, a suitable basis of W can be listed as

a elements (w\, Xit2)
/? elements (X^zi^X^t^)

(2.4)
7 elements (X%ti,X%t2)
6 elements (X^X^')

Assume a > 11; using (b), in the notation of (2.4), we must have Wit2 =
Wlt% = wit2 = 0 in R%, and by Lemma 2.2, it follows that t2 = t2 = t2 = 0
in R%. Similarly, writing tf

2' = X4q'2
f, t'2" = X4q

f
2", we find that q'2

f = q'2" = 0 in
RQ. SO a suitable basis of W can in fact be represented as

a elements (w
P elements (X4Z1, X\q2)
7 elements (X|ti,0)
S elements (^4^1,0)

In this notation, if q2 = 0 mod X4, then 21 £2 = 0 in R7
G, since

= 0 in RXpQ. If there is at least one nonzero t2) it follows by Lemma 2.2
that the space generated by such z\ in R% has dimension < 2, which implies
(3 < 12. One shows similarly that a < 20, and since 7 < 20 = ranki?^ and
S < 10 = rank RQ, we contradict a + /? + 7H-5 = 65.

Next consider the case where a < 11; then /? > 24. Using the notation of
(2.4), w\t2 = 0 in R%, which by Lemma 2.6 implies that the space generated
by the t2 modulo X4 has dimension < 8. It follows that the space generated
by the t2 modulo X\ has dimension < 18, hence that there is a 6 dimensional
space of z\ modulo X4 such that (X^i,0) G W. But these z\ annihilate
t2 e RG for (wi,X%t2) e W. Hence t2 = 0 mod X4 by Lemma 2.2 and we
conclude again that the second component is contained in (X|). D

We now show the following:

Lemma 2.15 Assume there is one component of WQ contained in (X%).
Then the map C5 —> Hom(W0) R%) has rank 1.

Proof It has rank at least 1, since the first component, being of rank 65,
cannot be contained in (Xj). Now assume it has rank > 2. Up to a change
of basis of C5, we may assume that the two first components are independent
modulo (X4), and the third is contained in (X|). Now we use a proposition
proved in Section 4 (cf. Proposition 6).
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Proposition 4 Let W C (R%)2 be a 65 dimensional subset satisfying (b).
Then, if the map C2 —> H o m ^ , RQ) is injective, and the first projection
W —» R5

Fo is injective, we have

wi e (Xl
4) <=> w2 € (X\) for (wuw2) e W.

Let W be the projection of Wo on the first three factors. According to
Proposition 4, a basis of W can be represented as follows:

a elements (w\, w2,

P elements (X4zu

7 elements (XltuXfa,X}<£)
S elements (X\qi, X\q2,

with wi, w2 independent modulo X4, z\, z2 independent modulo X4, etc. Now
it is easy to see that a must be strictly larger than 10. Furthermore, in the
notation of (2.5), W\q'z = W\q'l = wiq'z = 0 in R7

G, and this implies that
Qz — Q3 = Qf3 = 0 in R%, by Lemma 2.13. Now, since a > 10 = ranki?^,
there exists (w'^w'^Xl^) G W , with q'3 = 0 mod X4 and w[ ^ 0 mod X4.
Then for any (^x, ̂ 2,-^4^3) € VF7, by (b), ̂ ^ 3 = 0 in RQ, and this implies
that the space generated by the <?3 in RQ has dimension at most one, by
Lemma 2.9. But then there is set of (w[,w2,0) € W'/W[ of dimension > 10
and by Lemma 2.13 the condition w[qz = 0 in R7

G implies that g3 = 0. So the
third component should vanish identically, which is absurd, since the map
C5 -> Hom(W0, R%) is injective. •

It now follows from Lemmas 2.15, 2.14 and Proposition 3 that if there is
one component of Wo contained in (Xf), there is in fact a 4 dimensional set
of such components so that after a change of basis of C5, we may filter Wo
by the order in X* of the first component and represent elements of Wo as
follows

a elements (wi,X\q2,..., Xfq5)

p elements (XAzu X\<j2,..., X*q'5)

7 elements (Xfa, X4
3<?2',..., X4

3^)

6 elements (X*qu X\c}2\ . . . ,

(2.6)

End of proof of Proposition 2 To conclude the proof of Proposition 2,
we want to show now that q[ = q" = qf" = 0 mod X4 and that wu q{ are in
Case (ii) of Proposition 2. First of all we have the result:

Lemma 2.16 a < 10.
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Proof If a > 10 the second projection WO/(WQ)I —> RG is not injective. So
there exists (wi,0, Xfy) e Wo with w[ ^ 0 in i?^. Then in the notation of
(2.6), w[q2 = 0 in i?^, and by Lemma 2.9 this implies that the space generated
by the q2 in RQ has dimension at most one. Hence the space generated by the
w[ as above in RQ has dimension > 10, and since it annihilates q2, we conclude
that q2 = 0 in RQ by Lemma 2.13. Also since wiq[ = wiq" = Wiq'" = 0 in
RQ, and a > 11, we find that q[ = q" = q"' = 0 in R%, so that the second
component of Wo vanishes, in contradiction with our assumptions. •

Now note that in the notation of (2.6), Wiq[ — w\q" = Wiq"' = 0 in R7
G,

which by Lemma 2.9 implies that the space generated by the q[, q", q'" in R%
has dimension at most one, and by Lemma 2.13, it is zero if a = 10.

Prom Lemma 2.16, it follows that (3 + 7 + 6 > 55, with equality pos-
sible only if the q'^q"^"' vanish. This implies that for any ij there is at
least a 54 dimensional subspace of Rj?Q consisting of elements z such that
(X4Z, Xfqi,...,X\q±) G Wo, with qi = qj = 0 mod X4. Then it is immediate
to conclude

Corollary 2.17 The subspace of R5
FQW0 made of elements of the form

(XA(p,Xlxu...,XlxA) ™th Xi = Xj = 0 in R7
G

maps surjectively by the first projection onto X±F(?FQ.

Note that X^R?FQ has dimension 91. We want now to use (c') which says
that dimi?jFoWo 5: 135: using Corollary 2.17, it implies that the projection
onto the product of the (i + l)st and (j + l)st factors of R?FQWQ has dimension
< 44. Now we have the following.

Lemma 2.18 Let (^1,̂ 2)5 {Q.1^2) € RG x -^G/ a&sume that
V Q2) < 44. Then qiq'2 - q2q[ = 0 in R%.

Proof We may assume that q[,q2 are not proportional. Let Z C RG x RQ
be the kernel of the map

((7i, ft) + (<?i, Qi) :R5
GxR5

G->R7
Gx R7

G-

The first projection of Z in RQ has dimension > 36, using Lemma 2.9,
and dim RQ = 40. On the other hand, it is easy to see that it annihilates
Q1Q2 ~ #2<zi- Hence qiq2 — q2q[ = 0 in RQ by Lemma 2.3. •

Combining Corollary 2.17 and Lemma 2.18, we find

Corollary 2.19 Let {wuXfa,..., X4
3g5), « *4Vi, • • •, X\(Q € Wo; then

Qitfj ~ QiQj = 0 in R%.
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It follows from the corollary that if qi = 0 mod X4, but (gi , . . . , q4) ^ 0
mod Xt, any other q[ vanishes, because for generic G, the product of two
nonzero elements of R% does not vanish in R%. Since no component of
WQ vanishes, we find that if (q\,... , <?4) ^ 0 mod X4, the <& are indepen-
dent modulo X4. It is then easy to conclude from Corollary 2.19, that if
rank(pr2345(Wo)) > 2 there exists (Au..., A±) G (S1)4, well defined modulo
X4, such that any X%(qi,..., g4) G pr2345(Wo) is of the form AX\(A\,..., A4)
for some A G Sl.

Now the rank of pr2345(Wo) cannot be equal to 1; for otherwise there is

(w[, 0 , . . . , 0) G Wo with w[ ^ 0 in R%\

then for (w\,X\qi) G Wo, we have w[qi = 0 in i?£, which by Lemma 2.9
implies that all the & are proportional. But then the four last components
of Wo are not independent, since they have one dimensional projection in
(i?jp0)

4, generated by (X |^ ) and the q{ are not independent in R5
FQ.

Now assume (w'v 0 , . . . , 0) G Wo and (u>i, X|AAi) G Wo, with A =£ 0 mod
X4: then u/jAAi — 0 in R7

G, and using the fact that the A{ are independent
modulo X4, we conclude by Macaulay's theorem that Aw[ = 0 in i?^ hence
that w[ = 0 mod X4, using the following lemma.

Lemma 2.20 IfG is generic, for any w =̂  0 in RQ and i / 0 i n Sl/(X4)}

we have Aw ^ 0 in R%. D

Since rankpr1(W0) = 65 and rankX4i?4
? = 61, we find by the above

that the projection pr2345 has rank > 4, hence that its image is made of the
(X\AAi) for arbitrary A G S1. Finally, since w\ ^ 0 mod X4 implies that
A ^ 0 mod X4, we can consider wi modulo X4 as a function of A, and (b)
implies that W\{A)A' — w\(A!)A = 0 mod X4, since it is annihilated by all
the Ai. The symmetrizer lemma implies then that there exists T G RQ, such
that wi(A) = TA in i?^.

Finally, AT^ =.AT(fi = AT^7/ = 0 in R7
G for any A G S1, and this

implies that Tq[ = Tq'( = T^;/ = 0 in R% by Macaulay's theorem. But
then q[ = (ft = ^/ ; = 0 in J?^., by Lemma 2.4. Hence Wo is in Case (ii) of
Proposition 2, and this proves Proposition 2. •

3 Proof of Proposition 2 => Theorem 5
Proposition 5 Assume Wo is in Case (i) or (ii) of Proposition 2. Then for
a generic deformation F of Fo, any deformation W C (R5

F)5 of Wo C (R%)5

as a 65 dimensional subspace satisfying (b) and (d) must be identified with
the subspace RA

F C Hom(51, R5
F), for some isomorphism S1 = C5.
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Proof If Wo is in Case (i) of Proposition 2, the result is easy. Indeed, we
know Lemma 2.12 that Wo is infinitesimally rigid modulo AutC5 as a sub-
space of (Z^o)5 satisfying (b). Thus consider the variety Q —• U parametriz-
ing 65 dimensional subspaces of (7£5)5 satisfying (b) and (c') with respect to
/x: S2lls -> 1l10. Its infinitesimal dimension at (Wo,Fo) is < 24 + dimU.
But this is the dimension of the variety Q' C Q parametrizing W = Rp C
Hom(51, R^P). Hence we must have Q' = Q in a neighbourhood of (Wo, Fo).

Thus we only need to study Case (ii). We note first that any Wo C (R^o)
5

in Case (ii) of Proposition 2 is in the Zariski closure of Q'\ it is enough to
consider a family Wt = Rj?t C (R%)5 for a suitable one parameter family Ft,
and for a family of isomorphisms 5 1 =t C5 given by a basis A0(t),..., A±(t)
of S1 such that Ao(0) = Xj, and to take the limit Wo of Wt such that
pr : : Wo —* i?jp0 is injective. (This supposes of course making elementary
transformations over 0 on the bundle W with fibre Wt.) Then one finds that
the limiting Wo has the expected form, with T = ^•(^fLL==0)-

Furthermore it is easy to see that the map Q' —• U has relative dimension
24, and is proper over the open set of U where the following property is
satisfied:

The multiplication map fix: Rjr -* ^ F by X is injective for any
nonzero X G S1.

So, to conclude that Q C Q' near (Wo, Fo) (the statement of Proposition 5),
it is enough to prove the following.

Lemma 3.1 The dimension of the Zariski tangent space TQ^WO,FO) to Q at
(Wo, Fo) equals dim U + 24.

Proof Choosing a lifting of R^o to S5 gives a trivialization of the bundle V}
near Fo. An infinitesimal deformation of (Wo, Fo) is then described by maps
/i, hi: 5 1 —• i ^ 0 and h, ki: RpQ --» R5

FQ) together with a deformation Fo -f eH
of Fo. The corresponding deformation W£ C (i?Fe)

5 — {R%)5 is generated by
the vectors

(TA + eh\
and (J{

{A),A{XlA
Uz + ek(z),

+ ehi

eki(z]
(A)) for.
)) for z e

ieS1

Of course the infinitesimal deformation is trivial if H = 0 and (/i(>l),
(k(z),ki(z)) € Wo- Differentiating the equations given by (b), we get the
following equations

(i) X4zki(z')=X4z'ki(z).
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(ii) ATki(z) = X4zhi(A) +

(iii) A^lAA;,^) = AjXlAki(z).

(iv) AiXlA/i^A7) + ^XlA ' / i ^A) = AiXlA%{A) +

(v) ^ ( A ) ^ ^ 3 ^ + ATTi^A') = ^ ( A ^ ^ X l A + A'Thi(A).

These equations have to hold in R}?0 for any A, A' G S1 and for any
z, z' G R%0. Applying the symmetrizer lemma to (i), we conclude that ki(z) =
YiZ -f X\k\(z) for some Y{ G S1. The condition (ii) modulo X4 then gives

which implies that TYi = —\j~-Ai in RQ. Using the fact that the map
fiT '• R% ~> R% ^s injective (Lemma 2.4), we conclude that A{Yj = AjYi in i?^,
and hence that YJ = aAi + aiX4, by the symmetrizer lemma. Furthermore
~\Wl = aT i n fiG: w e w r i t e -\Mi = <*T + X4H'.

Condition (ii) modulo X% then gives

ATaiXAz = X^A) 4- X4H'Az in ^ / (X 4
3 ) ,

i.e., fti(A) = aiTA-jff 'Ainfl^/^l). Hence fn(A) = aiTA-H'A+Xlti^A).
Then Condition (ii) gives

ATk[{z) = zti{(A) + AiA/c^) in i ^ (3.1)

It follows that z(Ah'i{A') - Alti^A)) = 0 in R8
G for any z G R%. Hence by

the symmetrizer lemma there exists <& G i?G s u c n t n a t ^i(^) = QiA mod X4.
But then (3.1) gives z(Ajqi — Aiqj) = 0 in R7

G, whenever fc-(z) = kj(z) = 0
in RG. By Lemma 2.2, it follows that (A,^ — Aiqj) = 0 in i?^, and hence by
the symmetrizer lemma that & = A{B mod X4. Hence h\(A) = A{BA mod
X4, and (3.1) then gives

Tk[(z) = zBAi + i4ife(^) in R% (3.2)

Then Ai^-(z) - Ajk[{z) G i?3- is annihilated by T. But //T: R% -+ R7
G has

kernel of dimension at most one. It is easy to conclude from this that Aik'-{z)—
Ajk[(z) must in fact vanish identically in i?3^, so that by the symmetrizer
lemma, k'{(z) = Aik"{z) mod X4, for some function k": RpQ —• S1. Finally
(3.2) gives Tk"(z) = zB + fc(z) mod X4. Summarizing, we have found

k(z) = Tk"(z) - zB mod X4,

fei(

hi{A) =

and -\lSr00X4
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Now (Tfc"(z), XlAik"(z)) G Wo, and (XA<p, 0 , . . . 0) G Wo. So the deforma-
tion induced by (k(z), ki(z)) G (R%)5 depends only on (k(z) mod X4, fci(z)),
and not on k"\z). It follows that (k(z),ki(z)) G (#F O ) 5 /WO depends only on
£ modulo X4, a, c^. Hence it varies in a 9 dimensional vector space. Let
us now consider the deformations of (Wo, Fo) for which the corresponding
infinitesimal deformation of Fo is trivial, and a, c^, i? = 0 mod X4. We now
use (c') to describe them: notice that for Wo in Case (ii) we have in fact
d i m i ^ W o = 135. Hence the infinitesimal version of condition (c') gives the
following

Suppose that </?, -0 € R5
Fo and (h(A), hi(A)), (/i(A'),/ii(A')) are in-

finitesimal deformations of {TA,AiAX\), (TAf, AiA'Xf) € Wo.
Assume that

<p(TA, AiAXl) + tl>{TA', AiA'Xl) = 0 in (i?^)5.

Then <p{h{A), h^A)) + 1>(h{A% h^A')) e R%W0.

In particular, for any z G Rj?0, we have

.XiXlA7) = 0.

Hence we must have ^ ' ( ^ ( A ) , ^ ^ ) ) - zA(h(A%hi(A')) G ^ 0 W 0 .
Now, since a = 0 , 5 = 0, H' = 0, we have h^A) = X|/i-'(A), hence

zA!{h{A),X\h'l{A)) -zA(h(A!),XX(A!)) e R%W0.

Clearly this is equivalent to: there exists (p G R% depending on z, A, A!,
such that

z(A'h(A) - Ah(Af)) = Tip, z{A!h'l{A) - Ah'&A!j) = Anp in R7
G. (3.3)

From the second equation, we deduce that

z{Aj{A'h'l{A) - Ati&A!)) - AiA'h'jiA) - Ah'j(A'))) = 0 in B&,

for any z £ RQ, hence by the symmetrizer lemma, that

A) - Ah'l{A')) = Ah'^A, A'), (3.4)

for some bilinear function h" \ S1 x Sl -+ R%. This function then satisfies the
following condition

AihTiAi, A3) - A2h"(AuA3) + A3h"{AuA2) = 0
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in RQ for any A{ £ Sl from which it is easy to conclude that

h"(A, A!) = A!h"'{A) - Ah"'(A),

for some function ti"\ S1 -> Sl/(X±). But then by (3.4) we get

- A(h'f{A') - Aih'"(A')) = 0 in

and applying the symmetrizer lemma once more, we conclude that h"(A) =
Aih'"(A) + BiA mod X4 for some B{ e S1. The second equality in (3.3) then
gives (p(z,A,A') = z(A'h'"(A) - Ahm(A')) and the first A'h(A) - Ah(Af) =
T(A'h'"(A) - Ah'"(A')) in R%, that is:

A'{h(A) - Tti"(A)) - A{h{A!) - Tti"(A!)) = 0 in R%,

which by the symmetrizer lemma gives h(A) — Th'"{A) = xA mod X± for
some x € R%- ^n conclusion, we get

hi(A) = Xl(Aih'"(A) 4- BiA), h(A) = XA + Tti"{A).

Working modulo Wo, this is also:

ht(A) = XlBiA, h(A) = XA.

Thus these deformations depend on the 16 parameters B\ G 5 1 and the 31
parameters \ ^ R%-> with the relation: B{ = rjAi, x — vT-

Since the allowed deformations for Fo vary in the space of codimension 31
defined by the condition J^- = 0 in RQ, when a, a ,̂ B vanish, we have found
that the tangent space to Q at (Wo, Fo) has dimension 31+15+dim U—31+9 =
dim U + 24, and Lemma 3.1 is proved. •

4 Proof of the degeneracy property

To complete the proof of Theorem 5, it remains to prove that if Fo is of the
form (0.6), its Wo is degenerate in the sense of Definition 3 (see 0.4). We
start by proving the following result.

Proposition 6 Let V C (#jj?o)
2 be a 65 dimensional subspace, and assume

that

1. the first projection prx: V —> R^?o is injective;

2. wiw'2 — w[w2 = 0 in Rlp0 for all w, wf € V;

3. the map C2 —* Hom(Vr, RQ) has rank 2.
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Then for w = (wi,w2) € V

In particular, assume that Wo C {R%)5 satisfies (b), (e) and is non-
degenerate; then

xi(zu...,z5)ew0 =*
z\,..., z$ are either linearly independent or all 0 in R%fl.

Proof We filter V by the order w.r.t. X4, so that Vi = Vn pQfl^T*)2, and
denote by a, /?, 7, <S the ranks of the successive quotients. We have to show
that if it; = X\(z\,z2) G Vi \ V*+i, then zi,Z2 are independent in RQ~X. We
only prove the case i = 0, the others being similar. So assume w2 = 0 mod
Xi, but wi ^0 mod X4.

First of all, 5 < 2; indeed if (X\q\, X\q2) G V then wiq2 = 0 in R7
G, since

Xlw\q2 — X\w2q\ = 0 in i?}£ and ^2 = 0 mod X4, which by Lemma 2.9
implies that the image of the second projection V3 —> i?^ has dimension < 1.
But if X|(^i,0) G V is in the kernel of this map, q\w2 = 0 in R^ for any
(u/^it^) G V. Since there is at least one nonzero wf

2 by the nondegeneracy
assumption, we conclude that this map has kernel of dimension at most one,
so that S < 2.

Suppose now 7 > 9; for XK^i,^) £ V2 we have wit2 = 0 in i?^, and by
Lemma 2.6, this implies that the image of the second projection V2 —> RQ
has dimension < 8. Hence there exists Xl(t[^t2) G V2 with t2 = 0 in RQ
and t[ 7̂  0 in R%. Now for (X4zi,X4z2) G 14 we have t[z2 = 0 in it£,
since Xl(t'1z2 — t'2z\) = 0 in i?)£ and t2 = 0 mod X4, which by Lemma 2.2
implies that the image of the second projection Vi —• i?^ has dimension < 2.
If /? > 5, there exists (X4z

/
l,X4z

/
2),(X4z

/{,X4z
/
2
/),(X4z

f{f,X4z2
//) G Vi, with

z'2 = z2 = z2 = 0 mod X4, and z[, z", z'" independent in RQ. Then for any
XZ(ti,t2) G V2 we have z[t2 = z'{t2 = z'{ft2 = 0 in #£ , which by Lemma 2.2
implies that the second projection V2 —> RG vanishes. But then from 7 > 9,
we conclude that there is a 9 dimensional subspace of RQ made of elements
ti such that Xl(ti,t2) G V2, with t2 = 0 mod X4. But we have for any
such ti and any (1^1,^2) € V, ^1^2 = 0 in R%, which by Lemma 2.6 implies
that w2 = 0 in RQ, and this contradicts the nondegeneracy assumption.
So we conclude that 7 > 9 ==> (3 < 4. Also, it is easy to show using
Lemma 2.6 that 7 < 16. Hence 7 > 9 ==» /3 + 7 < 2 0 , and since S < 2
we find a > 65 — 22 = 43 > ranki?^. But this is absurd because the image
of V/Vi in RQ x RQ is totally isotropic for any of the pairings (w^w')^ =
(p(wiw'2 — w2w[) G RQ = C, where cp G i?G, and for generic G and <p, this
pairing is nondegenerate.
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Thus we must have 7 < 8 and a + /? > 55. Now we claim that (3 < 19.
Indeed we have w\z2 = 0 in R% for (X4Z1, X4z2) £ Vi, and by Lemma 2.6 this
implies that the second projection V\ —> i?^ has rank < 19. So if (3 > 19,
there is an element {X^z'^X^z1^ G Vi, with z'2 = 0 mod X* but zi ^ 0 mod
-X4. But this implies easily that /3 < 22 and 7 = 0, using Lemmas 2.5 and 2.2.
Then a > 41 and this is absurd, since V/Vi is a totally isotropic subspace of
RQ x RQ for any of the generically nondegenerate pairings

((TX, v), « 1/)) •"> ?(™/ - ^ ) € fl£? - C, for q £ R2
G.

Thus we must have 0 < 19, hence a > 65 - 19 - 8 - 2 = 36. This implies
in fact that S < 1: indeed let K C RQ be the image of the second projection
map pr2: V —> RQ, and let L C RQ be the image by the first projection
prx: V —> i?G of Kerpr2. Then by assumption, both X and L are nonzero
and KL = 0 in RQ. Furthermore a = dim if + dimL. We know that the
second projection pr2: V3—> R% has rank at most one, and is annihilated by
the space L introduced above. Its kernel is annihilated by the space K so
has dimension at most one by Lemma 2.9. If both the image and the kernel
of pr2 are nonzero, we find that dim if < 9, and dimL < 9 by Lemma 2.13.
Hence a < 18, a contradiction.

From 5 < 1, we conclude that a > 37. But in the above notation this
contradicts a — dimK + dimL with if, L nontrivial, and the following result.

Lemma 4.1 Let G be generic and K, L two nontrivial subspaces of RQ such
that if L = 0 in R£; then dim if + dim L < 36. •

Thus Proposition 6 is proved. •

So what we have to show now is the following:

Proposition 7 There does not exist a 65 dimensional subspace W C (i?^0)
5,

satisfying the following conditions:

(i) p r ^ : W —• R5
FQ is injective.

(ii) Filter W byWi = Wn (XjiJ^*)5; then for w = {X\Zi) eW{\ Wi+l)

the Zi are independent in R%fl.

(iii) WiWj = U)JW[ in R}pQ for any i,j and any w,wf € W.

The first step is the following

Lemma 4.2 If such W exists, then

UHj - tA = 0inR% for all t = X2
4(tu . . . , t5), if = X|(*i, • • • A) G W2.
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Proof We prove this by contradiction: assuming Lemma 4.2 is not true, we
have first the following properties:

(a) dim{S1W2/W3 + Wx/W2) > dim Wt/W2 + 6.

(b) dim{S2W2/W3 + W/Wx) > dim W/Wx + 8.

Indeed, let X,Y G 5V(X4) such that Xt + Yt = (zu...,z5) G WxjW2\
then zitj - ZjU = 0 in R7

G, hence F ( ^ - t,£-) = 0 in R7
G. Similarly Xfatj -

tjt'i) = 0 in F£Q. But the annihilator in Sl/(X±) of any nonzero element of R%
has dimension at most one, since G is generic, hence it follows that the set of
such pairs (X, Y) has dimension < 2, so that dim SH+Sl1f mod Wi/W2 > 6.
Property (b) is proved similarly using the fact that the annihilator in S2/(Xj)
of any nonzero element of RG has dimension < 6.

Now we show the following:

For any nonzero {zu...,z5)e S1W2/W3 + Wx/W2 C {R%f, the
Zi are independent in RQ.

Indeed, assume by contradiction that z\ ^ 0 and z$ = 0; then for any
elements (t^i , . . . ,^ 5 ) in W/W\ and X±(z[,... ,z'b) in W\/W2i by (iii), we
have Z1W5 = 0 in R% and z\z$ — 0 in R%; using Lemmas 2.3 and 2.5 and (ii),
this implies a < 21 and /? < 12. But then 7 + 6 > 32 and this is absurd
because by (ii), 7 < dim RQ — 4 = 16 and S < dim J?^ — 4 = 6.

This last fact implies that dim(S1W2/W3 + Wi/W2) < &mR% - 4 = 27,
hence by inequality (a), we conclude that /? < 21. Next, we show:

For any nonzero (wu . . . , w5) G 52W2/W3 + W/Wi C ( ^ ) 5
; the

Wi are independent in RG) unless a < 31 and ft < 19.

This follows in fact from Lemmas 2.9 and 2.6 and (ii); indeed by (iii), if
K , . . . , v/5) G S2W2/W3 + W/Wi with u/5 = 0 in /% and ti^ ^ 0 in flg., we
have ^ ^ 5 = 0 in R^ and ̂ ^ 5 = 0 in R% for any ( t^i , . . . , w$) G W/W\ and

( ) y
In the first case dimS2W2/Wz + W/VFi < dimi?^ - 4 = 36 hence by

inequality (b) above, dim W/W\ < 28. Since j3 < 21, in either case a+fi < 50,
which implies 7 4- 5 > 15. Now we show:

5 < 1 and dim[WyW3 : (X,Y)} < 1 for generic X,Y G S1/{X4).

This is proved as follows: let (g i , . . . , <?5), (g i , . . . , #5) be elements of W3 or
[W2/W3 : (X,y)] . It is. immediate to see that

qiWj - qjWi = q^Wj - q'jWi = 0 in R7
G for (wu ..., w$)
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for all z, j . (In the first case, this follows from (iii); in the second, (iii) implies
that these elements of RQ are annihilated by X and Y.) This implies that
QiQj — QjQi £ R% is annihilated by Wi, Wj. Thus if it is nonzero we have a < 21
by Lemma 2.3, and then a + /? < 42. So 7 + 5 > 23, which contradicts the
inequality 7 + <5 < 22 proved above. Now we conclude by the following easy
result.

Lemma 4.3 There do not exist independent elements (g i , . . . , #5), (q[,..., #5)
of (RQ)5 satisfying: the qi are independent in R% and qiq'^ = q^ in RQ for
all i,j.

So we have now proved that 7 > 14 and dim[VF2/W3 : (X, Y)] < 1, and
this implies that dim XW2/W3 + YW2/W3 > 27. But SlW2/W3 cannot be
equal to XW2/W3 + YW2/W3 for generic X, Y because this would imply
that the composite map: S1W2/Ws - ^ RQ —> R%/(X,Y) is not surjective,
while the assumption 7 > 14 implies that the composite map W2/W3 —̂>
R% -* RG/(X>Y)

 i s surjective for generic X,Y (cf. Green [11]). It follows
that dimS1W2/Wz > 28, which is absurd because we have already proved
that dim S1W2/W3 < 27. Hence Lemma 4.2 is proved. •

Next we prove the following result.

Lemma 4.4 Suppose that G is generic, and that Z C {R%)5 satisfies the
following:

(i) For any nonzero (£1, . . . , £5) G Z, the U are independent in RQ.

(ii) For (tu . . . , t5), ft,..., *s) € 2 ; we fta^e ^ - t,-^ = 0 in R%.

Then dim Z < 7.

Proof In this proof Sk denotes the degree k component of the polynomial
ring 5/(X4) in four variables. Let X be generic in S1. One shows that for
generic P e (R%/{X))*, the pairing ( , ) p on R%/{X) defined by (a,/3)P =
P(afi) is nondegenerate. Now assume that Z is as above, but dim Z > 8.
Since dimRQ/(X) = dimS3/(X) = 10, there exists (tu ... ,t5) e Z such that
the U are not independent in RQ/(X). After a change of basis of C5 we may
assume that t\ = 0 mod X. Let r be the dimension of the kernel of the
composite

Then for any t e Kei f and if e Z we have Ut[ = t^ = 0 in R%/{X),
hence ( t j , ^ ^ = 0, which implies that the space generated by the U modulo
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X with t G Ker / has dimension < 10 — 8 + r = 2 + r. Since dim Ker / = r it
follows that there exists t G Ker / such that t 2 , . . . , £5 are linearly dependent
in RQ/(X). After a change of basis of C5, we may assume that ti = t2 = 0
mod X, that is, £ = (X(7i,X<72,£3,£4,t5) for some q2,q$ G 52.

Let us show that #1,(72 £ 5 2 cannot have a common factor: indeed, if
gi = AY and <?2 = BY for some A , B , y G S \ then At2 = B*i in fl£
for any £' G Z, since this is annihilated by 0 ^ XY G 52. But the map
(B — A): i?^ x i l^ —• i?^ has kernel of dimension < 11, and should contain
pr12(Z). Since it contains the 10 dimensional subspace (A, B)R%, this would
imply that Z contains a subspace Z' of dimension > 7 such that pr12(Z') =
{(A, B)q foiqeQc RG}. For t G Z', we can view £3, £4, £5 as functions of
q G Q, and ^ ( g ' ) = ^ ( g ) G i?^. S i n c e rankQ > 7, i ^ Q C RQ is at least a
hyperplane, and it is not difficult to adapt the symmetrizer lemma to conclude
that there must exist A{ G S1 for i = 3,4,5 such that £;(<?) = A{q G i?^. But
then A, B,Ai are not independent in 51, and this contradicts (i). So #i,#2

cannot have a common factor. Now we use the following result.

Lemma 4.5 Suppose that G is generic, and that q\,qi G RQ = S2 have
no common factor. Then the map (q2 — q\)\ R?G x R% —> RQ has kernel of
dimension < 10. •

Since t = {Xqi, Xq2, £3, £4, £5) G Z, by (ii) and the fact that multiplication
fi>x • R% -"•* ̂ G by -X" is injective, we now have q\t2 — q2t'x = 0 in RQ for any
t1 G Z. So pr12(Z), of dimension > 8, is contained in Ker(#2 — #1), which has
dimension < 10 and contains the 4 dimensional subspace S1-(qi, q2)- It follows
that there exists Y e S1 not proportional to X such that ^(#1, q2) G pr12(Z).
Let t' = (Yqu Yq2, t3, f4, f5) G Z. Then the first two components of Yt - Xt'
vanish, and it follows easily using (ii) that Yt — Xt' = 0 in (RG)5. But the
space H\Yi defined as the middle cohomology group of the sequence

0 —> RQ >• RQ X RQ • RQ

has dimension at most one; hence it follows that after a change of basis
of C5, we have t = {Xqu . . . , Xq4, t5) and if = (Yq\,..., Yq±, t'5) for some
<?3, #4 G RQ. Thus we have proved that for generic X there is t G Z such that
at least four components of t vanish modulo (X). Hence for generic X and T
in 51 , after a change of basis of C5 there exists t = (Xqu Xq2j Xg3, t4, £5) G Z
and t' = (Tq^Tq^Tq's,?^) G Z. Then ft^. = ^^- in i?^ for t , j < 3,
and since we know that q^q^ do not have a common factor, this implies
easily that (^1,^2,^3) and (gi,g2,g3) are proportional in (i?^)3- Hence we
may assume they are equal. But then Xt' — Tt must vanish in (-R^)5* and
since X and T are generic the space H\T is zero. It follows that in fact
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t = X(qu . . . , q5) and t' = T(qu ..., ?5) for some (qu . . . , q5) G {R2
G)5. Then

for any z = ( z i , . . . , z5) G Z, we have g ^ — qjZ{ = 0 in RQ for any z, j < 5.
Now let Z' be a subspace of Z supplementary to X(q\,... ,#5), so that

dimZ' > 7. Since d i m i ^ / ( X ) = 10, there is a if G Z1 such that the t\ are
not independent in RQ/(X). We may assume t[ = 0 mod X, and using the
property qit[ — qit[ in RQ, we conclude that qit[ = 0 in R%/(X). Now we
use the result:

Lemma 4.6 Suppose that G and X G S1 are generic. Then for any nonzero
q G RQ/(X) the multiplication map fj,q: RQ/(X) —> RQ/(X) has kernel of
dimension < 3. •

So if qi ^ 0 modulo (X), we see that the t[ generate a subspace of RQ/(X)

of dimension < 3, so that at least two components of if are divisible by X.
We then conclude as before that if = X(q[,..., #5); then (<?i,..., #5) and
(#'i7 • • • > #5) € ( ^ G ) 5 a r e n o t proportional with independent components, and
satisfy q^ — q[qj = 0 in R%, which contradicts Lemma 4.3. Hence we have
gi = 0 mod X.

Thus we have shown that for generic Xy there exists nonzero q = XA G
(qu • • •, #>) C i ^ = S2. We then conclude that [(qu . . . , q5) : S1] 7̂  {0}. So
after a change of basis of C5, we have (<ft,..., g5) = (AAi, . . . , AA4, q5) for
some A G 5 1 and independent A* G 51. Then for z G Z we have Aj^- = A ^
in i?^ for 2, j < 4, which by the symmetrizer lemma implies that there exists
q £ R% such that (zi, ...,24) = <z(^4i,.. •, -A4). Since dimZ > 8, q runs
through a subspace Q of S2 of dimension > 8. Again we view z$ as a function
of # G Q, satisfying z^{q')q — z5(q)qf for any #, </ G Q. Since Q generate /?^
by [11], we can apply the symmetrizer lemma to conclude that z$(q) = A$q
for some A$ G S1. But then the Ai for i = 1 , . . . , 5 are not independent in
S1, which contradicts (i). This concludes the proof of Lemma 4.4. •

Proof of Proposition 7 By Lemmas 4.2 and 4.4 we have 7 < 7. We also
have S < 1. Indeed if <5 > 2, there exist independent elements

Then by Lemma 4.3, there exist i,j such that qiq'j — qjq[ ^ 0 in RQ. But
it annihilates Wi, Wj G .R^ f°r a n v (^I* • • •»^5) ^ W/W\. Hence by property
(ii) and Lemma 2.3, we have a < 20. Prom 7 < 7,6 < 6 we conclude that
/? > 65 - 20 - 6 - 7 = 32, which is absurd, since /? < 31 = dim i?^.

Hence we have a + /? > 57. This implies easily that for any nonzero
(wi , . . . ,7^5) G 51(Wi/W2), the Wi are independent in i?^, so that

< dimi?^ - 4 = 36.
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Now if 0 > 22, one can adapt the proof of Lemma 1.2 to show that for
generic X,Y e 51/(X4) the kernel of the map

(X + Y): W1/W2 x Wx/W2 -> Sl{Wl/W2)

is equal to (-F,X)[WyW2 : (X,F)]. Since

dimWi/W2 > 22, dimS^Wi/Wb) < 36,

this implies d im[wyw 2 : (X,y)] > 8. On the other hand, [Wx/W2 :
(X, y)] C (RQ)5 satisfies the assumptions of Lemma 4.4, because if

(*i, • • • ,*5), (*i, • • •,f5) e \wx/w2]: (x ,y) ,

then Ut'j — tjt'i is annihilated by X2,Y2,XYy hence must be zero. Therefore
dim[Wi/W2 ' (X,Y)] > 8 is impossible, and we must have /? < 21, hence
a > 36. We claim this is impossible: if a > 36, the image of prx: WjW\ —> RQ
has codimension < 4, hence dimS^i^W/Wi) > dimi?^, - 3 by [11]. It
follows that there exists a nonzero (zi,...,zs) G S1(W/Wi) for which the Zi
are not independent in RQ. We may assume that z$ = 0, and then we have
ZiW*> = z$Wi = 0 in RQ for any u; G W. So the ^ for i < 4 are orthogonal to
51pr5(W/Wi) in i?^ under the perfect pairing i?^ x R% -> .Rj? ^ C. Since
51pr5(W/Wi) has codimension < 3 in i?^, we conclude that the Z{ for i < 4
are not independent in R%. So we may assume that z4 = 0. But then the Zi for
i < 3 are orthogonal to Sl(pi4(W/Wi) +pi4(W/Wi)) which has codimension
< 2 in R%, since by property (ii) and a > 36, pr4(W/Wri) + pr4(VF/Tyi)
has codimension < 3 in i?^. So the ^ for i < 3 are not independent in
R%. Continuing in this way, we show finally that (^i , . . . , z5) = 0, which is a
contradiction. •
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Flops, Type III contractions and
Gromov-Witten invariants
on Calabi-Yau threefolds

P.M.H. Wilson

1 Introduction

In this paper, we investigate Gromov-Witten invariants associated to excep-
tional classes for primitive birational contractions on a Calabi-Yau threefold
X. As already remarked in [18], these invariants are locally defined, in that
they can be calculated from knowledge of an open neighbourhood of the ex-
ceptional locus of the contraction; intuitively, they are the numbers of rational
curves in such a neighbourhood. In §2, we make this explicit in the case of
Type I contractions, where the exceptional locus is by definition a finite set
of rational curves. Associated to the contraction, we have a flop; we deduce
furthermore in Proposition 2.1 that the changes to the basic invariants (the
cubic form on H2(X,Z) given by cup product, and the linear form given by
cup product with the second Chern class c2) under the flop are explicitly
determined by the Gromov-Witten invariants associated to the exceptional
classes.

The main results of this paper concern the Gromov-Witten invariants
associated to classes of curves contracted under a Type III primitive contrac-
tion. Recall [17] that a primitive contraction tp: X —> X is of Type III if
it contracts down an irreducible divisor E to a curve of singularities C. For
X a smooth Calabi-Yau threefold, such contractions were studied in [18]; in
particular, it was shown there that the curve C is smooth and that E is a
conic bundle over C. We denote by 2r\ G H2(Xy Z) / Tors the numerical class
of a fibre of E over C. In the case when E is a P1-bundle over C, this may
in fact be a primitive class, and so the notation is at slight variance with
that adopted in §2, where 77 is assumed to be the primitive class. In the
case when the class of a fibre is not primitive (for instance, when E is not a
P1-bundle over C), the primitive class contracted by tp will be 77. We denote
the Gromov-Witten numbers associated to 77 and 2rj by n\ and n2, with the
convention that n\ — 0 if 2rj is the primitive class. The above conventions
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have been adopted so as to achieve consistency of notation for all Type III
contractions.

If the genus g of the curve C is strictly positive, under a general holomor-
phic deformation of the complex structure on X, the divisor E disappears
leaving only finitely many of its fibres, and (except in the case of elliptic
quasiruled surfaces, where all the Gromov-Witten invariants vanish) we have
a Type I contraction. The results of §2 may then be applied to deduce the
Gromov-Witten invariants associated to the classes mrj for m > 0. These
are all determined by the Gromov-Witten numbers n\ and ri2, and explicit
formulas for n\ and n<i are given in Proposition 3.3; in particular n<i = 2g — 2.

The formulas for ni and n<i remain valid also for g = 0, although the
slick proof given in Proposition 3.3 for the case g > 0 no longer works. The
formula for n\ is proved for all values of g(C) by local deformation arguments
in Theorem 3.5. Verifying that n^ — — 2 in the case when g(C) = 0 is rather
more difficult, and involves the technical machinery of moduli spaces of stable
pseudoholomorphic maps and the virtual neighbourhood method, as used in
[2, 9] in order to construct Gromov-Witten invariants for general symplectic
manifolds. In particular, we shall need a cobordism result from [13], which
we show in Theorem 4.1 applies directly in the case where no singular fibre
of E is a double line. The general case may be reduced to this one by making
a suitable almost complex small deformation of complex structure. In §5, we
give an application of our calculations. In [18], it was shown that if X\, X2

are Calabi-Yau threefolds which are symplectic deformations of each other
(and general in their complex moduli), then their Kahler cones are the same.
Now we can deduce (Corollary 5.1) that corresponding codimension one faces
of these cones have the same contraction type.

The author thanks Yongbin Ruan for the benefit of conversations con-
cerning material in §4 and his preprint [13].

2 Flops and Gromov-Witten invariants

If X is a smooth Calabi-Yau threefold with Kahler cone /C, then the nef cone
/C is locally rational polyhedral away from the cubic cone

W* = {D e H2(X,R) ; £>3 = 0};

moreover, the codimension one faces of K, (not contained in W*) correspond
to primitive birational contractions tp: X —> X of one of three different types
[17].

In the numbering of [17], Type I contractions are those where only ^finite
number of curves (in fact Pxs) are contracted. The singular threefold X then
has a finite number of cDV (compound Du Val) singularities. Whenever
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one has such a small contraction on X, there is a flop of X to a different
birational model X\ also admitting a birational contraction to X\ moreover,
identifying H2{X',R) with H2(X,R), the nef cone of X' intersects the nef
cone of X along the codimension one face which defines the contraction to
X [6, 7]. It is well known [7] that X' is smooth, projective and has the
same Hodge numbers as X, but that the finer invariants, such as the cubic
form on H2(X,Z) given by cup product, and the linear form on H2(X,Z)
given by cup product with c2(X) = p\(X), will in general change. Recall
that, when X is simply connected, these two forms along with H3(X,Z)
determine the diffeomorphism class of X up to finitely many possibilities [14],
and that if furthermore H2(X,Z) is torsion free, this information determines
the diffeomorphism class precisely [16].

When the contraction ip: X —> X, corresponding to such a flopping face
of /C, contracts only isolated Pxs with normal bundle (—1, —1) (that is, X has
only simple nodes as singularities), then it is a standard calculation to see how
the above cubic and linear forms (namely the cup product \x\ H2(X,Z) —>
Z, and the form c2: H2(X,Z) —> Z) change on passing to X1 under the
flop. Since any flop is an isomorphism in codimension one, we have natural
identifications

H2(X',R) ^ PicRpO ^ PicR(X) * H2(X,R).

If we are in the case where the exceptional curves C i , . . . , CN are isolated
P1s with normal bundle (—1,-1), and if we denote by D' the divisor on X1

corresponding to D on X, then

(D'f = D3 - ^{D • Ci)3 and c2(X') • D' = c2{X) • D +

This is an easy verification - see for instance [1].

Proposition 2.1 Suppose that X is a smooth Calabi-Yau threefold, and
<p: X —> X is any Type I contraction, with X' denoting the flopped Calabi-
Yau threefold. The cubic and linear forms (Df)3 and D' • c2(X

f) on X' are
then explicitly determined by the cubic and linear forms D3 and D • c2(X) on
X, and the 3-point Gromov-Witten invariants 3>A on X, for A G H2(X,Z)
ranging over classes which vanish on the flopping face.

Remark 2.2 This is essentially the statement from physics that the A-model
3-point correlation function on IC(X) may be analytically continued to give
the A-model 3-point correlation function on K,(X').

Proof We use the ideas from [18]; in particular, we know that on a suit-
able open neighbourhood of the exceptional locus of ip, there exists a small



468 Flops and Gromov-Witten invariants of CY threefolds

holomorphic deformation of the complex structure for which the exceptional
locus splits up into disjoint (—1, —l)-curves ([18], Proposition 1.1).

Let A G H2(X,Z) be a class with y*A = 0. The argument from [18],
Section 1 then shows how the Gromov-Witten invariants $A(D, D,D) can
be calculated from local information. Having fixed a Kahler form UJ on X,
a small deformation of the holomorphic structure on a neighbourhood of the
exceptional locus may be patched together in a C°° way with the original
complex structure to yield an almost complex structure tamed by u, and
the Gromov-Witten invariants can then be calculated in this almost complex
structure. The Gromov Compactness Theorem is used in this argument to
justify the fact that all of the pseudoholomorphic rational curves representing
the class A have images which are (—1, — l)-curves in the deformed local
holomorphic structure.

Here we also implicitly use the Aspinwall-Morrison formula for the contri-
bution to Gromov-Witten invariants from multiple covers of infinitesimally
rigid P1s, now proved mathematically by Voisin [15]. So if n(B) denotes the
number of (—1, — l)-curves representing a class given B, then

, D, D) = (D- A)3

kB=A

where the sum is taken over all integers k > 0 and classes B G H2(X,Z)
such that kB = A. So if H2(X, Z) is torsion free and A is the primitive class
vanishing on the flopping face, this says that

$mA(D, D, £>) = (£>• Af ^ n(dA)d\
d\m

Recall that the Gromov-Witten invariants used here are the ones (denoted
$ in [12]) which count marked parametrized curves satisfying a perturbed
pseudoholomorphicity condition. Knowledge of the numbers n(A) for the
classes A with <p*A = 0 determines the Gromov-Witten invariants $A for
classes A with (p*A = 0, and vice-versa.

If we can now show that the local contributions to (Df)3 and Dl • Qi{X')
are well-defined and invariant under the holomorphic deformations of complex
structure we have made locally, then the obvious formulas for them will hold.
Let 77 G H2(X,Z)/ Tors be the primitive class with <p*ri = 0 and n^ denote
the total number of (—1, — l)-curves on the deformation which have numerical
class di)\ the rid are therefore nonnegative integers (cf. [10], Remark 7.3.6).
Then

(2.1.1)

. C2{Xf) = D • c2(X) 4- 2(2? • 77) J2 ndd- (2-L2)
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To justify the premise in the first sentence of the paragraph, the basic result
needed is that of local conservation of number, as stated in [3], Theorem 10.2.

For calculating the change in D3 for instance, let X now denote the neigh-
bourhood of the exceptional locus of <p and IT : X —• B the small deformation
under which the exceptional locus splits up into (—1, — l)-curves. So we have
a regular embedding (of codimension six)

x <-> x x X x x = y
i I
B = B

In order to calculate the triple products D[ • D2 • D'z from D\ • D2 • D$ and
the numbers rid, we may assume wlog that the A are very ample, and so
in particular we get effective divisors X>i, V2 and X>3 on X/B. Applying
[8], Theorem 11.10, we can flop in the family X —» B, hence obtaining a
deformation X' —• B of the flopped neighbourhood X1. We wish to calculate
the local contribution to D[-D2'D3; with the notation as in [3], Theorem 10.2,
we have a fibre square

W —> V[xVf
2x V3

I 1
X' —> X' x X' x X1

with Supp(W) = P| Supp(D^). Furthermore, we may assume that the divisors
T>i were chosen so that ViD/D2D V3 has no points in X, and so in particular
W is proper over B. Letting D'^t) denote the restriction of V[ to the fibre
X't, we therefore have a well-defined local contribution to D[(t) • D2(t) • Df

3(t)
(concentrated on the flopping locus of X[), which is moreover independent of
t £ B. Thus by making the local calculation as in (7.4) of [1], we deduce that

Dl-D2.D3- D[ -D'2.D'3 = ( A • rj)(D2 • rj)(D3

d>0

as required.
The proof for c2 • D is similar. Here we consider the graph X C X x X'

of the flop, with TTI : X —> X and TT2 : X —> X1 denoting the two projections,
and E C X the exceptional divisor for both TTI and TT2. Then ^C^xOlxvE =

7r*(TxW^, and so in particular C2(TT2TX') — c2(irlTx) is represented by a
1-cycle Z on E. Suppose wlog that D is very^ ample, and that D' denotes
the corresponding divisor on X1. Set TT*D = D and -K2D' = D + F , with F
supported on £". Then c2(X;) • Df = C2(-K*2TX>) • ( 5 + F) . Hence

^ = C2(TT2*TX0 • F + Z • 5 = 5
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where the right-hand side is purely local. Note the slight abuse of notation
here that F denotes also the fixed scheme for the linear system ITT^D'I.

Now taking X to be a local neighbourhood of the flopping locus, and
taking a small deformation X —*• B as before, we obtain families A", X, V,
£, T and Z over B (corresponding to X', X, D, E, F and Z). For ease of
notation, we shall use TTI and TT2 also for the morphisms of families X —» X,
respectively X —» X'. Applying [3], Theorem 10.2 to the family of vector
bundles (TTJTV/B)^ on the scheme T over B yields that C2{{^2^X'/B)\F ) is

independent of t G B. Noting that V <-» X is a regular embedding, we apply
the same theorem to the fibre square

V —> X

and the cycle Z on £. This yields that (Zt • A)#t o n ^t is independent of
t € B, where by definition

Zt = c2{-KlT

Thus the local contribution to D'(t) • C2{X'1) is well-defined and independent
of t, and so we need only make the local calculation for generic t (where
the exceptional locus of the flop consists of disjoint (—1, — l)-curves). This
calculation may be found in [1], (7.4).

Speculation 2.3 There are reasons for believing that only the numbers rt\
and ri2 are nonzero, and hence that the Gromov-Witten invariants associated
to classes mi] for m > 2 all arise from multiple covers. If this speculation is
true, then the changes under flopping to the cubic form and the linear form
would be determined by these two integers, and conversely.

3 Type III contractions and Gromov—Witten
invariants

The main results of this paper concern the Gromov-Witten invariants asso-
ciated to classes of curves contracted under a Type III primitive contraction.
Recall [17] that a primitive contraction ip: X —> X is of Type III if it contracts
down an irreducible divisor E to a curve of singularities C. For X a smooth
Calabi-Yau threefold, such contractions were studied in [18]; in particular, it
was shown there that the curve C is smooth and that E is a conic bundle
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over C. We denote by 2rj G #2(X,Z)/Tors the numerical class of a fibre of
E over C. As explained in the Introduction, we denote by n\ and n2 the
Gromov-Witten numbers associated to the classes rj and 2//, where n\ — 0 if
E is a P^bundle over C. If the generic fibre of E over C is reducible (consist-
ing of two lines, each with class 77), then, except in two cases, it follows from
the arguments of [18], §4 that, by making a global holomorphic deformation
of the complex structure, we may reduce down to the case where the generic
fibre of E over C is irreducible. The two exceptional cases are:

(a) g(C) = 1 and E has no double fibres.

(b) g(C) = 0 and E has two double fibres.

However, Case (a) is an elliptic quasi-ruled surface in the terminology of
[18], and hence disappears completely under a generic global holomorphic
deformation. In particular, we know that all the Gromov-Witten invariants
<3>A are zero, for A G #2(X, Z) having numerical class mr) for any m > 0.

In Case (b), E is a nonnormal generalized del Pezzo surface F3;2 of degree 7
(see [18]). As argued there however, we may make a holomorphic deformation
in a neighbourhood of E so that E deforms to a smooth del Pezzo surface of
degree 7, and where the class 77 is then represented by either of two 'lines'
on the del Pezzo surface (which are (—1, — l)-curves on the threefold); hence
n\ = 2. In fact, the smooth del Pezzo surface is fibred over P1 with one
singular (line pair) fibre. The arguments we give below may be applied locally
(more precisely with the global almost complex structure obtained by suitably
patching the local small holomorphic deformation on an open neighbourhood
of E with the original complex structure), and the Gromov-Witten invariants
may be calculated as if the original contraction (p had contracted such a
smooth del Pezzo surface of degree 7. In particular, n\ = 2 comes from the
two components of the singular fibre (Theorem 3.5), and n2 = —2 is proved
in §4 (see also Remark 3.4).

Let us therefore assume that the generic fibre of E over C is irreducible,
and so in particular E —• C is obtained from a P^bundle over C by means
of blowups and blowdowns. Moreover E itself is a conic bundle over C, and
so its singular fibres are either line pairs or double lines.

Lemma 3.1 In the above notation, E has only singularities on the singular
fibres of the map E —> C. When the singular fibre is a line pair, we have
an An singularity at the point where the two components meet (we include
here the possibility n = 0 when the point is a smooth point of E). When the
singular fibre is a double line, we have a Dn singularity on the fibre (here we
need to include the case n = 2, where we in fact have two Ai singularities,
and n = 3, where we have an A3 singularity).
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Proof The proof is obvious, once the correct statement has been found.
The statement of this result in [17] omits (for fibre a double line) the cases
Dn for n > 2.

Lemma 3.2 Suppose that E —> C as above has ar fibres which are line pairs
with an Ar singularity and bs fibres which are double lines with a Ds singularity
(for r > 0 and s > 2), then

K% = 8(1 - g) - £ a r ( r + 1) - £&ss,
r>0 s>2

where g denotes the genus of C.

This enables us to give a slick calculation of the Gromov-Witten invariants
when the base curve has genus g > 0. In this case, it was shown in [17] that
for a generic deformation of X, only finitely many fibres from E deform,
and hence the Type III contraction deforms to a Type I contraction. Thus
Gromov-Witten numbers rt\ and n<i may be defined as in Section 1, and are
nonnegative integers.

Proposition 3.3 When g > 0, we have

)ss and ri2 = 2g — 2.
r>0 s>2

Proof We take a generic 1-parameter deformation of X, for which the
Type III contraction deforms to a Type I contraction. We therefore have
a diagram

X —* 7

i i
A = A

where A C C denotes a small disc. Since the singular locus of X consists
only of curves of cDV singularities, we may again apply [8], Theorem 11.10
to deduce the existence of a (smooth) flopped fourfold X' —> X. The induced
family X1 —• A is given generically by flopping the fibres, and at t = 0 it
is easily checked that X'o = XQ\ this operation is often called an elementary
transformation on the family. Identifying the groups H2(Xt,Z) = H2(X't,Z)
as before, this has the effect (at t = 0) of sending E to — E (cf. the discussion
in [5], §3.3). So if E' denotes the class in H2(X't, Z) corresponding to the class
E in H2(XU Z), we have (E')3 = -E3. For t ^ 0, we just have a flop, and so
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(E')3 can be calculated from equation (2.1.1), namely (Ef)3 = E3 + m +8n2.
Therefore, using Lemma 3.2

m -f 8n2 = - 2 £ 3 = 16(# - 1) + 2 ^ ar(r + 1) + 2 J ^ bss.
r>0 s>2

Similarly, we have c2(X') • E' = —c2(X) • 25, and so from equation (2.1.2)
it follows that 2n\ + 4n2 = 2c2 • E. An easy calculation of the right-hand side
then provides the second equation

4n2 = S(g - 1) + 4 ^ ar(r + 1) + 4 ] T 6ss.
r>0 s>2

Solving for n\ and n2 from these two equations gives the desired result.

Remark 3.4 This result remains true even when g = 0, although the slick
proof given above is no longer valid. The formula for ni is checked in Theo-
rem 3.5 by local deformation arguments (for which the genus g is irrelevant),
showing that the contribution to n\ from a line pair fibre with Ar singular-
ity is 2(r + 1), and from a double line fibre with Ds singularity is 2s. Let
A G H2{Xi Z) denote the class of a fibre of E —> C. Observe that any pseudo-
holomorphic curve representing the numerical class 77 will be a component of
a singular fibre of E —> C. Moreover, the components I of a singular fibre
represent the same class in 2f2(X, Z), and so in particular twice this class is
A. Thus the Aspinwall-Morrison formula (as proved in [15]) yields the con-
tribution to the Gromov-Witten invariants $A(D, D, D) from double covers,
purely in terms of n\ and D • A. The difference may be regarded as the con-
tribution to $A(D, D, D) from simple maps, and taking this to be n2(D • A)3

determines the number n2 (in §4, we shall see how n2 may be determined
directly from the moduli space of simple stable holomorphic maps). If g > 0,
the above argument shows that this is in agreement with our previous defi-
nition, and yields moreover the equality n2 = 2g — 2. The fact that n2 = — 2
when g — 0 requires a rather more subtle argument involving technical ma-
chinery - see Theorem 4.1. I remark that the value n2 = — 2 is needed in
physics, and that there is also a physics argument justifying it (see [4], §5.2
and [5], §3.3) - essentially, it comes down to a statement about the A-model
3-point correlation functions. In §4 below, we give a rigorous mathematical
proof of the assertion.

Theorem 3.5 The formula for n\ in Proposition 3.3 is valid irrespective of
the value of the genus g = g(C).
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Proof By making a holomorphic deformation of the complex structure on
an open neighbourhood U in X of the singular fibre Z of E —> C, we may
calculate the contribution to ri\ from that singular fibre - see [18], (4.1). The
deformation of complex structure is obtained as in [18] by considering the one
dimensional family of Du Val singularities in X, and deforming this family
locally in a suitable neighbourhood U of the dissident point. Our assumption
is that the family U —> A has just an Ai singularity on Ut for t ^ 0, and we
may assume also that U —> A is a good representative (in the sense explained
in [18]). The open neighbourhood U is then the blowup of U in the smooth
curve of Du Val singularities ([18], p. 569). The contribution to n\ may
be calculated locally, and will not change when we make small holomorphic
deformations of the complex structure on U, which in turn corresponds to
making small deformations to the family U —» A.

First we consider the case where the singular fibre Z is a line pair - from
this, it will follow that the dissident singularity on U is a cAn singularity with
n > 1, and that U has a local analytic equation of the form

x2 + y2 + zn+1 +tg(x,y,z,t) = 0

in C3 x A (here t is a local coordinate on A, and x = y = z = 0 the curve
C of singularities). For t ^ 0, we have an Ai surface singularity, which
implies that g must contain a term of the form trz2 for some r > 0. By an
appropriate analytic change of coordinates, we may then assume that U has
a local analytic equation of the form

x2 + y2 + zn+l + tr+1z2 + th{xy y, z, t) = 0,

where h consists of terms which are at least cubic in x, y, z. By making a
small deformation of the family U —• A, we may reduce to the case n = 2,
that is, U having local equation x2 + y2 + z3 -f tr+1z2 + th = 0. At this
stage, we could in fact also drop the term th (an easy check using the versal
deformation family of an A2 singularity), but this will not be needed.

We now make a further small deformation to get Ue C C3 x A given by a
polynomial

x2 + y2 + z3 + tr+lz2 + sz2 + th = x2 + y2 + z2(z + tr+1 + e)+th.

This then has r + 1 values of t for which the singularity is an A2 singularity
- for other values of t, it is an Ai singularity. If we blow up the singular
locus of U£, we therefore obtain a smooth exceptional divisor for which r +
1 of the fibres over A are line pairs. By the argument of [18], (4.1), this
splitting of the singular fibre into r + 1 line pair singular fibres of the simplest
type can be achieved by a local holomorphic deformation on a suitable open
neighbourhood of the fibre in the original threefold X.
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It is however clear that a line pair coming from a dissident CA2 singularity
of the above type contributes precisely two to the Gromov-Witten number
ni - one for each line in the fibre. In terms of equations, we have a local
equation for X of the form x2 + y2 + z3 + wz2 = 0; deforming this to say
x2 -\-y2 + z3 + wz2 + sw = 0, we get two simple nodes, and hence two disjoint
(—1, — l)-curves on the resolution.

The argument of [18], (4.1) shows that the Gromov-Witten number n\
may be calculated purely from these local contributions, and so the total
contribution to n\ from the line pair singular fibre of E with Ar singularity
is indeed 2(r + 1), as claimed.

For the case of the singular fibre Z of E being a double line, the dissident
singularity must be cE6, CE7, cEg, or cDn for n > 4. Thus U has a local ana-
lytic equation of the form f(x)y)z)+tg(x,y,z,t) in C3 x A for / a polynomial
of the appropriate type (t a local coordinate on A, and x = y = z = 0 the
curve of singularities). To simplify matters, we may deform / to a polynomial
defining a D4 singularity, and hence make a small deformation of the family
to one in which the dissident singularity is of type cD4. We then have a local
analytic equation of the form

x2 + y2z + z* + tg(x, y, z, t) = 0.

For t 7̂  0, we have an Ai singularity, and so the terms of g must be at
least quadratic in x, y, z. Moreover, by changing the x-coordinate, we may
take the equation to be of the form

x2 + y2z + z3 + tay2 + tbyz + tcz2 + th(x, y, z, t) = 0,

with a, 6, c positive, and where the terms of h are at least cubic in x, y, z. The
fact that the blowup U of U in C is smooth is easily checked to imply that
a = 1. Since

ty2 + 2tbyz = t(y + t^zf - t2b~lz\

we have an obvious change of y-coordinate which brings the equation into the
form

x2 + y2z + 23 + ty2 + fz2 + thi(x, y, z, t) = 0,

where r — min{c,2b— 1} and hi has the same property as h.
When we blow up U along the curve x = y = z = 0, we obtain an

exceptional locus E with a double fibre over t = 0, on which we have a Dr+i
singularity (including the case r = 1 of two Ai singularities, and r = 2 of
an A3 singularity). Moreover, this was also true of our original family, since
the small deformation of / we made did not affect the local equation of the
exceptional locus.
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Moreover, by adding a term E\y2 + £2z
2, we may deform our previous

equation to one of the form

x2 + y2(z +1 + si) + z2(z + f + £2) + tfcifr, y, z, *) = 0.

When t -f £1 = 0, we have an A3 singularity, and when tr + £2 = 0, an A2

singularity. Moreover, when we blow up the singular locus of this deformed
family, the resulting exceptional divisor is smooth and has line pair fibres for
these r + 1 values of t. Thus, as seen above, the contribution to ni from the
original singular fibre (a double line with a D r + i singularity) is 2(r + 1) as
claimed.

4 Calculation of n<i for Type III contractions

Let <p: X —• X be a Type III contraction on a Calabi-Yau threefold X, which
contracts a divisor E to a (smooth) curve C of genus g. When g > 0, it was
proved in Proposition 3.3 that the Gromov-Witten number n2 (defined for
arbitrary genus via Remark 3.4) is 2g — 2. The purpose of this Section is to
extend this result to include the case g = 0 (C is isomorphic to P1), and to
prove n2 = 2g — 2 in general.

Arguing as in [18], it is clear that the desired result is a local one, depend-
ing only on a neighbourhood of the exceptional divisor E. As remarked in §3,
we may then always reduce down to the case that the generic fibre of E —» C
is irreducible. If all the fibres of E —> C are smooth (so E is a P^bundle over
C), the fact that n2 = 2g — 2 was proved in Proposition 5.7 of [11], using a
cobordism argument. This latter result was extended by Ruan in [13], Propo-
sition 2.10, using the theory of moduli spaces of stable maps and the virtual
neighbourhood technique (cf. [2, 9]). If the singular fibres of E —> C are
line pairs, Ruan's result applies directly. We prove below that the linearized
Cauchy-Riemann operator has constant corank for the stable (unmarked) ra-
tional curves given by the fibres of E over C, and hence by Ruan's result that
there is an obstruction bundle H on C, with n<i determined by the Euler class
of 7i. By Dolbeault cohomology, there is a natural identification of 7i with
the cotangent bundle T£ on C, and hence the formula for n<i follows. We note
however that for Ruan's result to hold, we do not need an integrable almost
complex structure on X. Provided we have a natural identification between
the cokernel of the linearized Cauchy-Riemann operator and the cotangent
space at the corresponding point of C, we can still deduce that n2 = 2#—2. In
the general case of a Type III contraction which has double fibres, we show
below that we can make a small local deformation of the almost complex
structure on X so that E deforms to a family of pseudoholomorphic rational
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curves over C with at worst line pair singular fibres, and for which Ruan's
method applies.

Theorem 4.1 For any Type III contraction <p: X —• X, the Gromov-Witten
number n2 = 2g — 2.

Proof We saw above that we may assume that the generic fibre of E —• C
is irreducible. Furthermore, we initially assume also that the singular fibres
are all line pairs, and later reduce the general case to this one.

We let J denote the almost complex structure on X, which we know is
integrable (at least in a neighbourhood of E), and tamed by a symplectic
form LJ. Let A G H2(X, Z) be the class of a fibre of E —> C. Adopting the
notation from [13], we consider the moduli space MA{X, J) = MA(X, 0,0, J)
of stable unmarked rational holomorphic maps, a compactification of the
space of (rigidified) pseudoholomorphic maps CP1 —• X, representing the
class A. The theory of stable maps, as explained in Section 3 of [13], goes
through for unmarked stable maps, by taking each component of the domain
as a bubble component, and adding marked points (in addition to the double
points) as in [13] in order to stabilize the components (thus taking a local
slice of the automorphism group).

In the case that all the singular fibres of E —> C are line pairs, ^ ^ ( X , J)
has two components, one corresponding to simple maps and the other to
double covers. It is now a simple application of Gromov compactness to see
that these two components are disjoint, since a sequence of double cover maps
cannot converge to a simple map. A similar argument will show that for all
almost complex structures Jt in some neighbourhood of J = Jo, the moduli
space MA(X, Jt) will consist of two disjoint components, one corresponding
to the simple maps and the other to the double covers.

Since any stable unmarked rational holomorphic map must be an embed-
ding, it is clear that the component MA(X, J) corresponding to the simple
maps can be identified naturally with the smooth base curve C, and that for
all almost complex structures in some neighbourhood of J = Jo, the moduli
space MA(X, Jt) of simple unmarked stable holomorphic maps is compact.
The Gromov-Witten invariant ni that we seek can then be defined via Ruan's
virtual neighbourhood invariant //$, and may be evaluated on (X, J) by using
[13], Proposition 2.10.

Let us now go into more details of this. We consider C°° stable maps
/ G 'BA(X) = JBA(X,0,0) in the sense of [13], Definition 3.1, where_Ruan
shows later in the same Section that the naturally stratified space BA{X)
satisfies a property which he calls virtual neighbourhood technique admissi-
ble or VNA, and as he says, for the purposes of the virtual neighbourhood
construction, behaves as if it were a Banach V-manifold. Since any simple
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marked holomorphic stable map / in MA(X, J) is forced to be an embedding,
we may restrict our attention to C°° stable maps whose domain E comprises
at most two P1s. We stratify BA(X) according to the combinatorial type D
of the domain E. Thus any / € MA(X, J) belongs to one of two strata of
BA(X).

In general, for Appointed C°° stable maps of genus g, Ruan shows that
for any given combinatorial type D, the substratum Br>(X,g,k) is a Haus-
dorff Prechet V-manifold ([13], Proposition 3.6). As mentioned above, he
needs to add extra marked points in order to stabilize the nonstable com-
ponents of the domain E, thus taking a local slice of the action of the au-
tomorphism group on the unstable marked components of E. Moreover, the
tangent space TfBr)(X,g,k) is identified with Q°(f*Tx), as defined in his
equation [13], (3.29). The tangent space TfBA(X,g,k) can then be defined
as TfBz)(X,g, k) x C/, where C/ is the space of gluing parameters (see [13],
equation before (3.67)).

In our case, however, things are a bit simpler. Given / G AiA(X, J) with
domain E consisting of two P1s, the tangent space TfBA(X) is of the form
Q°(f*Tx) x C, and we have a neighbourhood Uf of / in BA(X) defined by
[13], (3.43), consisting of stable maps / ' parametrized locally by

{w e £lo(f*Tx) ; 1Mb < e'}

(corresponding to deformations within the stratum BD(X)), and by v E C^
(an £-ball in C/ = C giving the gluing parameter at the double point). This
then corresponds to the above decomposition of TfBA(X) into two factors.
On the first factor, the linearization Dfdj of the Cauchy-Riemann operator
restricts to

in the notation of [13]. The index of this operator may be calculated using
Riemann-Roch on each component of E (cf. the proof of Lemma 3.16 in [13],
suitably modified to take account of the extra marked points), and is seen to
be -2 .

Let us now consider the stable maps fv = /v'° for v G C£
f \ {0}. These

are stable maps CP1 -» X which differ from / only in small discs around the
double point, and in this sense are approximately holomorphic. Set v = re%e\
then the gluing to get fv: Ev —» X is only performed in discs around the
double point of radius 2r2/p in the two components (p a suitable constant).
It can then be checked for any 2 < p < 4 that | |5J(/V) | |LP < Cr^ (see
[13] Lemma 3.23, and [10] Lemma A.4.3), from which it follows that the
linearization

LA = Dfdj
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of the Cauchy-Riemann operator should be taken as zero on the factor C/ in
TJBA(X). Thus we deduce that the index of LA is zero, and that cokerL^
is same as the cokernel oidjj: Q°(f*Tx) -> ft°'1(/IITx), which by Dolbeault
cohomology may be identified as

where Z is the fibre of E —> C (over a point x G C) corresponding to the
image of / .

We note that these are exactly the same results as are obtained in the
smooth case, when E consists of a single P1. Here, we need to add three
marked points to stabilize E, and Riemann-Roch then gives immediately
that the index of LA is zero.

Observe that Z is a complete intersection in X, and so for our purposes
is as good as a smooth curve. Via the obvious exact sequence, Hl(Tx\z)

may be naturally identified with Hl(Nz/x), which in turn may be naturally
identified with H°(Nz/x)* (since Kz = f\2 Nz/x, we have a perfect pair-
ing H°(NZ/x) x Hl{Nz/x) -> H\KZ) ^ C). Observing that H°(NZ/X) =
H°(Oz 0 Oz(E)) = C, we know that cokerL^ has complex dimension one
and is naturally identified with X£x, the dual of the tangent space at x to the
Hilbert scheme component C. This we have seen is true for all / G MA{X, J).

We now apply [13], Proposition 2.10, (2) to our set-up, where C =
~M'A(X,J) = Ms = S'1^) for S the Cauchy-Riemann section of TA(X)
(as constructed in [13], §3) over a suitable neighbourhood of Ms in BA(X).

The above calculations verify that the conditions of Proposition 2.10, (2) are
satisfied, with ind(L^) = 0, dim(cokerLA) = 2 and dim(Ms) = 2. Moreover,
we deduce that the obstruction bundle H on Ms is just the cotangent bundle
T£ on C.

The Gromov-Witten number n2 may then be defined to be //$(1). It
follows from the basic Theorem 4.2 from [13] that this is independent of any
choice of tamed almost complex structure and is a symplectic deformation
invariant. Thus by considering a small deformation of the almost complex
structure and using [13], Proposition 2.10, (1), it is the invariant n2 that we
seek. Applying Ruan's crucial Proposition 2.10, (2), the invariant can be
expressed as

from which it follows that n2 = 2g — 2 as claimed.
The general case (where E —• C also has double fibres) can now be reduced

to the case considered above. Suppose we have a point Q G C for which the
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corresponding fibre is a double line. We choose an open disc A C C with
centre Q, and a neighbourhood U of Z in X, with U fibred over A, the
fibre U$ over Q containing the fibre Z. Letting U —• A denote the image
of U under y>, a family of surface Du Val singularities, we make a small
deformation U —> A' of £/, as in the proof of Theorem 3.5 of this paper, and
in this way obtain a holomorphic deformation U —> A' of U under which
EQ = E\A deforms to a family of surfaces Et (t G A'), all fibred over A, and

with at worst line pair singular fibres for t ^ 0. Considering U —> A x A' as a
two parameter deformation of the surface singularity C/o, we may take a good
representative and apply Ehresmann's fibration theorem (with boundary) to
the corresponding resolution U —> A x A' (cf. [18], proof of Lemma 4.1).
In this way, we may assume that U —> A x A' is differentiably trivial over
the base. In particular, the family U —> A' is also differentiably trivial, and
hence determines a holomorphic deformation of the complex structure on a
fixed neighbourhood U of Z, where U —> A is also differentiably trivial.

We perform this procedure for each singular fibre Z\,..., ZN of E -» C,
obtaining, for each z, an open neighbourhood Ui of Z{ fibred over A* C C,
and a holomorphic complex structure Ji on Ui with the properties explained
above (of course, if Zi is a line pair, we may take Ji to be the original complex
structure J) . Let |A» denote the closed subdisc of A» with half the radius,
C* — C \ | J i l i 2^> a n d E* = E\c* "~* ^ * t n e corresponding open subset of E.
We then take a tubular neighbourhood 17* —> C* of E* -+ C*, equipped with
the original complex structure J. By taking deformations to be sufficiently
small and shrinking radii of tubular neighbourhoods if necessary, all these
different complex structures may be patched together in a C°° way (tamed
by the symplectic form) over the overlaps in C. In this manner, we obtain an
open neighbourhood W of E in X, and a tamed almost complex structure J'
on W, which is a small deformation of the original complex structure J and
which satisfies the following properties:

(a) Each singular fibre Zi of E —> C has an open neighbourhood Ui C.W
fibred over A» C C with J1 inducing an integrable complex structure
on each fibre (thus Ui —> A» is a C°° family of holomorphic surface
neighbourhoods).

(b) The almost complex structure J' is integrable in a smaller neighbour-
hood U[ C Ui of each singular fibre, with the corresponding family
U! —> A^ being holomorphic.

(c) On the complement of (J Ui in VF̂  the almost complex structure J'
coincides with the original complex structure J.
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(d) E deforms to a C°° family of pseudoholomorphic rational curves E1 —* C
in (W, J'), with generic fibre CP1 and the only singular fibres being
line pairs. Moreover, we may assume that any such singular fibre is
contained in one of the above open sets U[.

Of course, we may now patch J' on W with the original complex structure
J on X to get a global tamed almost complex structure on X, which we shall
also denote by J'. Provided we have taken our deformations sufficiently small,
the standard argument via Gromov compactness ensures that any pseudo-
holomorphic stable map representing the class A has image contained in a
fibre of E' -> C.

The theory of [13] applies equally well to almost complex structures, and
hence to our almost complex manifold X' with complex structure J'. Clearly,
all the calculations remain unchanged for stable maps whose image (a fibre
of E' —> C) has a neighbourhood on which J' is integrable, and in particular
this includes all the singular fibres. Suppose therefore that / : CP1 —• X'
is a pseudoholomorphic rational curve whose image Z is contained in an
overlap U{ \ U[ (where J' may be nonintegrable). The linearized Cauchy-
Riemann operator LA still has index zero, since by the argument of [10],
p. 24, the calculation via Riemann-Roch continues to give the correct value.
We therefore need to show that cokerL^ is still identified naturally as TQX,
and hence that the obstruction bundle is H = T£ as before.

Setting U = Ui and A = A*, we know that U —• A is locally (around the
image Z of / ) a C°° family of holomorphic surface neighbourhoods. Moreover,
the linearized Cauchy-Riemann operator LA = Df\ C°°(f*Tu) —> nO)1(.
fits into the following commutative diagram (with exact rows)

—> o (j lu/A) —> ^ u J-u) —• o [g 1A) —• u

o -> fP'H/rzv/A) - no>l(f*Tu) -> n°>l(9*TA) -> o

where g is the constant map on CP1 with image the point x G A, and where
the fibre of E' over xis Z. Let us denote by Ux the corresponding holomorphic
surface neighbourhood, the fibre of U over x. The cokernel of

is then naturally identified via Dolbeault cohomology with Hl(Tux\z) =

Hl{Nz/ux)- This latter space is in turn naturally identified with Hl(Nf) =
H°(NfY * T^x.

I claim now that J' may be found as above for which coker LA has the
correct dimension (namely real dimension two) for all fibres of E' —> C. Since
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LA has index zero and ker LA has dimension at least two, we need to show that
the dimension of coker LA is not more than two. This follows by a Gromov
compactness argument. Suppose that, however close we take J' to J, the
dimension is too big for some fibre of E' —> C. We can then find sequences of
almost complex structures J'u (with the properties (a)-(d) described above)
converging to J = Jo, and pseudoholomorphic rational curves /„: CP1 —>
(X, J'J) at which coker LA has real dimension > 2. By construction, the image
of such a map is not contained in any U[ (since J'v would then be integrable on
some neighbourhood of the image, and then we know that coker LA has the
correct dimension). Thus the image of /„ has nontrivial intersection with the
compact set X \ (J U[. By Gromov compactness, the fu may be assumed to
converge to a pseudoholomorphic rational curve on (X, J) whose image is not
contained in any U-. This is therefore just an embedding / : CP1 —• (X, J)
of some smooth fibre of E —> C, at which we know that coker LA has real
dimension precisely two; this then is a contradiction. A similar argument,
via Gromov compactness, then yields the fact that J1 may be found as above
such that the linear map coker(df) —> coker(Df) is an isomorphism for all
smooth fibres of E' —> C, since this is true for all the smooth fibres of E —> C
on(X,J ) .

For such a J', we deduce that coker LA is naturally identified with TQX for
all fibres, and hence the obstruction bundle identified as T£. The previous
argument may then be applied directly with the almost complex structure J',
showing that the symplectic invariant n<i is 2g — 2 in general. The proof of
Theorem 4.1 is now complete.

5 An application to symplectic deformations
of Calabi-Yaus

If X is a Calabi-Yau threefold which is general in moduli, we know that any
codimension one face of its nef cone K(X) (not contained in the cubic cone
W*) corresponds to a primitive birational contraction ip: X —> X of Type I,
II or IIIo, where Type IIIo denotes a Type III contraction for which the genus
of the curve C of singularities on X is zero.

In [18], we studied Calabi-Yau threefolds which are symplectic deforma-
tions of each other. One of the results proved there (Theorem 2) said that
if X\ and X<i are Calabi-Yau threefolds, general in their complex moduli,
which are symplectic deformations of each other, then their Kahler cones are
the same. The proof of this essentially came down to showing that certain
Gromov-Witten invariants associated to exceptional classes were nonzero.
Using the much more precise information obtained in this paper, we are able
to make a stronger statement.
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Corollary 5.1 With the notation as above, any codimension one face (not
contained in W*) of JC(Xi) = /C(X2) has the same contraction type (Type I,
II or IIIo) on X\ as on Xi-

Proof The fact that Type II faces correspond is easy, since for D in the
interior of such a face, the quadratic form q(L) = D • I? is degenerate, which
is not the case for D in the interior of a Type I or Type IIIo face. Stating
it another way, if we consider the Hessian form associated to the topological
cubic form JJL, then h is a form of degree p = b<i which has a linear factor
corresponding to each Type II face. Thus the condition that a face is of
Type II is topologically determined.

The result will therefore follow if we can show that a face of the nef cone
which is Type I for one of the Calabi-Yau threefolds is not of Type IIIo for the
other. However, for a Type I face, we saw in §2 that n^ is always nonnegative;
for a Type IIIo face, we proved in Theorem 4.1 that n<i = —2. Since Gromov-
Witten invariants are invariant under symplectic deformations, the result is
proved.

Remark 5.2 It is still an open question whether there exist examples of
Calabi-Yau threefolds X\ and X<i which are symplectic deformations of each
other but not in the same algebraic family.
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